github.com/bir3/gocompiler@v0.9.2202/src/go/printer/nodes.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements printing of AST nodes; specifically 6 // expressions, statements, declarations, and files. It uses 7 // the print functionality implemented in printer.go. 8 9 package printer 10 11 import ( 12 "github.com/bir3/gocompiler/src/go/ast" 13 "github.com/bir3/gocompiler/src/go/token" 14 "math" 15 "strconv" 16 "strings" 17 "unicode" 18 "unicode/utf8" 19 ) 20 21 // Formatting issues: 22 // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration) 23 // when the comment spans multiple lines; if such a comment is just two lines, formatting is 24 // not idempotent 25 // - formatting of expression lists 26 // - should use blank instead of tab to separate one-line function bodies from 27 // the function header unless there is a group of consecutive one-liners 28 29 // ---------------------------------------------------------------------------- 30 // Common AST nodes. 31 32 // Print as many newlines as necessary (but at least min newlines) to get to 33 // the current line. ws is printed before the first line break. If newSection 34 // is set, the first line break is printed as formfeed. Returns 0 if no line 35 // breaks were printed, returns 1 if there was exactly one newline printed, 36 // and returns a value > 1 if there was a formfeed or more than one newline 37 // printed. 38 // 39 // TODO(gri): linebreak may add too many lines if the next statement at "line" 40 // is preceded by comments because the computation of n assumes 41 // the current position before the comment and the target position 42 // after the comment. Thus, after interspersing such comments, the 43 // space taken up by them is not considered to reduce the number of 44 // linebreaks. At the moment there is no easy way to know about 45 // future (not yet interspersed) comments in this function. 46 func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (nbreaks int) { 47 n := max(nlimit(line-p.pos.Line), min) 48 if n > 0 { 49 p.print(ws) 50 if newSection { 51 p.print(formfeed) 52 n-- 53 nbreaks = 2 54 } 55 nbreaks += n 56 for ; n > 0; n-- { 57 p.print(newline) 58 } 59 } 60 return 61 } 62 63 // setComment sets g as the next comment if g != nil and if node comments 64 // are enabled - this mode is used when printing source code fragments such 65 // as exports only. It assumes that there is no pending comment in p.comments 66 // and at most one pending comment in the p.comment cache. 67 func (p *printer) setComment(g *ast.CommentGroup) { 68 if g == nil || !p.useNodeComments { 69 return 70 } 71 if p.comments == nil { 72 // initialize p.comments lazily 73 p.comments = make([]*ast.CommentGroup, 1) 74 } else if p.cindex < len(p.comments) { 75 // for some reason there are pending comments; this 76 // should never happen - handle gracefully and flush 77 // all comments up to g, ignore anything after that 78 p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL) 79 p.comments = p.comments[0:1] 80 // in debug mode, report error 81 p.internalError("setComment found pending comments") 82 } 83 p.comments[0] = g 84 p.cindex = 0 85 // don't overwrite any pending comment in the p.comment cache 86 // (there may be a pending comment when a line comment is 87 // immediately followed by a lead comment with no other 88 // tokens between) 89 if p.commentOffset == infinity { 90 p.nextComment() // get comment ready for use 91 } 92 } 93 94 type exprListMode uint 95 96 const ( 97 commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma 98 noIndent // no extra indentation in multi-line lists 99 ) 100 101 // If indent is set, a multi-line identifier list is indented after the 102 // first linebreak encountered. 103 func (p *printer) identList(list []*ast.Ident, indent bool) { 104 // convert into an expression list so we can re-use exprList formatting 105 xlist := make([]ast.Expr, len(list)) 106 for i, x := range list { 107 xlist[i] = x 108 } 109 var mode exprListMode 110 if !indent { 111 mode = noIndent 112 } 113 p.exprList(token.NoPos, xlist, 1, mode, token.NoPos, false) 114 } 115 116 const filteredMsg = "contains filtered or unexported fields" 117 118 // Print a list of expressions. If the list spans multiple 119 // source lines, the original line breaks are respected between 120 // expressions. 121 // 122 // TODO(gri) Consider rewriting this to be independent of []ast.Expr 123 // so that we can use the algorithm for any kind of list 124 // 125 // (e.g., pass list via a channel over which to range). 