github.com/bir3/gocompiler@v0.9.2202/src/cmd/link/internal/ppc64/asm.go (about)

     1  // Inferno utils/5l/asm.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  package ppc64
    32  
    33  import (
    34  	"github.com/bir3/gocompiler/src/cmd/internal/objabi"
    35  	"github.com/bir3/gocompiler/src/cmd/internal/sys"
    36  	"github.com/bir3/gocompiler/src/cmd/link/internal/ld"
    37  	"github.com/bir3/gocompiler/src/cmd/link/internal/loader"
    38  	"github.com/bir3/gocompiler/src/cmd/link/internal/sym"
    39  	"debug/elf"
    40  	"encoding/binary"
    41  	"fmt"
    42  	"github.com/bir3/gocompiler/src/internal/buildcfg"
    43  	"log"
    44  	"strconv"
    45  	"strings"
    46  )
    47  
    48  // The build configuration supports PC-relative instructions and relocations (limited to tested targets).
    49  var hasPCrel = buildcfg.GOPPC64 >= 10 && buildcfg.GOOS == "linux"
    50  
    51  const (
    52  	// For genstub, the type of stub required by the caller.
    53  	STUB_TOC	= iota
    54  	STUB_PCREL
    55  )
    56  
    57  var stubStrs = []string{
    58  	STUB_TOC:	"_callstub_toc",
    59  	STUB_PCREL:	"_callstub_pcrel",
    60  }
    61  
    62  const (
    63  	OP_TOCRESTORE		= 0xe8410018	// ld r2,24(r1)
    64  	OP_TOCSAVE		= 0xf8410018	// std r2,24(r1)
    65  	OP_NOP			= 0x60000000	// nop
    66  	OP_BL			= 0x48000001	// bl 0
    67  	OP_BCTR			= 0x4e800420	// bctr
    68  	OP_BCTRL		= 0x4e800421	// bctrl
    69  	OP_BCL			= 0x40000001	// bcl
    70  	OP_ADDI			= 0x38000000	// addi
    71  	OP_ADDIS		= 0x3c000000	// addis
    72  	OP_LD			= 0xe8000000	// ld
    73  	OP_PLA_PFX		= 0x06100000	// pla (prefix instruction word)
    74  	OP_PLA_SFX		= 0x38000000	// pla (suffix instruction word)
    75  	OP_PLD_PFX_PCREL	= 0x04100000	// pld (prefix instruction word, R=1)
    76  	OP_PLD_SFX		= 0xe4000000	// pld (suffix instruction word)
    77  	OP_MFLR			= 0x7c0802a6	// mflr
    78  	OP_MTLR			= 0x7c0803a6	// mtlr
    79  	OP_MFCTR		= 0x7c0902a6	// mfctr
    80  	OP_MTCTR		= 0x7c0903a6	// mtctr
    81  
    82  	OP_ADDIS_R12_R2		= OP_ADDIS | 12<<21 | 2<<16	// addis r12,r2,0
    83  	OP_ADDIS_R12_R12	= OP_ADDIS | 12<<21 | 12<<16	// addis  r12,r12,0
    84  	OP_ADDI_R12_R12		= OP_ADDI | 12<<21 | 12<<16	// addi  r12,r12,0
    85  	OP_PLD_SFX_R12		= OP_PLD_SFX | 12<<21		// pld   r12,0 (suffix instruction word)
    86  	OP_PLA_SFX_R12		= OP_PLA_SFX | 12<<21		// pla   r12,0 (suffix instruction word)
    87  	OP_LIS_R12		= OP_ADDIS | 12<<21		// lis r12,0
    88  	OP_LD_R12_R12		= OP_LD | 12<<21 | 12<<16	// ld r12,0(r12)
    89  	OP_MTCTR_R12		= OP_MTCTR | 12<<21		// mtctr r12
    90  	OP_MFLR_R12		= OP_MFLR | 12<<21		// mflr r12
    91  	OP_MFLR_R0		= OP_MFLR | 0<<21		// mflr r0
    92  	OP_MTLR_R0		= OP_MTLR | 0<<21		// mtlr r0
    93  
    94  	// This is a special, preferred form of bcl to obtain the next
    95  	// instruction address (NIA, aka PC+4) in LR.
    96  	OP_BCL_NIA	= OP_BCL | 20<<21 | 31<<16 | 1<<2	// bcl 20,31,$+4
    97  
    98  	// Masks to match opcodes
    99  	MASK_PLD_PFX	= 0xfff70000
   100  	MASK_PLD_SFX	= 0xfc1f0000	// Also checks RA = 0 if check value is OP_PLD_SFX.
   101  	MASK_PLD_RT	= 0x03e00000	// Extract RT from the pld suffix.
   102  	MASK_OP_LD	= 0xfc000003
   103  	MASK_OP_ADDIS	= 0xfc000000
   104  )
   105  
   106  // Generate a stub to call between TOC and NOTOC functions. See genpltstub for more details about calling stubs.
   107  // This is almost identical to genpltstub, except the location of the target symbol is known at link time.
   108  func genstub(ctxt *ld.Link, ldr *loader.Loader, r loader.Reloc, ri int, s loader.Sym, stubType int) (ssym loader.Sym, firstUse bool) {
   109  	addendStr := ""
   110  	if r.Add() != 0 {
   111  		addendStr = fmt.Sprintf("%+d", r.Add())
   112  	}
   113  
   114  	stubName := fmt.Sprintf("%s%s.%s", stubStrs[stubType], addendStr, ldr.SymName(r.Sym()))
   115  	stub := ldr.CreateSymForUpdate(stubName, 0)
   116  	firstUse = stub.Size() == 0
   117  	if firstUse {
   118  		switch stubType {
   119  		// A call from a function using a TOC pointer.
   120  		case STUB_TOC:
   121  			stub.AddUint32(ctxt.Arch, OP_TOCSAVE)	// std r2,24(r1)
   122  			stub.AddSymRef(ctxt.Arch, r.Sym(), r.Add(), objabi.R_ADDRPOWER_TOCREL_DS, 8)
   123  			stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_ADDIS_R12_R2)	// addis r12,r2,targ@toc@ha
   124  			stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_ADDI_R12_R12)	// addi  r12,targ@toc@l(r12)
   125  
   126  		// A call from PC relative function.
   127  		case STUB_PCREL:
   128  			if buildcfg.GOPPC64 >= 10 {
   129  				// Set up address of targ in r12, PCrel
   130  				stub.AddSymRef(ctxt.Arch, r.Sym(), r.Add(), objabi.R_ADDRPOWER_PCREL34, 8)
   131  				stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_PLA_PFX)
   132  				stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_PLA_SFX_R12)	// pla r12, r
   133  			} else {
   134  				// The target may not be a P10. Generate a P8 compatible stub.
   135  				stub.AddUint32(ctxt.Arch, OP_MFLR_R0)	// mflr r0
   136  				stub.AddUint32(ctxt.Arch, OP_BCL_NIA)	// bcl 20,31,1f
   137  				stub.AddUint32(ctxt.Arch, OP_MFLR_R12)	// 1: mflr r12  (r12 is the address of this instruction)
   138  				stub.AddUint32(ctxt.Arch, OP_MTLR_R0)	// mtlr r0
   139  				stub.AddSymRef(ctxt.Arch, r.Sym(), r.Add()+8, objabi.R_ADDRPOWER_PCREL, 8)
   140  				stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_ADDIS_R12_R12)	// addis r12,(r - 1b) + 8
   141  				stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_ADDI_R12_R12)	// addi  r12,(r - 1b) + 12
   142  			}
   143  		}
   144  		// Jump to the loaded pointer
   145  		stub.AddUint32(ctxt.Arch, OP_MTCTR_R12)	// mtctr r12
   146  		stub.AddUint32(ctxt.Arch, OP_BCTR)	// bctr
   147  		stub.SetType(sym.STEXT)
   148  	}
   149  
   150  	// Update the relocation to use the call stub
   151  	su := ldr.MakeSymbolUpdater(s)
   152  	su.SetRelocSym(ri, stub.Sym())
   153  
   154  	// Rewrite the TOC restore slot (a nop) if the caller uses a TOC pointer.
   155  	switch stubType {
   156  	case STUB_TOC:
   157  		rewritetoinsn(&ctxt.Target, ldr, su, int64(r.Off()+4), 0xFFFFFFFF, OP_NOP, OP_TOCRESTORE)
   158  	}
   159  
   160  	return stub.Sym(), firstUse
   161  }
   162  
   163  func genpltstub(ctxt *ld.Link, ldr *loader.Loader, r loader.Reloc, ri int, s loader.Sym) (sym loader.Sym, firstUse bool) {
   164  	// The ppc64 ABI PLT has similar concepts to other
   165  	// architectures, but is laid out quite differently. When we
   166  	// see a relocation to a dynamic symbol (indicating that the
   167  	// call needs to go through the PLT), we generate up to three
   168  	// stubs and reserve a PLT slot.
   169  	//
   170  	// 1) The call site is a "bl x" where genpltstub rewrites it to
   171  	//    "bl x_stub". Depending on the properties of the caller
   172  	//    (see ELFv2 1.5 4.2.5.3), a nop may be expected immediately
   173  	//    after the bl. This nop is rewritten to ld r2,24(r1) to
   174  	//    restore the toc pointer saved by x_stub.
   175  	//
   176  	// 2) We reserve space for a pointer in the .plt section (once
   177  	//    per referenced dynamic function).  .plt is a data
   178  	//    section filled solely by the dynamic linker (more like
   179  	//    .plt.got on other architectures).  Initially, the
   180  	//    dynamic linker will fill each slot with a pointer to the
   181  	//    corresponding x@plt entry point.
   182  	//
   183  	// 3) We generate a "call stub" x_stub based on the properties
   184  	//    of the caller.
   185  	//
   186  	// 4) We generate the "symbol resolver stub" x@plt (once per
   187  	//    dynamic function).  This is solely a branch to the glink
   188  	//    resolver stub.
   189  	//
   190  	// 5) We generate the glink resolver stub (only once).  This
   191  	//    computes which symbol resolver stub we came through and
   192  	//    invokes the dynamic resolver via a pointer provided by
   193  	//    the dynamic linker. This will patch up the .plt slot to
   194  	//    point directly at the function so future calls go
   195  	//    straight from the call stub to the real function, and
   196  	//    then call the function.
   197  
   198  	// NOTE: It's possible we could make ppc64 closer to other
   199  	// architectures: ppc64's .plt is like .plt.got on other
   200  	// platforms and ppc64's .glink is like .plt on other
   201  	// platforms.
   202  
   203  	// Find all relocations that reference dynamic imports.
   204  	// Reserve PLT entries for these symbols and generate call
   205  	// stubs. The call stubs need to live in .text, which is why we
   206  	// need to do this pass this early.