126 func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos, isIncomplete bool) { 127 if len(list) == 0 { 128 if isIncomplete { 129 prev := p.posFor(prev0) 130 next := p.posFor(next0) 131 if prev.IsValid() && prev.Line == next.Line { 132 p.print("/* " + filteredMsg + " */") 133 } else { 134 p.print(newline) 135 p.print(indent, "// "+filteredMsg, unindent, newline) 136 } 137 } 138 return 139 } 140 141 prev := p.posFor(prev0) 142 next := p.posFor(next0) 143 line := p.lineFor(list[0].Pos()) 144 endLine := p.lineFor(list[len(list)-1].End()) 145 146 if prev.IsValid() && prev.Line == line && line == endLine { 147 // all list entries on a single line 148 for i, x := range list { 149 if i > 0 { 150 // use position of expression following the comma as 151 // comma position for correct comment placement 152 p.setPos(x.Pos()) 153 p.print(token.COMMA, blank) 154 } 155 p.expr0(x, depth) 156 } 157 if isIncomplete { 158 p.print(token.COMMA, blank, "/* "+filteredMsg+" */") 159 } 160 return 161 } 162 163 // list entries span multiple lines; 164 // use source code positions to guide line breaks 165 166 // Don't add extra indentation if noIndent is set; 167 // i.e., pretend that the first line is already indented. 168 ws := ignore 169 if mode&noIndent == 0 { 170 ws = indent 171 } 172 173 // The first linebreak is always a formfeed since this section must not 174 // depend on any previous formatting. 175 prevBreak := -1 // index of last expression that was followed by a linebreak 176 if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) > 0 { 177 ws = ignore 178 prevBreak = 0 179 } 180 181 // initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line 182 size := 0 183 184 // We use the ratio between the geometric mean of the previous key sizes and 185 // the current size to determine if there should be a break in the alignment. 186 // To compute the geometric mean we accumulate the ln(size) values (lnsum) 187 // and the number of sizes included (count). 188 lnsum := 0.0 189 count := 0 190 191 // print all list elements 192 prevLine := prev.Line 193 for i, x := range list { 194 line = p.lineFor(x.Pos()) 195 196 // Determine if the next linebreak, if any, needs to use formfeed: 197 // in general, use the entire node size to make the decision; for 198 // key:value expressions, use the key size. 199 // TODO(gri) for a better result, should probably incorporate both 200 // the key and the node size into the decision process 201 useFF := true 202 203 // Determine element size: All bets are off if we don't have 204 // position information for the previous and next token (likely 205 // generated code - simply ignore the size in this case by setting 206 // it to 0). 207 prevSize := size 208 const infinity = 1e6 // larger than any source line 209 size = p.nodeSize(x, infinity) 210 pair, isPair := x.(*ast.KeyValueExpr) 211 if size <= infinity && prev.IsValid() && next.IsValid() { 212 // x fits on a single line 213 if isPair { 214 size = p.nodeSize(pair.Key, infinity) // size <= infinity 215 } 216 } else { 217 // size too large or we don't have good layout information 218 size = 0 219 } 220 221 // If the previous line and the current line had single- 222 // line-expressions and the key sizes are small or the 223 // ratio between the current key and the geometric mean 224 // if the previous key sizes does not exceed a threshold, 225 // align columns and do not use formfeed. 226 if prevSize > 0 && size > 0 { 227 const smallSize = 40 228 if count == 0 || prevSize <= smallSize && size <= smallSize { 229 useFF = false 230 } else { 231 const r = 2.5 // threshold 232 geomean := math.Exp(lnsum / float64(count)) // count > 0 233 ratio := float64(size) / geomean 234 useFF = r*ratio <= 1 || r <= ratio 235 } 236 } 237 238 needsLinebreak := 0 < prevLine && prevLine < line 239 if i > 0 { 240 // Use position of expression following the comma as 241 // comma position for correct comment placement, but 242 // only if the expression is on the same line. 243 if !needsLinebreak { 244 p.setPos(x.Pos()) 245 } 246 p.print(token.COMMA) 247 needsBlank := true 248 if needsLinebreak { 249 // Lines are broken using newlines so comments remain aligned 250 // unless useFF is set or there are multiple expressions on 251 // the same line in which case formfeed is used. 252 nbreaks := p.linebreak(line, 0, ws, useFF || prevBreak+1 < i) 253 if nbreaks > 0 { 254 ws = ignore 255 prevBreak = i 256 needsBlank = false // we got a line break instead 257 } 258 // If there was a new section or more than one new line 259 // (which means that the tabwriter will implicitly break 260 // the section), reset the geomean variables since we are 261 // starting a new group of elements with the next element. 262 if nbreaks > 1 { 263 lnsum = 0 264 count = 0 265 } 266 } 267 if needsBlank { 268 p.print(blank) 269 } 270 } 271 272 if len(list) > 1 && isPair && size > 0 && needsLinebreak { 273 // We have a key:value expression that fits onto one line 274 // and it's not on the same line as the prior expression: 275 // Use a column for the key such that consecutive entries 276 // can align if possible. 277 // (needsLinebreak is set if we started a new line before) 278 p.expr(pair.Key) 279 p.setPos(pair.Colon) 280 p.print(token.COLON, vtab) 281 p.expr(pair.Value) 282 } else { 283 p.expr0(x, depth) 284 } 285 286 if size > 0 { 287 lnsum += math.Log(float64(size)) 288 count++ 289 } 290 291 prevLine = line 292 } 293 294 if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line { 295 // Print a terminating comma if the next token is on a new line. 296 p.print(token.COMMA) 297 if isIncomplete { 298 p.print(newline) 299 p.print("// " + filteredMsg) 300 } 301 if ws == ignore && mode&noIndent == 0 { 302 // unindent if we indented 303 p.print(unindent) 304 } 305 p.print(formfeed) // terminating comma needs a line break to look good 306 return 307 } 308 309 if isIncomplete { 310 p.print(token.COMMA, newline) 311 p.print("// "+filteredMsg, newline) 312 } 313 314 if ws == ignore && mode&noIndent == 0 { 315 // unindent if we indented 316 p.print(unindent) 317 } 318 } 319 320 type paramMode int 321 322 const ( 323 funcParam paramMode = iota 324 funcTParam 325 typeTParam 326 ) 327 328 func (p *printer) parameters(fields *ast.FieldList, mode paramMode) { 329 openTok, closeTok := token.LPAREN, token.RPAREN 330 if mode != funcParam { 331 openTok, closeTok = token.LBRACK, token.RBRACK 332 } 333 p.setPos(fields.Opening) 334 p.print(openTok) 335 if len(fields.List) > 0 { 336 prevLine := p.lineFor(fields.Opening) 337 ws := indent 338 for i, par := range fields.List { 339 // determine par begin and end line (may be different 340 // if there are multiple parameter names for this par 341 // or the type is on a separate line) 342 parLineBeg := p.lineFor(par.Pos()) 343 parLineEnd := p.lineFor(par.End()) 344 // separating "," if needed 345 needsLinebreak := 0 < prevLine && prevLine < parLineBeg 346 if i > 0 { 347 // use position of parameter following the comma as 348 // comma position for correct comma placement, but 349 // only if the next parameter is on the same line 350 if !needsLinebreak { 351 p.setPos(par.Pos()) 352 } 353 p.print(token.COMMA) 354 } 355 // separator if needed (linebreak or blank) 356 if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) > 0 { 357 // break line if the opening "(" or previous parameter ended on a different line 358 ws = ignore 359 } else if i > 0 { 360 p.print(blank) 361 } 362 // parameter names 363 if len(par.Names) > 0 { 364 // Very subtle: If we indented before (ws == ignore), identList 365 // won't indent again. If we didn't (ws == indent), identList will 366 // indent if the identList spans multiple lines, and it will outdent 367 // again at the end (and still ws == indent). Thus, a subsequent indent 368 // by a linebreak call after a type, or in the next multi-line identList 369 // will do the right thing. 370 p.identList(par.Names, ws == indent) 371 p.print(blank) 372 } 373 // parameter type 374 p.expr(stripParensAlways(par.Type)) 375 prevLine = parLineEnd 376 } 377 378 // if the closing ")" is on a separate line from the last parameter, 379 // print an additional "," and line break 380 if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing { 381 p.print(token.COMMA) 382 p.linebreak(closing, 0, ignore, true) 383 } else if mode == typeTParam && fields.NumFields() == 1 && combinesWithName(fields.List[0].Type) { 384 // A type parameter list [P T] where the name P and the type expression T syntactically 385 // combine to another valid (value) expression requires a trailing comma, as in [P *T,] 386 // (or an enclosing interface as in [P interface(*T)]), so that the type parameter list 387 // is not parsed as an array length [P*T]. 388 p.print(token.COMMA) 389 } 390 391 // unindent if we indented 392 if ws == ignore { 393 p.print(unindent) 394 } 395 } 396 397 p.setPos(fields.Closing) 398 p.print(closeTok) 399 } 400 401 // combinesWithName reports whether a name followed by the expression x 402 // syntactically combines to another valid (value) expression. For instance 403 // using *T for x, "name *T" syntactically appears as the expression x*T. 404 // On the other hand, using P|Q or *P|~Q for x, "name P|Q" or name *P|~Q" 405 // cannot be combined into a valid (value) expression. 406 func combinesWithName(x ast.Expr) bool { 407 switch x := x.(type) { 408 case *ast.StarExpr: 409 // name *x.X combines to name*x.X if x.X is not a type element 410 return !isTypeElem(x.X) 411 case *ast.BinaryExpr: 412 return combinesWithName(x.X) && !isTypeElem(x.Y) 413 case *ast.ParenExpr: 414 // name(x) combines but we are making sure at 415 // the call site that x is never parenthesized. 416 panic("unexpected parenthesized expression") 417 } 418 return false 419 } 420 421 // isTypeElem reports whether x is a (possibly parenthesized) type element expression. 422 // The result is false if x could be a type element OR an ordinary (value) expression. 423 func isTypeElem(x ast.Expr) bool { 424 switch x := x.