   207  
   208  	// Reserve PLT entry and generate symbol resolver
   209  	addpltsym(ctxt, ldr, r.Sym())
   210  
   211  	// The stub types are described in gencallstub.
   212  	stubType := 0
   213  	stubTypeStr := ""
   214  
   215  	// For now, the choice of call stub type is determined by whether
   216  	// the caller maintains a TOC pointer in R2. A TOC pointer implies
   217  	// we can always generate a position independent stub.
   218  	//
   219  	// For dynamic calls made from an external object, a caller maintains
   220  	// a TOC pointer only when an R_PPC64_REL24 relocation is used.
   221  	// An R_PPC64_REL24_NOTOC relocation does not use or maintain
   222  	// a TOC pointer, and almost always implies a Power10 target.
   223  	//
   224  	// For dynamic calls made from a Go caller, a TOC relative stub is
   225  	// always needed when a TOC pointer is maintained (specifically, if
   226  	// the Go caller is PIC, and cannot use PCrel instructions).
   227  	if (r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24)) || (!ldr.AttrExternal(s) && ldr.AttrShared(s) && !hasPCrel) {
   228  		stubTypeStr = "_tocrel"
   229  		stubType = 1
   230  	} else {
   231  		stubTypeStr = "_notoc"
   232  		stubType = 3
   233  	}
   234  	n := fmt.Sprintf("_pltstub%s.%s", stubTypeStr, ldr.SymName(r.Sym()))
   235  
   236  	// When internal linking, all text symbols share the same toc pointer.
   237  	stub := ldr.CreateSymForUpdate(n, 0)
   238  	firstUse = stub.Size() == 0
   239  	if firstUse {
   240  		gencallstub(ctxt, ldr, stubType, stub, r.Sym())
   241  	}
   242  
   243  	// Update the relocation to use the call stub
   244  	su := ldr.MakeSymbolUpdater(s)
   245  	su.SetRelocSym(ri, stub.Sym())
   246  
   247  	// A type 1 call must restore the toc pointer after the call.
   248  	if stubType == 1 {
   249  		su.MakeWritable()
   250  		p := su.Data()
   251  
   252  		// Check for a toc pointer restore slot (a nop), and rewrite to restore the toc pointer.
   253  		var nop uint32
   254  		if len(p) >= int(r.Off()+8) {
   255  			nop = ctxt.Arch.ByteOrder.Uint32(p[r.Off()+4:])
   256  		}
   257  		if nop != OP_NOP {
   258  			ldr.Errorf(s, "Symbol %s is missing toc restoration slot at offset %d", ldr.SymName(s), r.Off()+4)
   259  		}
   260  		ctxt.Arch.ByteOrder.PutUint32(p[r.Off()+4:], OP_TOCRESTORE)
   261  	}
   262  
   263  	return stub.Sym(), firstUse
   264  }
   265  
   266  // Scan relocs and generate PLT stubs and generate/fixup ABI defined functions created by the linker.
   267  func genstubs(ctxt *ld.Link, ldr *loader.Loader) {
   268  	var stubs []loader.Sym
   269  	var abifuncs []loader.Sym
   270  	for _, s := range ctxt.Textp {
   271  		relocs := ldr.Relocs(s)
   272  		for i := 0; i < relocs.Count(); i++ {
   273  			switch r := relocs.At(i); r.Type() {
   274  			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24), objabi.R_CALLPOWER:
   275  				switch ldr.SymType(r.Sym()) {
   276  				case sym.SDYNIMPORT:
   277  					// This call goes through the PLT, generate and call through a PLT stub.
   278  					if sym, firstUse := genpltstub(ctxt, ldr, r, i, s); firstUse {
   279  						stubs = append(stubs, sym)
   280  					}
   281  
   282  				case sym.SXREF:
   283  					// Is this an ELF ABI defined function which is (in practice)
   284  					// generated by the linker to save/restore callee save registers?
   285  					// These are defined similarly for both PPC64 ELF and ELFv2.
   286  					targName := ldr.SymName(r.Sym())
   287  					if strings.HasPrefix(targName, "_save") || strings.HasPrefix(targName, "_rest") {
   288  						if sym, firstUse := rewriteABIFuncReloc(ctxt, ldr, targName, r); firstUse {
   289  							abifuncs = append(abifuncs, sym)
   290  						}
   291  					}
   292  				case sym.STEXT:
   293  					targ := r.Sym()
   294  					if (ldr.AttrExternal(targ) && ldr.SymLocalentry(targ) != 1) || !ldr.AttrExternal(targ) {
   295  						// All local symbols share the same TOC pointer. This caller has a valid TOC
   296  						// pointer in R2. Calls into a Go symbol preserve R2. No call stub is needed.
   297  					} else {
   298  						// This caller has a TOC pointer. The callee might clobber it. R2 needs to be saved
   299  						// and restored.
   300  						if sym, firstUse := genstub(ctxt, ldr, r, i, s, STUB_TOC); firstUse {
   301  							stubs = append(stubs, sym)
   302  						}
   303  					}
   304  				}
   305  
   306  			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24_P9NOTOC):
   307  				// This can be treated identically to R_PPC64_REL24_NOTOC, as stubs are determined by
   308  				// GOPPC64 and -buildmode.
   309  				fallthrough
   310  			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24_NOTOC):
   311  				switch ldr.SymType(r.Sym()) {
   312  				case sym.SDYNIMPORT:
   313  					// This call goes through the PLT, generate and call through a PLT stub.
   314  					if sym, firstUse := genpltstub(ctxt, ldr, r, i, s); firstUse {
   315  						stubs = append(stubs, sym)
   316  					}
   317  
   318  				case sym.SXREF:
   319  					// TODO: This is not supported yet.
   320  					ldr.Errorf(s, "Unsupported NOTOC external reference call into %s", ldr.SymName(r.Sym()))
   321  
   322  				case sym.STEXT:
   323  					targ := r.Sym()
   324  					if (ldr.AttrExternal(targ) && ldr.SymLocalentry(targ) <= 1) || (!ldr.AttrExternal(targ) && (!ldr.AttrShared(targ) || hasPCrel)) {
   325  						// This is NOTOC to NOTOC call (st_other is 0 or 1). No call stub is needed.
   326  					} else {
   327  						// This is a NOTOC to TOC function. Generate a calling stub.
   328  						if sym, firstUse := genstub(ctxt, ldr, r, i, s, STUB_PCREL); firstUse {
   329  							stubs = append(stubs, sym)
   330  						}
   331  					}
   332  				}
   333  
   334  			// Handle objects compiled with -fno-plt. Rewrite local calls to avoid indirect calling.
   335  			// These are 0 sized relocs. They mark the mtctr r12, or bctrl + ld r2,24(r1).
   336  			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTSEQ):
   337  				if ldr.SymType(r.Sym()) == sym.STEXT {
   338  					// This should be an mtctr instruction. Turn it into a nop.
   339  					su := ldr.MakeSymbolUpdater(s)
   340  					const MASK_OP_MTCTR = 63<<26 | 0x3FF<<11 | 0x1FF<<1
   341  					rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()), MASK_OP_MTCTR, OP_MTCTR)
   342  				}
   343  			case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLTCALL):
   344  				if ldr.SymType(r.Sym()) == sym.STEXT {
   345  					// This relocation should point to a bctrl followed by a ld r2, 24(41)
   346  					// Convert the bctrl into a bl.
   347  					su := ldr.MakeSymbolUpdater(s)
   348  					rewritetoinsn(&ctxt.Target, ldr, su, int64(r.Off()), 0xFFFFFFFF, OP_BCTRL, OP_BL)
   349  
   350  					// Turn this reloc into an R_CALLPOWER, and convert the TOC restore into a nop.
   351  					su.SetRelocType(i, objabi.R_CALLPOWER)
   352  					localEoffset := int64(ldr.SymLocalentry(r.Sym()))
   353  					if localEoffset == 1 {
   354  						ldr.Errorf(s, "Unsupported NOTOC call to %s", ldr.SymName(r.Sym()))
   355  					}
   356  					su.SetRelocAdd(i, r.Add()+localEoffset)
   357  					r.SetSiz(4)
   358  					rewritetonop(&ctxt.Target, ldr, su, int64(r.Off()+4), 0xFFFFFFFF, OP_TOCRESTORE)
   359  				}
   360  			}
   361  		}
   362  	}
   363  
   364  	// Append any usage of the go versions of ELF save/restore
   365  	// functions to the end of the callstub list to minimize
   366  	// chances a trampoline might be needed.
   367  	stubs = append(stubs, abifuncs...)
   368  
   369  	// Put stubs at the beginning (instead of the end).
   370  	// So when resolving the relocations to calls to the stubs,
   371  	// the addresses are known and trampolines can be inserted
   372  	// when necessary.
   373  	ctxt.Textp = append(stubs, ctxt.Textp...)
   374  }
   375  
   376  func genaddmoduledata(ctxt *ld.Link, ldr *loader.Loader) {
   377  	initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt)
   378  	if initfunc == nil {
   379  		return
   380  	}
   381  
   382  	o := func(op uint32) {
   383  		initfunc.AddUint32(ctxt.Arch, op)
   384  	}
   385  
   386  	// Write a function to load this module's local.moduledata. This is shared code.
   387  	//
   388  	// package link
   389  	// void addmoduledata() {
   390  	//	runtime.addmoduledata(local.moduledata)
   391  	// }
   392  
   393  	if !hasPCrel {
   394  		// Regenerate TOC from R12 (the address of this function).
   395  		sz := initfunc.AddSymRef(ctxt.Arch, ctxt.DotTOC[0], 0, objabi.R_ADDRPOWER_PCREL, 8)
   396  		initfunc.SetUint32(ctxt.Arch, sz-8, 0x3c4c0000)	// addis r2, r12, .TOC.-func@ha
   397  		initfunc.SetUint32(ctxt.Arch, sz-4, 0x38420000)	// addi r2, r2, .TOC.-func@l
   398  	}
   399  
   400  	// This is Go ABI. Stack a frame and save LR.
   401  	o(OP_MFLR_R0)	// mflr r0
   402  	o(0xf801ffe1)	// stdu r0, -32(r1)
   403  
   404  	// Get the moduledata pointer from GOT and put into R3.
   405  	var tgt loader.Sym
   406  	if s := ldr.Lookup("local.moduledata", 0); s != 0 {
   407  		tgt = s
   408  	} else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 {
   409  		tgt = s
   410  	} else {
   411  		tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0)
   412  	}
   413  
   414  	if !hasPCrel {
   415  		sz := initfunc.AddSymRef(ctxt.Arch, tgt, 0, objabi.R_ADDRPOWER_GOT, 8)
   416  		initfunc.SetUint32(ctxt.Arch, sz-8, 0x3c620000)	// addis r3, r2, local.moduledata@got@ha
   417  		initfunc.SetUint32(ctxt.Arch, sz-4, 0xe8630000)	// ld r3, local.moduledata@got@l(r3)
   418  	} else {
   419  		sz := initfunc.AddSymRef(ctxt.Arch, tgt, 0, objabi.R_ADDRPOWER_GOT_PCREL34, 8)
   420  		// Note, this is prefixed instruction. It must not cross a 64B boundary.