(type) { 425 case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType: 426 return true 427 case *ast.UnaryExpr: 428 return x.Op == token.TILDE 429 case *ast.BinaryExpr: 430 return isTypeElem(x.X) || isTypeElem(x.Y) 431 case *ast.ParenExpr: 432 return isTypeElem(x.X) 433 } 434 return false 435 } 436 437 func (p *printer) signature(sig *ast.FuncType) { 438 if sig.TypeParams != nil { 439 p.parameters(sig.TypeParams, funcTParam) 440 } 441 if sig.Params != nil { 442 p.parameters(sig.Params, funcParam) 443 } else { 444 p.print(token.LPAREN, token.RPAREN) 445 } 446 res := sig.Results 447 n := res.NumFields() 448 if n > 0 { 449 // res != nil 450 p.print(blank) 451 if n == 1 && res.List[0].Names == nil { 452 // single anonymous res; no ()'s 453 p.expr(stripParensAlways(res.List[0].Type)) 454 return 455 } 456 p.parameters(res, funcParam) 457 } 458 } 459 460 func identListSize(list []*ast.Ident, maxSize int) (size int) { 461 for i, x := range list { 462 if i > 0 { 463 size += len(", ") 464 } 465 size += utf8.RuneCountInString(x.Name) 466 if size >= maxSize { 467 break 468 } 469 } 470 return 471 } 472 473 func (p *printer) isOneLineFieldList(list []*ast.Field) bool { 474 if len(list) != 1 { 475 return false // allow only one field 476 } 477 f := list[0] 478 if f.Tag != nil || f.Comment != nil { 479 return false // don't allow tags or comments 480 } 481 // only name(s) and type 482 const maxSize = 30 // adjust as appropriate, this is an approximate value 483 namesSize := identListSize(f.Names, maxSize) 484 if namesSize > 0 { 485 namesSize = 1 // blank between names and types 486 } 487 typeSize := p.nodeSize(f.Type, maxSize) 488 return namesSize+typeSize <= maxSize 489 } 490 491 func (p *printer) setLineComment(text string) { 492 p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}}) 493 } 494 495 func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) { 496 lbrace := fields.Opening 497 list := fields.List 498 rbrace := fields.Closing 499 hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace)) 500 srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace) 501 502 if !hasComments && srcIsOneLine { 503 // possibly a one-line struct/interface 504 if len(list) == 0 { 505 // no blank between keyword and {} in this case 506 p.setPos(lbrace) 507 p.print(token.LBRACE) 508 p.setPos(rbrace) 509 p.print(token.RBRACE) 510 return 511 } else if p.isOneLineFieldList(list) { 512 // small enough - print on one line 513 // (don't use identList and ignore source line breaks) 514 p.setPos(lbrace) 515 p.print(token.LBRACE, blank) 516 f := list[0] 517 if isStruct { 518 for i, x := range f.Names { 519 if i > 0 { 520 // no comments so no need for comma position 521 p.print(token.COMMA, blank) 522 } 523 p.expr(x) 524 } 525 if len(f.Names) > 0 { 526 p.print(blank) 527 } 528 p.expr(f.Type) 529 } else { // interface 530 if len(f.Names) > 0 { 531 name := f.Names[0] // method name 532 p.expr(name) 533 p.signature(f.Type.(*ast.FuncType)) // don't print "func" 534 } else { 535 // embedded interface 536 p.expr(f.Type) 537 } 538 } 539 p.print(blank) 540 p.setPos(rbrace) 541 p.print(token.RBRACE) 542 return 543 } 544 } 545 // hasComments || !srcIsOneLine 546 547 p.print(blank) 548 p.setPos(lbrace) 549 p.print(token.LBRACE, indent) 550 if hasComments || len(list) > 0 { 551 p.print(formfeed) 552 } 553 554 if isStruct { 555 556 sep := vtab 557 if len(list) == 1 { 558 sep = blank 559 } 560 var line int 561 for i, f := range list { 562 if i > 0 { 563 p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0) 564 } 565 extraTabs := 0 566 p.setComment(f.Doc) 567 p.recordLine(&line) 568 if len(f.Names) > 0 { 569 // named fields 570 p.identList(f.Names, false) 571 p.print(sep) 572 p.expr(f.Type) 573 extraTabs = 1 574 } else { 575 // anonymous field 576 p.expr(f.Type) 577 extraTabs = 2 578 } 579 if f.Tag != nil { 580 if len(f.Names) > 0 && sep == vtab { 581 p.print(sep) 582 } 583 p.print(sep) 584 p.expr(f.Tag) 585 extraTabs = 0 586 } 587 if f.Comment != nil { 588 for ; extraTabs > 0; extraTabs-- { 589 p.print(sep) 590 } 591 p.setComment(f.Comment) 592 } 593 } 594 if isIncomplete { 595 if len(list) > 0 { 596 p.print(formfeed) 597 } 598 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 599 p.setLineComment("// " + filteredMsg) 600 } 601 602 } else { // interface 603 604 var line int 605 var prev *ast.Ident // previous "type" identifier 606 for i, f := range list { 607 var name *ast.Ident // first name, or nil 608 if len(f.Names) > 0 { 609 name = f.Names[0] 610 } 611 if i > 0 { 612 // don't do a line break (min == 0) if we are printing a list of types 613 // TODO(gri) this doesn't work quite right if the list of types is 614 // spread across multiple lines 615 min := 1 616 if prev != nil && name == prev { 617 min = 0 618 } 619 p.linebreak(p.lineFor(f.Pos()), min, ignore, p.linesFrom(line) > 0) 620 } 621 p.setComment(f.Doc) 622 p.recordLine(&line) 623 if name != nil { 624 // method 625 p.expr(name) 626 p.signature(f.Type.(*ast.FuncType)) // don't print "func" 627 prev = nil 628 } else { 629 // embedded interface 630 p.expr(f.Type) 631 prev = nil 632 } 633 p.setComment(f.Comment) 634 } 635 if isIncomplete { 636 if len(list) > 0 { 637 p.print(formfeed) 638 } 639 p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment 640 p.setLineComment("// contains filtered or unexported methods") 641 } 642 643 } 644 p.print(unindent, formfeed) 645 p.setPos(rbrace) 646 p.print(token.RBRACE) 647 } 648 649 // ---------------------------------------------------------------------------- 650 // Expressions 651 652 func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) { 653 switch e.Op.Precedence() { 654 case 4: 655 has4 = true 656 case 5: 657 has5 = true 658 } 659 660 switch l := e.X.(type) { 661 case *ast.BinaryExpr: 662 if l.Op.Precedence() < e.Op.Precedence() { 663 // parens will be inserted. 664 // pretend this is an *ast.ParenExpr and do nothing. 665 break 666 } 667 h4, h5, mp := walkBinary(l) 668 has4 = has4 || h4 669 has5 = has5 || h5 670 maxProblem = max(maxProblem, mp) 671 } 672 673 switch r := e.Y.(type) { 674 case *ast.BinaryExpr: 675 if r.Op.Precedence() <= e.Op.Precedence() { 676 // parens will be inserted. 677 // pretend this is an *ast.ParenExpr and do nothing. 678 break 679 } 680 h4, h5, mp := walkBinary(r) 681 has4 = has4 || h4 682 has5 = has5 || h5 683 maxProblem = max(maxProblem, mp) 684 685 case *ast.StarExpr: 686 if e.Op == token.QUO { // `*/` 687 maxProblem = 5 688 } 689 690 case *ast.UnaryExpr: 691 switch e.Op.String() + r.Op.String() { 692 case "/*", "&&", "&^": 693 maxProblem = 5 694 case "++", "--": 695 maxProblem = max(maxProblem, 4) 696 } 697 } 698 return 699 } 700 701 func cutoff(e *ast.BinaryExpr, depth int) int { 702 has4, has5, maxProblem := walkBinary(e) 703 if maxProblem > 0 { 704 return maxProblem + 1 705 } 706 if has4 && has5 { 707 if depth == 1 { 708 return 5 709 } 710 return 4 711 } 712 if depth == 1 { 713 return 6 714 } 715 return 4 716 } 717 718 func diffPrec(expr ast.Expr, prec int) int { 719 x, ok := expr.(*ast.BinaryExpr) 720 if !ok || prec != x.Op.Precedence() { 721 return 1 722 } 723 return 0 724 } 725 726 func reduceDepth(depth int) int { 727 depth-- 728 if depth < 1 { 729 depth = 1 730 } 731 return depth 732 } 733 734 // Format the binary expression: decide the cutoff and then format. 735 // Let's call depth == 1 Normal mode, and depth > 1 Compact mode. 736 // (Algorithm suggestion by Russ Cox.) 737 // 738 // The precedences are: 739 // 740 // 5 * / % << >> & &^ 741 // 4 + - | ^ 742 // 3 == != < <= > >= 743 // 2 && 744 // 1 || 745 // 746 // The only decision is whether there will be spaces around levels 4 and 5. 747 // There are never spaces at level 6 (unary), and always spaces at levels 3 and below. 748 // 749 // To choose the cutoff, look at the whole expression but excluding primary 750 // expressions (function calls, parenthesized exprs), and apply these rules: 751 // 752 // 1. If there is a binary operator with a right side unary operand 753 // that would clash without a space, the cutoff must be (in order): 754 // 755 // /* 6 756 // && 6 757 // &^ 6 758 // ++ 5 759 // -- 5 760 // 761 // (Comparison operators always have spaces around them.) 762 // 763 // 2. If there is a mix of level 5 and level 4 operators, then the cutoff 764 // is 5 (use spaces to distinguish precedence) in Normal mode 765 // and 4 (never use spaces) in Compact mode. 766 // 767 // 3. If there are no level 4 operators or no level 5 operators, then the 768 // cutoff is 6 (always use spaces) in Normal mode 769 // and 4 (never use spaces) in Compact mode. 770 func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) { 771 prec := x.Op.Precedence() 772 if prec < prec1 { 773 // parenthesis needed 774 // Note: The parser inserts an ast.ParenExpr node; thus this case 775 // can only occur if the AST is created in a different way. 776 p.print(token.LPAREN) 777 p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth 778 p.print(token.RPAREN) 779 return 780 } 781 782 printBlank := prec < cutoff 783 784 ws := indent 785 p.expr1(x.X, prec, depth+diffPrec(x.X, prec)) 786 if printBlank { 787 p.print(blank) 788 } 789 xline := p.pos.Line // before the operator (it may be on the next line!) 790 yline := p.lineFor(x.Y.Pos()) 791 p.setPos(x.OpPos) 792 p.print(x.Op) 793 if xline != yline && xline > 0 && yline > 0 { 794 // at least one line break, but respect an extra empty line 795 // in the source 796 if p.linebreak(yline, 1, ws, true) > 0 { 797 ws = ignore 798 printBlank = false // no blank after line break 799 } 800 } 801 if printBlank { 802 p.print(blank) 803 } 804 p.expr1(x.Y, prec+1, depth+1) 805 if ws == ignore { 806 p.print(unindent) 807 } 808 } 809 810 func isBinary(expr ast.Expr) bool { 811 _, ok := expr.(*ast.BinaryExpr) 812 return ok 813 } 814 815 func (p *printer) expr1(expr ast.Expr, prec1, depth int) { 816 p.setPos(expr.Pos()) 817 818 switch x := expr.(type) { 819 case *ast.BadExpr: 820 p.print("BadExpr") 821 822 case *ast.Ident: 823 p.print(x) 824 825 case *ast.BinaryExpr: 826 if depth < 1 { 827 p.internalError("depth < 1:", depth) 828 depth = 1 829 } 830 p.binaryExpr(x, prec1, cutoff(x, depth), depth) 831 832 case *ast.KeyValueExpr: 833 p.expr(x.Key) 834 p.setPos(x.Colon) 835 p.print(token.COLON, blank) 836 p.expr(x.Value) 837 838 case *ast.StarExpr: 839 const prec = token.UnaryPrec 840 if prec < prec1 { 841 // parenthesis needed 842 p.print(token.LPAREN) 843 p.print(token.MUL) 844 p.expr(x.X) 845 p.print(token.RPAREN) 846 } else { 847 // no parenthesis needed 848 p.print(token.MUL) 849 p.expr(x.X) 850 } 851 852 case *ast.UnaryExpr: 853 const prec = token.UnaryPrec 854 if prec < prec1 { 855 // parenthesis needed 856 p.print(token.LPAREN) 857 p.expr(x) 858 p.print(token.RPAREN) 859 } else { 860 // no parenthesis needed 861 p.print(x.Op) 862 if x.Op == token.RANGE { 863 // TODO(gri) Remove this code if it cannot be reached. 