   421  		// It is doubleworld aligned here, so it will never cross (this function is 16B aligned, minimum).
   422  		initfunc.SetUint32(ctxt.Arch, sz-8, OP_PLD_PFX_PCREL)
   423  		initfunc.SetUint32(ctxt.Arch, sz-4, OP_PLD_SFX|(3<<21))	// pld r3, local.moduledata@got@pcrel
   424  	}
   425  
   426  	// Call runtime.addmoduledata
   427  	sz := initfunc.AddSymRef(ctxt.Arch, addmoduledata, 0, objabi.R_CALLPOWER, 4)
   428  	initfunc.SetUint32(ctxt.Arch, sz-4, OP_BL)	// bl runtime.addmoduledata
   429  	o(OP_NOP)					// nop (for TOC restore)
   430  
   431  	// Pop stack frame and return.
   432  	o(0xe8010000)	// ld r0, 0(r1)
   433  	o(OP_MTLR_R0)	// mtlr r0
   434  	o(0x38210020)	// addi r1,r1,32
   435  	o(0x4e800020)	// blr
   436  }
   437  
   438  // Rewrite ELF (v1 or v2) calls to _savegpr0_n, _savegpr1_n, _savefpr_n, _restfpr_n, _savevr_m, or
   439  // _restvr_m (14<=n<=31, 20<=m<=31). Redirect them to runtime.elf_restgpr0+(n-14)*4,
   440  // runtime.elf_restvr+(m-20)*8, and similar.
   441  //
   442  // These functions are defined in the ELFv2 ABI (generated when using gcc -Os option) to save and
   443  // restore callee-saved registers (as defined in the PPC64 ELF ABIs) from registers n or m to 31 of
   444  // the named type. R12 and R0 are sometimes used in exceptional ways described in the ABI.
   445  //
   446  // Final note, this is only needed when linking internally. The external linker will generate these
   447  // functions if they are used.
   448  func rewriteABIFuncReloc(ctxt *ld.Link, ldr *loader.Loader, tname string, r loader.Reloc) (sym loader.Sym, firstUse bool) {
   449  	s := strings.Split(tname, "_")
   450  	// A valid call will split like {"", "savegpr0", "20"}
   451  	if len(s) != 3 {
   452  		return 0, false	// Not an abi func.
   453  	}
   454  	minReg := 14	// _savegpr0_{n}, _savegpr1_{n}, _savefpr_{n}, 14 <= n <= 31
   455  	offMul := 4	// 1 instruction per register op.
   456  	switch s[1] {
   457  	case "savegpr0", "savegpr1", "savefpr":
   458  	case "restgpr0", "restgpr1", "restfpr":
   459  	case "savevr", "restvr":
   460  		minReg = 20	// _savevr_{n} or _restvr_{n}, 20 <= n <= 31
   461  		offMul = 8	// 2 instructions per register op.
   462  	default:
   463  		return 0, false	// Not an abi func
   464  	}
   465  	n, e := strconv.Atoi(s[2])
   466  	if e != nil || n < minReg || n > 31 || r.Add() != 0 {
   467  		return 0, false	// Invalid register number, or non-zero addend. Not an abi func.
   468  	}
   469  
   470  	// tname is a valid relocation to an ABI defined register save/restore function. Re-relocate
   471  	// them to a go version of these functions in runtime/asm_ppc64x.s
   472  	ts := ldr.LookupOrCreateSym("runtime.elf_"+s[1], 0)
   473  	r.SetSym(ts)
   474  	r.SetAdd(int64((n - minReg) * offMul))
   475  	firstUse = !ldr.AttrReachable(ts)
   476  	if firstUse {
   477  		ldr.SetAttrReachable(ts, true)
   478  		// This function only becomes reachable now. It has been dropped from
   479  		// the text section (it was unreachable until now), it needs included.
   480  		//
   481  		// Similarly, TOC regeneration should not happen for these functions,
   482  		// remove it from this save/restore function.
   483  		if ldr.AttrShared(ts) {
   484  			sb := ldr.MakeSymbolUpdater(ts)
   485  			sb.SetData(sb.Data()[8:])
   486  			sb.SetSize(sb.Size() - 8)
   487  			relocs := sb.Relocs()
   488  			// Only one PCREL reloc to .TOC. should be present.
   489  			if relocs.Count() != 1 {
   490  				log.Fatalf("Unexpected number of relocs in %s\n", ldr.SymName(ts))
   491  			}
   492  			sb.ResetRelocs()
   493  
   494  		}
   495  	}
   496  	return ts, firstUse
   497  }
   498  
   499  func gentext(ctxt *ld.Link, ldr *loader.Loader) {
   500  	if ctxt.DynlinkingGo() {
   501  		genaddmoduledata(ctxt, ldr)
   502  	}
   503  
   504  	if ctxt.LinkMode == ld.LinkInternal {
   505  		genstubs(ctxt, ldr)
   506  	}
   507  }
   508  
   509  // Create a calling stub. The stubType maps directly to the properties listed in the ELFv2 1.5
   510  // section 4.2.5.3.
   511  //
   512  // There are 3 cases today (as paraphrased from the ELFv2 document):
   513  //
   514  //  1. R2 holds the TOC pointer on entry. The call stub must save R2 into the ELFv2 TOC stack save slot.
   515  //
   516  //  2. R2 holds the TOC pointer on entry. The caller has already saved R2 to the TOC stack save slot.
   517  //
   518  //  3. R2 does not hold the TOC pointer on entry. The caller has no expectations of R2.
   519  //
   520  // Go only needs case 1 and 3 today. Go symbols which have AttrShare set could use case 2, but case 1 always
   521  // works in those cases too.
   522  func gencallstub(ctxt *ld.Link, ldr *loader.Loader, stubType int, stub *loader.SymbolBuilder, targ loader.Sym) {
   523  	plt := ctxt.PLT
   524  	stub.SetType(sym.STEXT)
   525  
   526  	switch stubType {
   527  	case 1:
   528  		// Save TOC, then load targ address from PLT using TOC.
   529  		stub.AddUint32(ctxt.Arch, OP_TOCSAVE)	// std r2,24(r1)
   530  		stub.AddSymRef(ctxt.Arch, plt, int64(ldr.SymPlt(targ)), objabi.R_ADDRPOWER_TOCREL_DS, 8)
   531  		stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_ADDIS_R12_R2)	// addis r12,r2,targ@plt@toc@ha
   532  		stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_LD_R12_R12)		// ld r12,targ@plt@toc@l(r12)
   533  	case 3:
   534  		// No TOC needs to be saved, but the stub may need to position-independent.
   535  		if buildcfg.GOPPC64 >= 10 {
   536  			// Power10 is supported, load targ address into r12 using PCrel load.
   537  			stub.AddSymRef(ctxt.Arch, plt, int64(ldr.SymPlt(targ)), objabi.R_ADDRPOWER_PCREL34, 8)
   538  			stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_PLD_PFX_PCREL)
   539  			stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_PLD_SFX_R12)	// pld r12, targ@plt
   540  		} else if !isLinkingPIC(ctxt) {
   541  			// This stub doesn't need to be PIC. Load targ address from the PLT via its absolute address.
   542  			stub.AddSymRef(ctxt.Arch, plt, int64(ldr.SymPlt(targ)), objabi.R_ADDRPOWER_DS, 8)
   543  			stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_LIS_R12)	// lis r12,targ@plt@ha
   544  			stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_LD_R12_R12)	// ld r12,targ@plt@l(r12)
   545  		} else {
   546  			// Generate a PIC stub. This is ugly as the stub must determine its location using
   547  			// POWER8 or older instruction. These stubs are likely the combination of using
   548  			// GOPPC64 < 8 and linking external objects built with CFLAGS="... -mcpu=power10 ..."
   549  			stub.AddUint32(ctxt.Arch, OP_MFLR_R0)	// mflr r0
   550  			stub.AddUint32(ctxt.Arch, OP_BCL_NIA)	// bcl 20,31,1f
   551  			stub.AddUint32(ctxt.Arch, OP_MFLR_R12)	// 1: mflr r12  (r12 is the address of this instruction)
   552  			stub.AddUint32(ctxt.Arch, OP_MTLR_R0)	// mtlr r0
   553  			stub.AddSymRef(ctxt.Arch, plt, int64(ldr.SymPlt(targ))+8, objabi.R_ADDRPOWER_PCREL, 8)
   554  			stub.SetUint32(ctxt.Arch, stub.Size()-8, OP_ADDIS_R12_R12)	// addis r12,(targ@plt - 1b) + 8
   555  			stub.SetUint32(ctxt.Arch, stub.Size()-4, OP_ADDI_R12_R12)	// addi  r12,(targ@plt - 1b) + 12
   556  			stub.AddUint32(ctxt.Arch, OP_LD_R12_R12)			// ld r12, 0(r12)
   557  		}
   558  	default:
   559  		log.Fatalf("gencallstub does not support ELFv2 ABI property %d", stubType)
   560  	}
   561  
   562  	// Jump to the loaded pointer
   563  	stub.AddUint32(ctxt.Arch, OP_MTCTR_R12)	// mtctr r12
   564  	stub.AddUint32(ctxt.Arch, OP_BCTR)	// bctr
   565  }
   566  
   567  // Rewrite the instruction at offset into newinsn. Also, verify the
   568  // existing instruction under mask matches the check value.
   569  func rewritetoinsn(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check, newinsn uint32) {
   570  	su.MakeWritable()
   571  	op := target.Arch.ByteOrder.Uint32(su.Data()[offset:])
   572  	if op&mask != check {
   573  		ldr.Errorf(su.Sym(), "Rewrite offset 0x%x to 0x%08X failed check (0x%08X&0x%08X != 0x%08X)", offset, newinsn, op, mask, check)
   574  	}
   575  	su.SetUint32(target.Arch, offset, newinsn)
   576  }
   577  
   578  // Rewrite the instruction at offset into a hardware nop instruction. Also, verify the
   579  // existing instruction under mask matches the check value.