864 p.print(blank) 865 } 866 p.expr1(x.X, prec, depth) 867 } 868 869 case *ast.BasicLit: 870 if p.Config.Mode&normalizeNumbers != 0 { 871 x = normalizedNumber(x) 872 } 873 p.print(x) 874 875 case *ast.FuncLit: 876 p.setPos(x.Type.Pos()) 877 p.print(token.FUNC) 878 // See the comment in funcDecl about how the header size is computed. 879 startCol := p.out.Column - len("func") 880 p.signature(x.Type) 881 p.funcBody(p.distanceFrom(x.Type.Pos(), startCol), blank, x.Body) 882 883 case *ast.ParenExpr: 884 if _, hasParens := x.X.(*ast.ParenExpr); hasParens { 885 // don't print parentheses around an already parenthesized expression 886 // TODO(gri) consider making this more general and incorporate precedence levels 887 p.expr0(x.X, depth) 888 } else { 889 p.print(token.LPAREN) 890 p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth 891 p.setPos(x.Rparen) 892 p.print(token.RPAREN) 893 } 894 895 case *ast.SelectorExpr: 896 p.selectorExpr(x, depth, false) 897 898 case *ast.TypeAssertExpr: 899 p.expr1(x.X, token.HighestPrec, depth) 900 p.print(token.PERIOD) 901 p.setPos(x.Lparen) 902 p.print(token.LPAREN) 903 if x.Type != nil { 904 p.expr(x.Type) 905 } else { 906 p.print(token.TYPE) 907 } 908 p.setPos(x.Rparen) 909 p.print(token.RPAREN) 910 911 case *ast.IndexExpr: 912 // TODO(gri): should treat[] like parentheses and undo one level of depth 913 p.expr1(x.X, token.HighestPrec, 1) 914 p.setPos(x.Lbrack) 915 p.print(token.LBRACK) 916 p.expr0(x.Index, depth+1) 917 p.setPos(x.Rbrack) 918 p.print(token.RBRACK) 919 920 case *ast.IndexListExpr: 921 // TODO(gri): as for IndexExpr, should treat [] like parentheses and undo 922 // one level of depth 923 p.expr1(x.X, token.HighestPrec, 1) 924 p.setPos(x.Lbrack) 925 p.print(token.LBRACK) 926 p.exprList(x.Lbrack, x.Indices, depth+1, commaTerm, x.Rbrack, false) 927 p.setPos(x.Rbrack) 928 p.print(token.RBRACK) 929 930 case *ast.SliceExpr: 931 // TODO(gri): should treat[] like parentheses and undo one level of depth 932 p.expr1(x.X, token.HighestPrec, 1) 933 p.setPos(x.Lbrack) 934 p.print(token.LBRACK) 935 indices := []ast.Expr{x.Low, x.High} 936 if x.Max != nil { 937 indices = append(indices, x.Max) 938 } 939 // determine if we need extra blanks around ':' 940 var needsBlanks bool 941 if depth <= 1 { 942 var indexCount int 943 var hasBinaries bool 944 for _, x := range indices { 945 if x != nil { 946 indexCount++ 947 if isBinary(x) { 948 hasBinaries = true 949 } 950 } 951 } 952 if indexCount > 1 && hasBinaries { 953 needsBlanks = true 954 } 955 } 956 for i, x := range indices { 957 if i > 0 { 958 if indices[i-1] != nil && needsBlanks { 959 p.print(blank) 960 } 961 p.print(token.COLON) 962 if x != nil && needsBlanks { 963 p.print(blank) 964 } 965 } 966 if x != nil { 967 p.expr0(x, depth+1) 968 } 969 } 970 p.setPos(x.Rbrack) 971 p.print(token.RBRACK) 972 973 case *ast.CallExpr: 974 if len(x.Args) > 1 { 975 depth++ 976 } 977 978 // Conversions to literal function types or <-chan 979 // types require parentheses around the type. 980 paren := false 981 switch t := x.Fun.(type) { 982 case *ast.FuncType: 983 paren = true 984 case *ast.ChanType: 985 paren = t.Dir == ast.RECV 986 } 987 if paren { 988 p.print(token.LPAREN) 989 } 990 wasIndented := p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth) 991 if paren { 992 p.print(token.RPAREN) 993 } 994 995 p.setPos(x.Lparen) 996 p.print(token.LPAREN) 997 if x.Ellipsis.IsValid() { 998 p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis, false) 999 p.setPos(x.Ellipsis) 1000 p.print(token.ELLIPSIS) 1001 if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) { 1002 p.print(token.COMMA, formfeed) 1003 } 1004 } else { 1005 p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen, false) 1006 } 1007 p.setPos(x.Rparen) 1008 p.print(token.RPAREN) 1009 if wasIndented { 1010 p.print(unindent) 1011 } 1012 1013 case *ast.CompositeLit: 1014 // composite literal elements that are composite literals themselves may have the type omitted 1015 if x.Type != nil { 1016 p.expr1(x.Type, token.HighestPrec, depth) 1017 } 1018 p.level++ 1019 p.setPos(x.Lbrace) 1020 p.print(token.LBRACE) 1021 p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace, x.Incomplete) 1022 // do not insert extra line break following a /*-style comment 1023 // before the closing '}' as it might break the code if there 1024 // is no trailing ',' 1025 mode := noExtraLinebreak 1026 // do not insert extra blank following a /*-style comment 1027 // before the closing '}' unless the literal is empty 1028 if len(x.Elts) > 0 { 1029 mode |= noExtraBlank 1030 } 1031 // need the initial indent to print lone comments with 1032 // the proper level of indentation 1033 p.print(indent, unindent, mode) 1034 p.setPos(x.Rbrace) 