   580  func rewritetonop(target *ld.Target, ldr *loader.Loader, su *loader.SymbolBuilder, offset int64, mask, check uint32) {
   581  	rewritetoinsn(target, ldr, su, offset, mask, check, OP_NOP)
   582  }
   583  
   584  func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
   585  	if target.IsElf() {
   586  		return addelfdynrel(target, ldr, syms, s, r, rIdx)
   587  	} else if target.IsAIX() {
   588  		return ld.Xcoffadddynrel(target, ldr, syms, s, r, rIdx)
   589  	}
   590  	return false
   591  }
   592  
   593  func addelfdynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool {
   594  	targ := r.Sym()
   595  	var targType sym.SymKind
   596  	if targ != 0 {
   597  		targType = ldr.SymType(targ)
   598  	}
   599  
   600  	switch r.Type() {
   601  	default:
   602  		if r.Type() >= objabi.ElfRelocOffset {
   603  			ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type()))
   604  			return false
   605  		}
   606  
   607  		// Handle relocations found in ELF object files.
   608  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24_NOTOC),
   609  		objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24_P9NOTOC):
   610  		su := ldr.MakeSymbolUpdater(s)
   611  		su.SetRelocType(rIdx, objabi.R_CALLPOWER)
   612  
   613  		if targType == sym.SDYNIMPORT {
   614  			// Should have been handled in elfsetupplt
   615  			ldr.Errorf(s, "unexpected R_PPC64_REL24_NOTOC/R_PPC64_REL24_P9NOTOC for dyn import")
   616  		}
   617  		return true
   618  
   619  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
   620  		su := ldr.MakeSymbolUpdater(s)
   621  		su.SetRelocType(rIdx, objabi.R_CALLPOWER)
   622  
   623  		// This is a local call, so the caller isn't setting
   624  		// up r12 and r2 is the same for the caller and
   625  		// callee. Hence, we need to go to the local entry
   626  		// point.  (If we don't do this, the callee will try
   627  		// to use r12 to compute r2.)
   628  		localEoffset := int64(ldr.SymLocalentry(targ))
   629  		if localEoffset == 1 {
   630  			ldr.Errorf(s, "Unsupported NOTOC call to %s", targ)
   631  		}
   632  		su.SetRelocAdd(rIdx, r.Add()+localEoffset)
   633  
   634  		if targType == sym.SDYNIMPORT {
   635  			// Should have been handled in genstubs
   636  			ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
   637  		}
   638  
   639  		return true
   640  
   641  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PCREL34):
   642  		su := ldr.MakeSymbolUpdater(s)
   643  		su.SetRelocType(rIdx, objabi.R_ADDRPOWER_PCREL34)
   644  		return true
   645  
   646  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_GOT_PCREL34):
   647  		su := ldr.MakeSymbolUpdater(s)
   648  		su.SetRelocType(rIdx, objabi.R_ADDRPOWER_PCREL34)
   649  		if targType != sym.STEXT {
   650  			ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_PPC64_GLOB_DAT))
   651  			su.SetRelocSym(rIdx, syms.GOT)
   652  			su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ)))
   653  		} else {
   654  			// The address of targ is known at link time. Rewrite to "pla rt,targ" from "pld rt,targ@got"
   655  			rewritetoinsn(target, ldr, su, int64(r.Off()), MASK_PLD_PFX, OP_PLD_PFX_PCREL, OP_PLA_PFX)
   656  			pla_sfx := target.Arch.ByteOrder.Uint32(su.Data()[r.Off()+4:])&MASK_PLD_RT | OP_PLA_SFX
   657  			rewritetoinsn(target, ldr, su, int64(r.Off()+4), MASK_PLD_SFX, OP_PLD_SFX, pla_sfx)
   658  		}
   659  		return true
   660  
   661  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
   662  		su := ldr.MakeSymbolUpdater(s)
   663  		su.SetRelocType(rIdx, objabi.R_PCREL)
   664  		su.SetRelocAdd(rIdx, r.Add()+4)
   665  
   666  		if targType == sym.SDYNIMPORT {
   667  			ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
   668  		}
   669  
   670  		return true
   671  
   672  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
   673  		su := ldr.MakeSymbolUpdater(s)
   674  		su.SetRelocType(rIdx, objabi.R_ADDR)
   675  		if targType == sym.SDYNIMPORT {
   676  			// These happen in .toc sections
   677  			ld.Adddynsym(ldr, target, syms, targ)
   678  
   679  			rela := ldr.MakeSymbolUpdater(syms.Rela)
   680  			rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
   681  			rela.AddUint64(target.Arch, elf.R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64)))
   682  			rela.AddUint64(target.Arch, uint64(r.Add()))
   683  			su.SetRelocType(rIdx, objabi.ElfRelocOffset)	// ignore during relocsym
   684  		} else if target.IsPIE() && target.IsInternal() {
   685  			// For internal linking PIE, this R_ADDR relocation cannot
   686  			// be resolved statically. We need to generate a dynamic
   687  			// relocation. Let the code below handle it.
   688  			break
   689  		}
   690  		return true
   691  
   692  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
   693  		su := ldr.MakeSymbolUpdater(s)
   694  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   695  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW)
   696  		return true
   697  
   698  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
   699  		su := ldr.MakeSymbolUpdater(s)
   700  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   701  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
   702  		return true
   703  
   704  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
   705  		su := ldr.MakeSymbolUpdater(s)
   706  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   707  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
   708  		return true
   709  
   710  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
   711  		su := ldr.MakeSymbolUpdater(s)
   712  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   713  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
   714  		return true
   715  
   716  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
   717  		su := ldr.MakeSymbolUpdater(s)
   718  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   719  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW)
   720  		return true
   721  
   722  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
   723  		su := ldr.MakeSymbolUpdater(s)
   724  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   725  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
   726  		return true
   727  
   728  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
   729  		su := ldr.MakeSymbolUpdater(s)
   730  		su.SetRelocType(rIdx, objabi.R_PCREL)
   731  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO)
   732  		su.SetRelocAdd(rIdx, r.Add()+2)	// Compensate for relocation size of 2
   733  		return true
   734  
   735  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
   736  		su := ldr.MakeSymbolUpdater(s)
   737  		su.SetRelocType(rIdx, objabi.R_PCREL)
   738  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW)
   739  		su.SetRelocAdd(rIdx, r.Add()+2)
   740  		return true
   741  
   742  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
   743  		su := ldr.MakeSymbolUpdater(s)
   744  		su.SetRelocType(rIdx, objabi.R_PCREL)
   745  		ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
   746  		su.SetRelocAdd(rIdx, r.Add()+2)
   747  		return true
   748  
   749  	// When compiling with gcc's -fno-plt option (no PLT), the following code and relocation
   750  	// sequences may be present to call an external function:
   751  	//
   752  	//   1. addis Rx,foo@R_PPC64_PLT16_HA
   753  	//   2. ld 12,foo@R_PPC64_PLT16_LO_DS(Rx)
   754  	//   3. mtctr 12 ; foo@R_PPC64_PLTSEQ
   755  	//   4. bctrl ; foo@R_PPC64_PLTCALL
   756  	//   5. ld r2,24(r1)
   757  	//
   758  	// Note, 5 is required to follow the R_PPC64_PLTCALL. Similarly, relocations targeting
   759  	// instructions 3 and 4 are zero sized informational relocations.
   760  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_HA),
   761  		objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_PLT16_LO_DS):
   762  		su := ldr.MakeSymbolUpdater(s)
   763  		isPLT16_LO_DS := r.Type() == objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_PLT16_LO_DS)
   764  		if isPLT16_LO_DS {
   765  			ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS)
   766  		} else {
   767  			ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW)
   768  		}
   769  		su.SetRelocType(rIdx, objabi.R_POWER_TOC)
   770  		if targType == sym.SDYNIMPORT {
   771  			// This is an external symbol, make space in the GOT and retarget the reloc.
   772  			ld.AddGotSym(target, ldr, syms, targ, uint32(elf.R_PPC64_GLOB_DAT))
   773  			su.SetRelocSym(rIdx, syms.GOT)
   774  			su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ)))
   775  		} else if targType == sym.STEXT {
   776  			if isPLT16_LO_DS {
   777  				// Expect an ld opcode to nop
   778  				rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_LD, OP_LD)
   779  			} else {
   780  				// Expect an addis opcode to nop
   781  				rewritetonop(target, ldr, su, int64(r.Off()), MASK_OP_ADDIS, OP_ADDIS)
   782  			}
   783  			// And we can ignore this reloc now.
   784  			su.SetRelocType(rIdx, objabi.ElfRelocOffset)
   785  		} else {
   786  			ldr.Errorf(s, "unexpected PLT relocation target symbol type %s", targType.String())
   787  		}
   788  		return true
   789  	}
   790  
   791  	// Handle references to ELF symbols from our own object files.
   792  	relocs := ldr.Relocs(s)
   793  	r = relocs.At(rIdx)
   794  
   795  	switch r.Type() {
   796  	case objabi.R_ADDR:
   797  		if ldr.SymType(s) == sym.STEXT {
   798  			log.Fatalf("R_ADDR relocation in text symbol %s is unsupported\n", ldr.SymName(s))
   799  		}
   800  		if target.IsPIE() && target.IsInternal() {
   801  			// When internally linking, generate dynamic relocations
   802  			// for all typical R_ADDR relocations. The exception
   803  			// are those R_ADDR that are created as part of generating
   804  			// the dynamic relocations and must be resolved statically.
   805  			//
   806  			// There are three phases relevant to understanding this:
   807  			//
   808  			//	dodata()  // we are here
   809  			//	address() // symbol address assignment
   810  			//	reloc()   // resolution of static R_ADDR relocs
   811  			//
   812  			// At this point symbol addresses have not been
   813  			// assigned yet (as the final size of the .rela section
   814  			// will affect the addresses), and so we cannot write
   815  			// the Elf64_Rela.r_offset now. Instead we delay it
   816  			// until after the 'address' phase of the linker is
   817  			// complete. We do this via Addaddrplus, which creates
   818  			// a new R_ADDR relocation which will be resolved in
   819  			// the 'reloc' phase.
   820  			//
   821  			// These synthetic static R_ADDR relocs must be skipped
   822  			// now, or else we will be caught in an infinite loop
   823  			// of generating synthetic relocs for our synthetic
   824  			// relocs.
   825  			//
   826  			// Furthermore, the rela sections contain dynamic
   827  			// relocations with R_ADDR relocations on
   828  			// Elf64_Rela.r_offset. This field should contain the
   829  			// symbol offset as determined by reloc(), not the
   830  			// final dynamically linked address as a dynamic
   831  			// relocation would provide.
   832  			switch ldr.SymName(s) {
   833  			case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic":
   834  				return false
   835  			}
   836  		} else {
   837  			// Either internally linking a static executable,
   838  			// in which case we can resolve these relocations
   839  			// statically in the 'reloc' phase, or externally
   840  			// linking, in which case the relocation will be
   841  			// prepared in the 'reloc' phase and passed to the
   842  			// external linker in the 'asmb' phase.
   843  			if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA {
   844  				break
   845  			}
   846  		}
   847  		// Generate R_PPC64_RELATIVE relocations for best
   848  		// efficiency in the dynamic linker.
   849  		//
   850  		// As noted above, symbol addresses have not been
   851  		// assigned yet, so we can't generate the final reloc
   852  		// entry yet. We ultimately want:
   853  		//
   854  		// r_offset = s + r.Off
   855  		// r_info = R_PPC64_RELATIVE
   856  		// r_addend = targ + r.Add
   857  		//
   858  		// The dynamic linker will set *offset = base address +
   859  		// addend.
   860  		//
   861  		// AddAddrPlus is used for r_offset and r_addend to
   862  		// generate new R_ADDR relocations that will update
   863  		// these fields in the 'reloc' phase.
   864  		rela := ldr.MakeSymbolUpdater(syms.Rela)
   865  		rela.AddAddrPlus(target.Arch, s, int64(r.Off()))
   866  		if r.Siz() == 8 {
   867  			rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_PPC64_RELATIVE)))
   868  		} else {
   869  			ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ))
   870  		}
   871  		rela.AddAddrPlus(target.Arch, targ, int64(r.Add()))
   872  
   873  		// Not mark r done here. So we still apply it statically,
   874  		// so in the file content we'll also have the right offset
   875  		// to the relocation target. So it can be examined statically
   876  		// (e.g. go version).
   877  		return true
   878  	}
   879  
   880  	return false
   881  }
   882  
   883  func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool {
   884  	rs := r.Xsym
   885  
   886  	emitReloc := func(v uint16, off uint64) {
   887  		out.Write64(uint64(sectoff) + off)
   888  		out.Write32(uint32(ldr.SymDynid(rs)))
   889  		out.Write16(v)
   890  	}
   891  
   892  	var v uint16
   893  	switch r.Type {
   894  	default:
   895  		return false
   896  	case objabi.R_ADDR, objabi.R_DWARFSECREF:
   897  		v = ld.XCOFF_R_POS
   898  		if r.Size == 4 {
   899  			v |= 0x1F << 8
   900  		} else {
   901  			v |= 0x3F << 8
   902  		}
   903  		emitReloc(v, 0)
   904  	case objabi.R_ADDRPOWER_TOCREL:
   905  	case objabi.R_ADDRPOWER_TOCREL_DS:
   906  		emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2)
   907  		emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6)
   908  	case objabi.R_POWER_TLS_LE:
   909  		// This only supports 16b relocations.  It is fixed up in archreloc.
   910  		emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2)
   911  	case objabi.R_CALLPOWER:
   912  		if r.Size != 4 {
   913  			return false
   914  		}
   915  		emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0)
   916  	case objabi.R_XCOFFREF:
   917  		emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0)
   918  	}
   919  	return true
   920  }
   921  
   922  func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool {
   923  	// Beware that bit0~bit15 start from the third byte of an instruction in Big-Endian machines.
   924  	rt := r.Type
   925  	if rt == objabi.R_ADDR || rt == objabi.R_POWER_TLS || rt == objabi.R_CALLPOWER || rt == objabi.R_DWARFSECREF {
   926  	} else {
   927  		if ctxt.Arch.ByteOrder == binary.BigEndian {
   928  			sectoff += 2
   929  		}
   930  	}
   931  	out.Write64(uint64(sectoff))
   932  
   933  	elfsym := ld.ElfSymForReloc(ctxt, r.Xsym)
   934  	switch rt {
   935  	default:
   936  		return false
   937  	case objabi.R_ADDR, objabi.R_DWARFSECREF:
   938  		switch r.Size {
   939  		case 4:
   940  			out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32)
   941  		case 8:
   942  			out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32)
   943  		default:
   944  			return false
   945  		}
   946  	case objabi.R_ADDRPOWER_D34:
   947  		out.Write64(uint64(elf.R_PPC64_D34) | uint64(elfsym)<<32)
   948  	case objabi.R_ADDRPOWER_PCREL34:
   949  		out.Write64(uint64(elf.R_PPC64_PCREL34) | uint64(elfsym)<<32)
   950  	case objabi.R_POWER_TLS:
   951  		out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32)
   952  	case objabi.R_POWER_TLS_LE:
   953  		out.Write64(uint64(elf.R_PPC64_TPREL16_HA) | uint64(elfsym)<<32)
   954  		out.Write64(uint64(r.Xadd))
   955  		out.Write64(uint64(sectoff + 4))
   956  		out.Write64(uint64(elf.R_PPC64_TPREL16_LO) | uint64(elfsym)<<32)
   957  	case objabi.R_POWER_TLS_LE_TPREL34:
   958  		out.Write64(uint64(elf.R_PPC64_TPREL34) | uint64(elfsym)<<32)
   959  	case objabi.R_POWER_TLS_IE_PCREL34:
   960  		out.Write64(uint64(elf.R_PPC64_GOT_TPREL_PCREL34) | uint64(elfsym)<<32)
   961  	case objabi.R_POWER_TLS_IE:
   962  		out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32)
   963  		out.Write64(uint64(r.Xadd))
   964  		out.Write64(uint64(sectoff + 4))
   965  		out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32)
   966  	case objabi.R_ADDRPOWER:
   967  		out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
   968  		out.Write64(uint64(r.Xadd))
   969  		out.Write64(uint64(sectoff + 4))
   970  		out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32)
   971  	case objabi.R_ADDRPOWER_DS:
   972  		out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
   973  		out.Write64(uint64(r.Xadd))
   974  		out.Write64(uint64(sectoff + 4))
   975  		out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32)
   976  	case objabi.R_ADDRPOWER_GOT:
   977  		out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32)
   978  		out.Write64(uint64(r.Xadd))
   979  		out.Write64(uint64(sectoff + 4))
   980  		out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32)
   981  	case objabi.R_ADDRPOWER_GOT_PCREL34:
   982  		out.Write64(uint64(elf.R_PPC64_GOT_PCREL34) | uint64(elfsym)<<32)
   983  	case objabi.R_ADDRPOWER_PCREL:
   984  		out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32)
   985  		out.Write64(uint64(r.Xadd))
   986  		out.Write64(uint64(sectoff + 4))
   987  		out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32)
   988  		r.Xadd += 4
   989  	case objabi.R_ADDRPOWER_TOCREL:
   990  		out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
   991  		out.Write64(uint64(r.Xadd))
   992  		out.Write64(uint64(sectoff + 4))
   993  		out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32)
   994  	case objabi.R_ADDRPOWER_TOCREL_DS:
   995  		out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
   996  		out.Write64(uint64(r.Xadd))
   997  		out.Write64(uint64(sectoff + 4))
   998  		out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32)
   999  	case objabi.R_CALLPOWER:
  1000  		if r.Size != 4 {
  1001  			return false
  1002  		}
  1003  		if !hasPCrel {
  1004  			out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32)
  1005  		} else {
  1006  			// TOC is not used in PCrel compiled Go code.
  1007  			out.Write64(uint64(elf.R_PPC64_REL24_NOTOC) | uint64(elfsym)<<32)
  1008  		}
  1009  
  1010  	}
  1011  	out.Write64(uint64(r.Xadd))
  1012  
  1013  	return true
  1014  }
  1015  
  1016  func elfsetupplt(ctxt *ld.Link, ldr *loader.Loader, plt, got *loader.SymbolBuilder, dynamic loader.Sym) {
  1017  	if plt.Size() == 0 {
  1018  		// The dynamic linker stores the address of the
  1019  		// dynamic resolver and the DSO identifier in the two
  1020  		// doublewords at the beginning of the .plt section
  1021  		// before the PLT array. Reserve space for these.
  1022  		plt.SetSize(16)
  1023  	}
  1024  }
  1025  
  1026  func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool {
  1027  	return false
  1028  }
  1029  
  1030  // Return the value of .TOC. for symbol s
  1031  func symtoc(ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) int64 {
  1032  	v := ldr.SymVersion(s)
  1033  	if out := ldr.OuterSym(s); out != 0 {
  1034  		v = ldr.SymVersion(out)
  1035  	}
  1036  
  1037  	toc := syms.DotTOC[v]
  1038  	if toc == 0 {
  1039  		ldr.Errorf(s, "TOC-relative relocation in object without .TOC.")
  1040  		return 0
  1041  	}
  1042  
  1043  	return ldr.SymValue(toc)
  1044  }
  1045  
  1046  // archreloctoc relocates a TOC relative symbol.
  1047  func archreloctoc(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
  1048  	rs := r.Sym()
  1049  	var o1, o2 uint32
  1050  	var t int64
  1051  	useAddi := false
  1052  
  1053  	if target.IsBigEndian() {
  1054  		o1 = uint32(val >> 32)
  1055  		o2 = uint32(val)
  1056  	} else {
  1057  		o1 = uint32(val)
  1058  		o2 = uint32(val >> 32)
  1059  	}
  1060  
  1061  	// On AIX, TOC data accesses are always made indirectly against R2 (a sequence of addis+ld+load/store). If the
  1062  	// The target of the load is known, the sequence can be written into addis+addi+load/store. On Linux,
  1063  	// TOC data accesses are always made directly against R2 (e.g addis+load/store).
  1064  	if target.IsAIX() {
  1065  		if !strings.HasPrefix(ldr.SymName(rs), "TOC.") {
  1066  			ldr.Errorf(s, "archreloctoc called for a symbol without TOC anchor")
  1067  		}
  1068  		relocs := ldr.Relocs(rs)
  1069  		tarSym := relocs.At(0).Sym()
  1070  
  1071  		if target.IsInternal() && tarSym != 0 && ldr.AttrReachable(tarSym) && ldr.SymSect(tarSym).Seg == &ld.Segdata {
  1072  			t = ldr.SymValue(tarSym) + r.Add() - ldr.SymValue(syms.TOC)
  1073  			// change ld to addi in the second instruction
  1074  			o2 = (o2 & 0x03FF0000) | 0xE<<26
  1075  			useAddi = true
  1076  		} else {
  1077  			t = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.TOC)
  1078  		}
  1079  	} else {
  1080  		t = ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s)
  1081  	}
  1082  
  1083  	if t != int64(int32(t)) {
  1084  		ldr.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", ldr.SymName(s), rs, t)
  1085  	}
  1086  
  1087  	if t&0x8000 != 0 {
  1088  		t += 0x10000
  1089  	}
  1090  
  1091  	o1 |= uint32((t >> 16) & 0xFFFF)
  1092  
  1093  	switch r.Type() {
  1094  	case objabi.R_ADDRPOWER_TOCREL_DS:
  1095  		if useAddi {
  1096  			o2 |= uint32(t) & 0xFFFF
  1097  		} else {
  1098  			if t&3 != 0 {
  1099  				ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
  1100  			}
  1101  			o2 |= uint32(t) & 0xFFFC
  1102  		}
  1103  	case objabi.R_ADDRPOWER_TOCREL:
  1104  		o2 |= uint32(t) & 0xffff
  1105  	default:
  1106  		return -1
  1107  	}
  1108  
  1109  	if target.IsBigEndian() {
  1110  		return int64(o1)<<32 | int64(o2)
  1111  	}
  1112  	return int64(o2)<<32 | int64(o1)
  1113  }
  1114  
  1115  // archrelocaddr relocates a symbol address.