1035 p.print(token.RBRACE, mode) 1036 p.level-- 1037 1038 case *ast.Ellipsis: 1039 p.print(token.ELLIPSIS) 1040 if x.Elt != nil { 1041 p.expr(x.Elt) 1042 } 1043 1044 case *ast.ArrayType: 1045 p.print(token.LBRACK) 1046 if x.Len != nil { 1047 p.expr(x.Len) 1048 } 1049 p.print(token.RBRACK) 1050 p.expr(x.Elt) 1051 1052 case *ast.StructType: 1053 p.print(token.STRUCT) 1054 p.fieldList(x.Fields, true, x.Incomplete) 1055 1056 case *ast.FuncType: 1057 p.print(token.FUNC) 1058 p.signature(x) 1059 1060 case *ast.InterfaceType: 1061 p.print(token.INTERFACE) 1062 p.fieldList(x.Methods, false, x.Incomplete) 1063 1064 case *ast.MapType: 1065 p.print(token.MAP, token.LBRACK) 1066 p.expr(x.Key) 1067 p.print(token.RBRACK) 1068 p.expr(x.Value) 1069 1070 case *ast.ChanType: 1071 switch x.Dir { 1072 case ast.SEND | ast.RECV: 1073 p.print(token.CHAN) 1074 case ast.RECV: 1075 p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same 1076 case ast.SEND: 1077 p.print(token.CHAN) 1078 p.setPos(x.Arrow) 1079 p.print(token.ARROW) 1080 } 1081 p.print(blank) 1082 p.expr(x.Value) 1083 1084 default: 1085 panic("unreachable") 1086 } 1087 } 1088 1089 // normalizedNumber rewrites base prefixes and exponents 1090 // of numbers to use lower-case letters (0X123 to 0x123 and 1.2E3 to 1.2e3), 1091 // and removes leading 0's from integer imaginary literals (0765i to 765i). 1092 // It leaves hexadecimal digits alone. 1093 // 1094 // normalizedNumber doesn't modify the ast.BasicLit value lit points to. 1095 // If lit is not a number or a number in canonical format already, 1096 // lit is returned as is. Otherwise a new ast.BasicLit is created. 1097 func normalizedNumber(lit *ast.BasicLit) *ast.BasicLit { 1098 if lit.Kind != token.INT && lit.Kind != token.FLOAT && lit.Kind != token.IMAG { 1099 return lit // not a number - nothing to do 1100 } 1101 if len(lit.Value) < 2 { 1102 return lit // only one digit (common case) - nothing to do 1103 } 1104 // len(lit.Value) >= 2 1105 1106 // We ignore lit.Kind because for lit.Kind == token.IMAG the literal may be an integer 1107 // or floating-point value, decimal or not. Instead, just consider the literal pattern. 1108 x := lit.Value 1109 switch x[:2] { 1110 default: 1111 // 0-prefix octal, decimal int, or float (possibly with 'i' suffix) 1112 if i := strings.LastIndexByte(x, 'E'); i >= 0 { 1113 x = x[:i] + "e" + x[i+1:] 1114 break 1115 } 1116 // remove leading 0's from integer (but not floating-point) imaginary literals 1117 if x[len(x)-1] == 'i' && !strings.ContainsAny(x, ".e") { 1118 x = strings.TrimLeft(x, "0_") 1119 if x == "i" { 1120 x = "0i" 1121 } 1122 } 1123 case "0X": 1124 x = "0x" + x[2:] 1125 // possibly a hexadecimal float 1126 if i := strings.LastIndexByte(x, 'P'); i >= 0 { 1127 x = x[:i] + "p" + x[i+1:] 1128 } 1129 case "0x": 1130 // possibly a hexadecimal float 1131 i := strings.LastIndexByte(x, 'P') 1132 if i == -1 { 1133 return lit // nothing to do 1134 } 1135 x = x[:i] + "p" + x[i+1:] 1136 case "0O": 1137 x = "0o" + x[2:] 1138 case "0o": 1139 return lit // nothing to do 1140 case "0B": 1141 x = "0b" + x[2:] 1142 case "0b": 1143 return lit // nothing to do 1144 } 1145 1146 return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: lit.Kind, Value: x} 1147 } 1148 1149 func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool { 1150 if x, ok := expr.(*ast.SelectorExpr); ok { 1151 return p.selectorExpr(x, depth, true) 1152 } 1153 p.expr1(expr, prec1, depth) 1154 return false 1155 } 1156 1157 // selectorExpr handles an *ast.SelectorExpr node and reports whether x spans 1158 // multiple lines. 1159 func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool { 1160 p.expr1(x.X, token.HighestPrec, depth) 1161 p.print(token.PERIOD) 1162 if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line { 1163 p.print(indent, newline) 1164 p.setPos(x.Sel.Pos()) 1165 p.print(x.Sel) 1166 if !isMethod { 1167 p.print(unindent) 1168 } 1169 return true 1170 } 1171 p.setPos(x.Sel.Pos()) 1172 p.print(x.Sel) 1173 return false 1174 } 1175 1176 func (p *printer) expr0(x ast.Expr, depth int) { 1177 p.expr1(x, token.LowestPrec, depth) 1178 } 1179 1180 func (p *printer) expr(x ast.Expr) { 1181 const depth = 1 1182 p.expr1(x, token.LowestPrec, depth) 1183 } 1184 1185 // ---------------------------------------------------------------------------- 1186 // Statements 1187 1188 // Print the statement list indented, but without a newline after the last statement. 1189 // Extra line breaks between statements in the source are respected but at most one 1190 // empty line is printed between statements. 