  1116  // This code is for linux only.
  1117  func archrelocaddr(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 {
  1118  	rs := r.Sym()
  1119  	if target.IsAIX() {
  1120  		ldr.Errorf(s, "archrelocaddr called for %s relocation\n", ldr.SymName(rs))
  1121  	}
  1122  	o1, o2 := unpackInstPair(target, val)
  1123  
  1124  	// Verify resulting address fits within a 31 bit (2GB) address space.
  1125  	// This is a restriction arising  from the usage of lis (HA) + d-form
  1126  	// (LO) instruction sequences used to implement absolute relocations
  1127  	// on PPC64 prior to ISA 3.1 (P10). For consistency, maintain this
  1128  	// restriction for ISA 3.1 unless it becomes problematic.
  1129  	t := ldr.SymAddr(rs) + r.Add()
  1130  	if t < 0 || t >= 1<<31 {
  1131  		ldr.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", ldr.SymName(s), ldr.SymValue(rs))
  1132  	}
  1133  
  1134  	// Note, relocations imported from external objects may not have cleared bits
  1135  	// within a relocatable field. They need cleared before applying the relocation.
  1136  	switch r.Type() {
  1137  	case objabi.R_ADDRPOWER_PCREL34:
  1138  		// S + A - P
  1139  		t -= (ldr.SymValue(s) + int64(r.Off()))
  1140  		o1 &^= 0x3ffff
  1141  		o2 &^= 0x0ffff
  1142  		o1 |= computePrefix34HI(t)
  1143  		o2 |= computeLO(int32(t))
  1144  	case objabi.R_ADDRPOWER_D34:
  1145  		o1 &^= 0x3ffff
  1146  		o2 &^= 0x0ffff
  1147  		o1 |= computePrefix34HI(t)
  1148  		o2 |= computeLO(int32(t))
  1149  	case objabi.R_ADDRPOWER:
  1150  		o1 &^= 0xffff
  1151  		o2 &^= 0xffff
  1152  		o1 |= computeHA(int32(t))
  1153  		o2 |= computeLO(int32(t))
  1154  	case objabi.R_ADDRPOWER_DS:
  1155  		o1 &^= 0xffff
  1156  		o2 &^= 0xfffc
  1157  		o1 |= computeHA(int32(t))
  1158  		o2 |= computeLO(int32(t))
  1159  		if t&3 != 0 {
  1160  			ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs))
  1161  		}
  1162  	default:
  1163  		return -1
  1164  	}
  1165  
  1166  	return packInstPair(target, o1, o2)
  1167  }
  1168  
  1169  // Determine if the code was compiled so that the TOC register R2 is initialized and maintained.
  1170  func r2Valid(ctxt *ld.Link) bool {
  1171  	return isLinkingPIC(ctxt)
  1172  }
  1173  
  1174  // Determine if this is linking a position-independent binary.
  1175  func isLinkingPIC(ctxt *ld.Link) bool {
  1176  	switch ctxt.BuildMode {
  1177  	case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin:
  1178  		return true
  1179  	}
  1180  	// -linkshared option
  1181  	return ctxt.IsSharedGoLink()
  1182  }
  1183  
  1184  // resolve direct jump relocation r in s, and add trampoline if necessary.
  1185  func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) {
  1186  
  1187  	// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
  1188  	// For internal linking, trampolines are always created for long calls.
  1189  	// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
  1190  	// r2.  For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
  1191  	if ctxt.IsExternal() && r2Valid(ctxt) {
  1192  		// The TOC pointer is valid. The external linker will insert trampolines.
  1193  		return
  1194  	}
  1195  
  1196  	relocs := ldr.Relocs(s)
  1197  	r := relocs.At(ri)
  1198  	var t int64
  1199  	// ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet
  1200  	// laid out. Conservatively use a trampoline. This should be rare, as we lay out packages
  1201  	// in dependency order.
  1202  	if ldr.SymValue(rs) != 0 {
  1203  		t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
  1204  	}
  1205  	switch r.Type() {
  1206  	case objabi.R_CALLPOWER:
  1207  
  1208  		// If branch offset is too far then create a trampoline.
  1209  
  1210  		if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) {
  1211  			var tramp loader.Sym
  1212  			for i := 0; ; i++ {
  1213  
  1214  				// Using r.Add as part of the name is significant in functions like duffzero where the call
  1215  				// target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as
  1216  				// distinct trampolines.
  1217  
  1218  				oName := ldr.SymName(rs)
  1219  				name := oName
  1220  				if r.Add() == 0 {
  1221  					name += fmt.Sprintf("-tramp%d", i)
  1222  				} else {
  1223  					name += fmt.Sprintf("%+x-tramp%d", r.Add(), i)
  1224  				}
  1225  
  1226  				// Look up the trampoline in case it already exists
  1227  
  1228  				tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs)))
  1229  				if oName == "runtime.deferreturn" {
  1230  					ldr.SetIsDeferReturnTramp(tramp, true)
  1231  				}
  1232  				if ldr.SymValue(tramp) == 0 {
  1233  					break
  1234  				}
  1235  				// Note, the trampoline is always called directly. The addend of the original relocation is accounted for in the
  1236  				// trampoline itself.
  1237  				t = ldr.SymValue(tramp) - (ldr.SymValue(s) + int64(r.Off()))
  1238  
  1239  				// With internal linking, the trampoline can be used if it is not too far.
  1240  				// With external linking, the trampoline must be in this section for it to be reused.
  1241  				if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) {
  1242  					break
  1243  				}
  1244  			}
  1245  			if ldr.SymType(tramp) == 0 {
  1246  				trampb := ldr.MakeSymbolUpdater(tramp)
  1247  				ctxt.AddTramp(trampb)
  1248  				gentramp(ctxt, ldr, trampb, rs, r.Add())
  1249  			}
  1250  			sb := ldr.MakeSymbolUpdater(s)
  1251  			relocs := sb.Relocs()
  1252  			r := relocs.At(ri)
  1253  			r.SetSym(tramp)
  1254  			r.SetAdd(0)	// This was folded into the trampoline target address
  1255  		}
  1256  	default:
  1257  		ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type()))
  1258  	}
  1259  }
  1260  
  1261  func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) {
  1262  	tramp.SetSize(16)	// 4 instructions
  1263  	P := make([]byte, tramp.Size())
  1264  	var o1, o2 uint32
  1265  
  1266  	// ELFv2 save/restore functions use R0/R12 in special ways, therefore trampolines
  1267  	// as generated here will not always work correctly.
  1268  	if strings.HasPrefix(ldr.SymName(target), "runtime.elf_") {
  1269  		log.Fatalf("Internal linker does not support trampolines to ELFv2 ABI"+
  1270  			" register save/restore function %s", ldr.SymName(target))
  1271  	}
  1272  
  1273  	if ctxt.IsAIX() {
  1274  		// On AIX, the address is retrieved with a TOC symbol.
  1275  		// For internal linking, the "Linux" way might still be used.
  1276  		// However, all text symbols are accessed with a TOC symbol as
  1277  		// text relocations aren't supposed to be possible.
  1278  		// So, keep using the external linking way to be more AIX friendly.
  1279  		o1 = uint32(OP_ADDIS_R12_R2)	// addis r12,  r2, toctargetaddr hi
  1280  		o2 = uint32(OP_LD_R12_R12)	// ld    r12, r12, toctargetaddr lo
  1281  
  1282  		toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0)
  1283  		toctramp.SetType(sym.SXCOFFTOC)
  1284  		toctramp.AddAddrPlus(ctxt.Arch, target, offset)
  1285  
  1286  		r, _ := tramp.AddRel(objabi.R_ADDRPOWER_TOCREL_DS)
  1287  		r.SetOff(0)
  1288  		r.SetSiz(8)	// generates 2 relocations: HA + LO
  1289  		r.SetSym(toctramp.Sym())
  1290  	} else if hasPCrel {
  1291  		// pla r12, addr (PCrel). This works for static or PIC, with or without a valid TOC pointer.
  1292  		o1 = uint32(OP_PLA_PFX)
  1293  		o2 = uint32(OP_PLA_SFX_R12)	// pla r12, addr
  1294  
  1295  		// The trampoline's position is not known yet, insert a relocation.
  1296  		r, _ := tramp.AddRel(objabi.R_ADDRPOWER_PCREL34)
  1297  		r.SetOff(0)
  1298  		r.SetSiz(8)	// This spans 2 words.
  1299  		r.SetSym(target)
  1300  		r.SetAdd(offset)
  1301  	} else {
  1302  		// Used for default build mode for an executable
  1303  		// Address of the call target is generated using
  1304  		// relocation and doesn't depend on r2 (TOC).
  1305  		o1 = uint32(OP_LIS_R12)		// lis  r12,targetaddr hi
  1306  		o2 = uint32(OP_ADDI_R12_R12)	// addi r12,r12,targetaddr lo
  1307  
  1308  		t := ldr.SymValue(target)
  1309  		if t == 0 || r2Valid(ctxt) || ctxt.IsExternal() {
  1310  			// Target address is unknown, generate relocations
  1311  			r, _ := tramp.AddRel(objabi.R_ADDRPOWER)
  1312  			if r2Valid(ctxt) {
  1313  				// Use a TOC relative address if R2 holds the TOC pointer
  1314  				o1 |= uint32(2 << 16)	// Transform lis r31,ha into addis r31,r2,ha
  1315  				r.SetType(objabi.R_ADDRPOWER_TOCREL)
  1316  			}
  1317  			r.SetOff(0)
  1318  			r.SetSiz(8)	// generates 2 relocations: HA + LO
  1319  			r.SetSym(target)
  1320  			r.SetAdd(offset)
  1321  		} else {
  1322  			// The target address is known, resolve it
  1323  			t += offset
  1324  			o1 |= (uint32(t) + 0x8000) >> 16	// HA
  1325  			o2 |= uint32(t) & 0xFFFF		// LO
  1326  		}
  1327  	}
  1328  
  1329  	o3 := uint32(OP_MTCTR_R12)	// mtctr r12
  1330  	o4 := uint32(OP_BCTR)		// bctr
  1331  	ctxt.Arch.ByteOrder.PutUint32(P, o1)
  1332  	ctxt.Arch.ByteOrder.PutUint32(P[4:], o2)
  1333  	ctxt.Arch.ByteOrder.PutUint32(P[8:], o3)
  1334  	ctxt.Arch.ByteOrder.PutUint32(P[12:], o4)
  1335  	tramp.SetData(P)
  1336  }
  1337  
  1338  // Unpack a pair of 32 bit instruction words from
  1339  // a 64 bit relocation into instN and instN+1 in endian order.
  1340  func unpackInstPair(target *ld.Target, r int64) (uint32, uint32) {
  1341  	if target.IsBigEndian() {
  1342  		return uint32(r >> 32), uint32(r)
  1343  	}
  1344  	return uint32(r), uint32(r >> 32)
  1345  }
  1346  
  1347  // Pack a pair of 32 bit instruction words o1, o2 into 64 bit relocation
  1348  // in endian order.
  1349  func packInstPair(target *ld.Target, o1, o2 uint32) int64 {
  1350  	if target.IsBigEndian() {
  1351  		return (int64(o1) << 32) | int64(o2)
  1352  	}
  1353  	return int64(o1) | (int64(o2) << 32)
  1354  }
  1355  
  1356  // Compute the high-adjusted value (always a signed 32b value) per the ELF ABI.
  1357  // The returned value is always 0 <= x <= 0xFFFF.
  1358  func computeHA(val int32) uint32 {
  1359  	return uint32(uint16((val + 0x8000) >> 16))
  1360  }
  1361  
  1362  // Compute the low value (the lower 16 bits of any 32b value) per the ELF ABI.
  1363  // The returned value is always 0 <= x <= 0xFFFF.
  1364  func computeLO(val int32) uint32 {
  1365  	return uint32(uint16(val))
  1366  }
  1367  
  1368  // Compute the high 18 bits of a signed 34b constant. Used to pack the high 18 bits
  1369  // of a prefix34 relocation field. This assumes the input is already restricted to
  1370  // 34 bits.
  1371  func computePrefix34HI(val int64) uint32 {
  1372  	return uint32((val >> 16) & 0x3FFFF)
  1373  }
  1374  
  1375  func computeTLSLEReloc(target *ld.Target, ldr *loader.Loader, rs, s loader.Sym) int64 {
  1376  	// The thread pointer points 0x7000 bytes after the start of the
  1377  	// thread local storage area as documented in section "3.7.2 TLS
  1378  	// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
  1379  	// Specification".
  1380  	v := ldr.SymValue(rs) - 0x7000
  1381  	if target.IsAIX() {
  1382  		// On AIX, the thread pointer points 0x7800 bytes after
  1383  		// the TLS.
  1384  		v -= 0x800
  1385  	}
  1386  
  1387  	if int64(int32(v)) != v {
  1388  		ldr.Errorf(s, "TLS offset out of range %d", v)
  1389  	}
  1390  	return v
  1391  }
  1392  
  1393  func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (relocatedOffset int64, nExtReloc int, ok bool) {
  1394  	rs := r.Sym()
  1395  	if target.IsExternal() {
  1396  		// On AIX, relocations (except TLS ones) must be also done to the
  1397  		// value with the current addresses.
  1398  		switch rt := r.Type(); rt {
  1399  		default:
  1400  			if !target.IsAIX() {
  1401  				return val, nExtReloc, false
  1402  			}
  1403  		case objabi.R_POWER_TLS, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_ADDRPOWER_GOT_PCREL34:
  1404  			nExtReloc = 1
  1405  			return val, nExtReloc, true
  1406  		case objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
  1407  			if target.IsAIX() && rt == objabi.R_POWER_TLS_LE {
  1408  				// Fixup val, an addis/addi pair of instructions, which generate a 32b displacement
  1409  				// from the threadpointer (R13), into a 16b relocation. XCOFF only supports 16b
  1410  				// TLS LE relocations. Likewise, verify this is an addis/addi sequence.
  1411  				const expectedOpcodes = 0x3C00000038000000
  1412  				const expectedOpmasks = 0xFC000000FC000000
  1413  				if uint64(val)&expectedOpmasks != expectedOpcodes {
  1414  					ldr.Errorf(s, "relocation for %s+%d is not an addis/addi pair: %16x", ldr.SymName(rs), r.Off(), uint64(val))
  1415  				}
  1416  				nval := (int64(uint32(0x380d0000)) | val&0x03e00000) << 32	// addi rX, r13, $0
  1417  				nval |= int64(OP_NOP)						// nop
  1418  				val = nval
  1419  				nExtReloc = 1
  1420  			} else {
  1421  				nExtReloc = 2
  1422  			}
  1423  			return val, nExtReloc, true
  1424  		case objabi.R_ADDRPOWER,
  1425  			objabi.R_ADDRPOWER_DS,
  1426  			objabi.R_ADDRPOWER_TOCREL,
  1427  			objabi.R_ADDRPOWER_TOCREL_DS,
  1428  			objabi.R_ADDRPOWER_GOT,
  1429  			objabi.R_ADDRPOWER_PCREL:
  1430  			nExtReloc = 2	// need two ELF relocations, see elfreloc1
  1431  			if !target.IsAIX() {
  1432  				return val, nExtReloc, true
  1433  			}
  1434  		case objabi.R_CALLPOWER, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34:
  1435  			nExtReloc = 1
  1436  			if !target.IsAIX() {
  1437  				return val, nExtReloc, true
  1438  			}
  1439  		}
  1440  	}
  1441  
  1442  	switch r.Type() {
  1443  	case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS:
  1444  		return archreloctoc(ldr, target, syms, r, s, val), nExtReloc, true
  1445  	case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_D34, objabi.R_ADDRPOWER_PCREL34:
  1446  		return archrelocaddr(ldr, target, syms, r, s, val), nExtReloc, true
  1447  	case objabi.R_CALLPOWER:
  1448  		// Bits 6 through 29 = (S + A - P) >> 2
  1449  
  1450  		t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
  1451  
  1452  		tgtName := ldr.SymName(rs)
  1453  
  1454  		// If we are linking PIE or shared code, non-PCrel golang generated object files have an extra 2 instruction prologue
  1455  		// to regenerate the TOC pointer from R12.  The exception are two special case functions tested below.  Note,
  1456  		// local call offsets for externally generated objects are accounted for when converting into golang relocs.
  1457  		if !hasPCrel && !ldr.AttrExternal(rs) && ldr.AttrShared(rs) && tgtName != "runtime.duffzero" && tgtName != "runtime.duffcopy" {
  1458  			// Furthermore, only apply the offset if the target looks like the start of a function call.
  1459  			if r.Add() == 0 && ldr.SymType(rs) == sym.STEXT {
  1460  				t += 8
  1461  			}
  1462  		}
  1463  
  1464  		if t&3 != 0 {
  1465  			ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
  1466  		}
  1467  		// If branch offset is too far then create a trampoline.
  1468  
  1469  		if int64(int32(t<<6)>>6) != t {
  1470  			ldr.Errorf(s, "direct call too far: %s %x", ldr.SymName(rs), t)
  1471  		}
  1472  		return val | int64(uint32(t)&^0xfc000003), nExtReloc, true
  1473  	case objabi.R_POWER_TOC:	// S + A - .TOC.
  1474  		return ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s), nExtReloc, true
  1475  
  1476  	case objabi.R_ADDRPOWER_PCREL:	// S + A - P
  1477  		t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off()))
  1478  		ha, l := unpackInstPair(target, val)
  1479  		l |= computeLO(int32(t))
  1480  		ha |= computeHA(int32(t))
  1481  		return packInstPair(target, ha, l), nExtReloc, true
  1482  
  1483  	case objabi.R_POWER_TLS:
  1484  		const OP_ADD = 31<<26 | 266<<1
  1485  		const MASK_OP_ADD = 0x3F<<26 | 0x1FF<<1
  1486  		if val&MASK_OP_ADD != OP_ADD {
  1487  			ldr.Errorf(s, "R_POWER_TLS reloc only supports XO form ADD, not %08X", val)
  1488  		}
  1489  		// Verify RB is R13 in ADD RA,RB,RT.
  1490  		if (val>>11)&0x1F != 13 {
  1491  			// If external linking is made to support this, it may expect the linker to rewrite RB.
  1492  			ldr.Errorf(s, "R_POWER_TLS reloc requires R13 in RB (%08X).", uint32(val))
  1493  		}
  1494  		return val, nExtReloc, true
  1495  
  1496  	case objabi.R_POWER_TLS_IE:
  1497  		// Convert TLS_IE relocation to TLS_LE if supported.
  1498  		if !(target.IsPIE() && target.IsElf()) {
  1499  			log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
  1500  		}
  1501  
  1502  		// We are an ELF binary, we can safely convert to TLS_LE from:
  1503  		// addis to, r2, x@got@tprel@ha
  1504  		// ld to, to, x@got@tprel@l(to)
  1505  		//
  1506  		// to TLS_LE by converting to:
  1507  		// addis to, r0, x@tprel@ha
  1508  		// addi to, to, x@tprel@l(to)
  1509  
  1510  		const OP_MASK = 0x3F << 26
  1511  		const OP_RA_MASK = 0x1F << 16
  1512  		// convert r2 to r0, and ld to addi
  1513  		mask := packInstPair(target, OP_RA_MASK, OP_MASK)
  1514  		addi_op := packInstPair(target, 0, OP_ADDI)
  1515  		val &^= mask
  1516  		val |= addi_op
  1517  		fallthrough
  1518  
  1519  	case objabi.R_POWER_TLS_LE:
  1520  		v := computeTLSLEReloc(target, ldr, rs, s)
  1521  		o1, o2 := unpackInstPair(target, val)
  1522  		o1 |= computeHA(int32(v))
  1523  		o2 |= computeLO(int32(v))
  1524  		return packInstPair(target, o1, o2), nExtReloc, true
  1525  
  1526  	case objabi.R_POWER_TLS_IE_PCREL34:
  1527  		// Convert TLS_IE relocation to TLS_LE if supported.
  1528  		if !(target.IsPIE() && target.IsElf()) {
  1529  			log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s))
  1530  		}
  1531  
  1532  		// We are an ELF binary, we can safely convert to TLS_LE_TPREL34 from:
  1533  		// pld rX, x@got@tprel@pcrel
  1534  		//
  1535  		// to TLS_LE_TPREL32 by converting to:
  1536  		// pla rX, x@tprel
  1537  
  1538  		const OP_MASK_PFX = 0xFFFFFFFF		// Discard prefix word
  1539  		const OP_MASK = (0x3F << 26) | 0xFFFF	// Preserve RT, RA
  1540  		const OP_PFX = 1<<26 | 2<<24
  1541  		const OP_PLA = 14 << 26
  1542  		mask := packInstPair(target, OP_MASK_PFX, OP_MASK)
  1543  		pla_op := packInstPair(target, OP_PFX, OP_PLA)
  1544  		val &^= mask
  1545  		val |= pla_op
  1546  		fallthrough
  1547  
  1548  	case objabi.R_POWER_TLS_LE_TPREL34:
  1549  		v := computeTLSLEReloc(target, ldr, rs, s)
  1550  		o1, o2 := unpackInstPair(target, val)
  1551  		o1 |= computePrefix34HI(v)
  1552  		o2 |= computeLO(int32(v))
  1553  		return packInstPair(target, o1, o2), nExtReloc, true
  1554  	}
  1555  
  1556  	return val, nExtReloc, false
  1557  }
  1558  
  1559  func archrelocvariant(target *ld.Target, ldr *loader.Loader, r loader.Reloc, rv sym.RelocVariant, s loader.Sym, t int64, p []byte) (relocatedOffset int64) {
  1560  	rs := r.Sym()
  1561  	switch rv & sym.RV_TYPE_MASK {
  1562  	default:
  1563  		ldr.Errorf(s, "unexpected relocation variant %d", rv)
  1564  		fallthrough
  1565  
  1566  	case sym.RV_NONE:
  1567  		return t
  1568  
  1569  	case sym.RV_POWER_LO:
  1570  		if rv&sym.RV_CHECK_OVERFLOW != 0 {
  1571  			// Whether to check for signed or unsigned
  1572  			// overflow depends on the instruction
  1573  			var o1 uint32
  1574  			if target.IsBigEndian() {
  1575  				o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
  1576  			} else {
  1577  				o1 = binary.LittleEndian.Uint32(p[r.Off():])
  1578  			}
  1579  			switch o1 >> 26 {
  1580  			case 24,	// ori
  1581  				26,	// xori
  1582  				28:	// andi
  1583  				if t>>16 != 0 {
  1584  					goto overflow
  1585  				}
  1586  
  1587  			default:
  1588  				if int64(int16(t)) != t {
  1589  					goto overflow
  1590  				}
  1591  			}
  1592  		}
  1593  
  1594  		return int64(int16(t))
  1595  
  1596  	case sym.RV_POWER_HA:
  1597  		t += 0x8000
  1598  		fallthrough
  1599  
  1600  		// Fallthrough
  1601  	case sym.RV_POWER_HI:
  1602  		t >>= 16
  1603  
  1604  		if rv&sym.RV_CHECK_OVERFLOW != 0 {
  1605  			// Whether to check for signed or unsigned
  1606  			// overflow depends on the instruction
  1607  			var o1 uint32
  1608  			if target.IsBigEndian() {
  1609  				o1 = binary.BigEndian.Uint32(p[r.Off()-2:])
  1610  			} else {
  1611  				o1 = binary.LittleEndian.Uint32(p[r.Off():])
  1612  			}
  1613  			switch o1 >> 26 {
  1614  			case 25,	// oris
  1615  				27,	// xoris
  1616  				29:	// andis
  1617  				if t>>16 != 0 {
  1618  					goto overflow
  1619  				}
  1620  
  1621  			default:
  1622  				if int64(int16(t)) != t {
  1623  					goto overflow
  1624  				}
  1625  			}
  1626  		}
  1627  
  1628  		return int64(int16(t))
  1629  
  1630  	case sym.RV_POWER_DS:
  1631  		var o1 uint32
  1632  		if target.IsBigEndian() {
  1633  			o1 = uint32(binary.BigEndian.Uint16(p[r.Off():]))
  1634  		} else {
  1635  			o1 = uint32(binary.LittleEndian.Uint16(p[r.Off():]))
  1636  		}
  1637  		if t&3 != 0 {
  1638  			ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t)
  1639  		}
  1640  		if (rv&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
  1641  			goto overflow
  1642  		}
  1643  		return int64(o1)&0x3 | int64(int16(t))
  1644  	}
  1645  
  1646  overflow:
  1647  	ldr.Errorf(s, "relocation for %s+%d is too big: %d", ldr.SymName(rs), r.Off(), t)
  1648  	return t
  1649  }
  1650  
  1651  func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) {
  1652  	switch r.Type() {
  1653  	case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE, objabi.R_POWER_TLS_IE_PCREL34, objabi.R_POWER_TLS_LE_TPREL34, objabi.R_CALLPOWER:
  1654  		return ld.ExtrelocSimple(ldr, r), true
  1655  	case objabi.R_ADDRPOWER,
  1656  		objabi.R_ADDRPOWER_DS,
  1657  		objabi.R_ADDRPOWER_TOCREL,
  1658  		objabi.R_ADDRPOWER_TOCREL_DS,
  1659  		objabi.R_ADDRPOWER_GOT,
  1660  		objabi.R_ADDRPOWER_GOT_PCREL34,
  1661  		objabi.R_ADDRPOWER_PCREL,
  1662  		objabi.R_ADDRPOWER_D34,
  1663  		objabi.R_ADDRPOWER_PCREL34:
  1664  		return ld.ExtrelocViaOuterSym(ldr, r, s), true
  1665  	}
  1666  	return loader.ExtReloc{}, false
  1667  }
  1668  
  1669  func addpltsym(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) {
  1670  	if ldr.SymPlt(s) >= 0 {
  1671  		return
  1672  	}
  1673  
  1674  	ld.Adddynsym(ldr, &ctxt.Target, &ctxt.ArchSyms, s)
  1675  
  1676  	if ctxt.IsELF {
  1677  		plt := ldr.MakeSymbolUpdater(ctxt.PLT)
  1678  		rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT)
  1679  		if plt.Size() == 0 {
  1680  			panic("plt is not set up")
  1681  		}
  1682  
  1683  		// Create the glink resolver if necessary
  1684  		glink := ensureglinkresolver(ctxt, ldr)
  1685  
  1686  		// Write symbol resolver stub (just a branch to the
  1687  		// glink resolver stub)
  1688  		rel, _ := glink.AddRel(objabi.R_CALLPOWER)
  1689  		rel.SetOff(int32(glink.Size()))
  1690  		rel.SetSiz(4)
  1691  		rel.SetSym(glink.Sym())
  1692  		glink.AddUint32(ctxt.Arch, 0x48000000)	// b .glink
  1693  
  1694  		// In the ppc64 ABI, the dynamic linker is responsible
  1695  		// for writing the entire PLT.  We just need to
  1696  		// reserve 8 bytes for each PLT entry and generate a
  1697  		// JMP_SLOT dynamic relocation for it.
  1698  		//
  1699  		// TODO(austin): ABI v1 is different
  1700  		ldr.SetPlt(s, int32(plt.Size()))
  1701  
  1702  		plt.Grow(plt.Size() + 8)
  1703  		plt.SetSize(plt.Size() + 8)
  1704  
  1705  		rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s)))
  1706  		rela.AddUint64(ctxt.Arch, elf.R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT)))
  1707  		rela.AddUint64(ctxt.Arch, 0)
  1708  	} else {
  1709  		ctxt.Errorf(s, "addpltsym: unsupported binary format")
  1710  	}
  1711  }
  1712  
  1713  // Generate the glink resolver stub if necessary and return the .glink section.
  1714  func ensureglinkresolver(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder {
  1715  	glink := ldr.CreateSymForUpdate(".glink", 0)
  1716  	if glink.Size() != 0 {
  1717  		return glink
  1718  	}
  1719  
  1720  	// This is essentially the resolver from the ppc64 ELFv2 ABI.
  1721  	// At entry, r12 holds the address of the symbol resolver stub
  1722  	// for the target routine and the argument registers hold the
  1723  	// arguments for the target routine.
  1724  	//
  1725  	// PC-rel offsets are computed once the final codesize of the
  1726  	// resolver is known.
  1727  	//
  1728  	// This stub is PIC, so first get the PC of label 1 into r11.
  1729  	glink.AddUint32(ctxt.Arch, OP_MFLR_R0)	// mflr r0
  1730  	glink.AddUint32(ctxt.Arch, OP_BCL_NIA)	// bcl 20,31,1f
  1731  	glink.AddUint32(ctxt.Arch, 0x7d6802a6)	// 1: mflr r11
  1732  	glink.AddUint32(ctxt.Arch, OP_MTLR_R0)	// mtlr r0
  1733  
  1734  	// Compute the .plt array index from the entry point address
  1735  	// into r0. This is computed relative to label 1 above.
  1736  	glink.AddUint32(ctxt.Arch, 0x38000000)	// li r0,-(res_0-1b)
  1737  	glink.AddUint32(ctxt.Arch, 0x7c006214)	// add r0,r0,r12
  1738  	glink.AddUint32(ctxt.Arch, 0x7c0b0050)	// sub r0,r0,r11
  1739  	glink.AddUint32(ctxt.Arch, 0x7800f082)	// srdi r0,r0,2
  1740  
  1741  	// Load the PC-rel offset of ".plt - 1b", and add it to 1b.
  1742  	// This is stored after this stub and before the resolvers.
  1743  	glink.AddUint32(ctxt.Arch, 0xe98b0000)	// ld r12,res_0-1b-8(r11)
  1744  	glink.AddUint32(ctxt.Arch, 0x7d6b6214)	// add r11,r11,r12
  1745  
  1746  	// Load r12 = dynamic resolver address and r11 = DSO
  1747  	// identifier from the first two doublewords of the PLT.
  1748  	glink.AddUint32(ctxt.Arch, 0xe98b0000)	// ld r12,0(r11)
  1749  	glink.AddUint32(ctxt.Arch, 0xe96b0008)	// ld r11,8(r11)
  1750  
  1751  	// Jump to the dynamic resolver
  1752  	glink.AddUint32(ctxt.Arch, OP_MTCTR_R12)	// mtctr r12
  1753  	glink.AddUint32(ctxt.Arch, OP_BCTR)		// bctr
  1754  
  1755  	// Store the PC-rel offset to the PLT
  1756  	r, _ := glink.AddRel(objabi.R_PCREL)
  1757  	r.SetSym(ctxt.PLT)
  1758  	r.SetSiz(8)
  1759  	r.SetOff(int32(glink.Size()))
  1760  	r.SetAdd(glink.Size())		// Adjust the offset to be relative to label 1 above.
  1761  	glink.AddUint64(ctxt.Arch, 0)	// The offset to the PLT.
  1762  
  1763  	// Resolve PC-rel offsets above now the final size of the stub is known.
  1764  	res0m1b := glink.Size() - 8	// res_0 - 1b
  1765  	glink.SetUint32(ctxt.Arch, 16, 0x38000000|uint32(uint16(-res0m1b)))
  1766  	glink.SetUint32(ctxt.Arch, 32, 0xe98b0000|uint32(uint16(res0m1b-8)))
  1767  
  1768  	// The symbol resolvers must immediately follow.
  1769  	//   res_0:
  1770  
  1771  	// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
  1772  	// before the first symbol resolver stub.
  1773  	du := ldr.MakeSymbolUpdater(ctxt.Dynamic)
  1774  	ld.Elfwritedynentsymplus(ctxt, du, elf.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32)
  1775  
  1776  	return glink
  1777  }