1191 func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) { 1192 if nindent > 0 { 1193 p.print(indent) 1194 } 1195 var line int 1196 i := 0 1197 for _, s := range list { 1198 // ignore empty statements (was issue 3466) 1199 if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty { 1200 // nindent == 0 only for lists of switch/select case clauses; 1201 // in those cases each clause is a new section 1202 if len(p.output) > 0 { 1203 // only print line break if we are not at the beginning of the output 1204 // (i.e., we are not printing only a partial program) 1205 p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0) 1206 } 1207 p.recordLine(&line) 1208 p.stmt(s, nextIsRBrace && i == len(list)-1) 1209 // labeled statements put labels on a separate line, but here 1210 // we only care about the start line of the actual statement 1211 // without label - correct line for each label 1212 for t := s; ; { 1213 lt, _ := t.(*ast.LabeledStmt) 1214 if lt == nil { 1215 break 1216 } 1217 line++ 1218 t = lt.Stmt 1219 } 1220 i++ 1221 } 1222 } 1223 if nindent > 0 { 1224 p.print(unindent) 1225 } 1226 } 1227 1228 // block prints an *ast.BlockStmt; it always spans at least two lines. 1229 func (p *printer) block(b *ast.BlockStmt, nindent int) { 1230 p.setPos(b.Lbrace) 1231 p.print(token.LBRACE) 1232 p.stmtList(b.List, nindent, true) 1233 p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true) 1234 p.setPos(b.Rbrace) 1235 p.print(token.RBRACE) 1236 } 1237 1238 func isTypeName(x ast.Expr) bool { 1239 switch t := x.(type) { 1240 case *ast.Ident: 1241 return true 1242 case *ast.SelectorExpr: 1243 return isTypeName(t.X) 1244 } 1245 return false 1246 } 1247 1248 func stripParens(x ast.Expr) ast.Expr { 1249 if px, strip := x.(*ast.ParenExpr); strip { 1250 // parentheses must not be stripped if there are any 1251 // unparenthesized composite literals starting with 1252 // a type name 1253 ast.Inspect(px.X, func(node ast.Node) bool { 1254 switch x := node.(type) { 1255 case *ast.ParenExpr: 1256 // parentheses protect enclosed composite literals 1257 return false 1258 case *ast.CompositeLit: 1259 if isTypeName(x.Type) { 1260 strip = false // do not strip parentheses 1261 } 1262 return false 1263 } 1264 // in all other cases, keep inspecting 1265 return true 1266 }) 1267 if strip { 1268 return stripParens(px.X) 1269 } 1270 } 1271 return x 1272 } 1273 1274 func stripParensAlways(x ast.Expr) ast.Expr { 1275 if x, ok := x.(*ast.ParenExpr); ok { 1276 return stripParensAlways(x.X) 1277 } 1278 return x 1279 } 1280 1281 func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) { 1282 p.print(blank) 1283 needsBlank := false 1284 if init == nil && post == nil { 1285 // no semicolons required 1286 if expr != nil { 1287 p.expr(stripParens(expr)) 1288 needsBlank = true 1289 } 1290 } else { 1291 // all semicolons required 1292 // (they are not separators, print them explicitly) 1293 if init != nil { 1294 p.stmt(init, false) 1295 } 1296 p.print(token.SEMICOLON, blank) 1297 if expr != nil { 1298 p.expr(stripParens(expr)) 1299 needsBlank = true 1300 } 1301 if isForStmt { 1302 p.print(token.SEMICOLON, blank) 1303 needsBlank = false 1304 if post != nil { 1305 p.stmt(post, false) 1306 needsBlank = true 1307 } 1308 } 1309 } 1310 if needsBlank { 1311 p.print(blank) 1312 } 1313 } 1314 1315 // indentList reports whether an expression list would look better if it 1316 // were indented wholesale (starting with the very first element, rather 1317 // than starting at the first line break). 1318 func (p *printer) indentList(list []ast.Expr) bool { 1319 // Heuristic: indentList reports whether there are more than one multi- 1320 // line element in the list, or if there is any element that is not 1321 // starting on the same line as the previous one ends. 1322 if len(list) >= 2 { 1323 var b = p.lineFor(list[0].Pos()) 1324 var e = p.lineFor(list[len(list)-1].End()) 1325 if 0 < b && b < e { 1326 // list spans multiple lines 1327 n := 0 // multi-line element count 1328 line := b 1329 for _, x := range list { 1330 xb := p.lineFor(x.Pos()) 1331 xe := p.lineFor(x.End()) 1332 if line < xb { 1333 // x is not starting on the same 1334 // line as the previous one ended 1335 return true 1336 } 1337 if xb < xe { 1338 // x is a multi-line element 1339 n++ 1340 } 1341 line = xe 1342 } 1343 return n > 1 1344 } 1345 } 1346 return false 1347 } 1348 1349 func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) { 1350 p.setPos(stmt.Pos()) 1351 1352 switch s := stmt.(type) { 1353 case *ast.BadStmt: 1354 p.print("BadStmt") 1355 1356 case *ast.DeclStmt: 1357 p.decl(s.Decl) 1358 1359 case *ast.EmptyStmt: 1360 // nothing to do 1361 1362 case *ast.LabeledStmt: 1363 // a "correcting" unindent immediately following a line break 1364 // is applied before the line break if there is no comment 1365 // between (see writeWhitespace) 1366 p.print(unindent) 1367 p.expr(s.Label) 1368 p.setPos(s.Colon) 1369 p.print(token.COLON, indent) 1370 if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty { 1371 if !nextIsRBrace { 1372 p.print(newline) 1373 p.setPos(e.Pos()) 1374 p.print(token.SEMICOLON) 1375 break 1376 } 1377 } else { 1378 p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true) 1379 } 1380 p.stmt(s.Stmt, nextIsRBrace) 1381 1382 case *ast.ExprStmt: 1383 const depth = 1 1384 p.expr0(s.X, depth) 1385 1386 case *ast.SendStmt: 1387 const depth = 1 1388 p.expr0(s.Chan, depth) 1389 p.print(blank) 1390 p.setPos(s.Arrow) 1391 p.print(token.ARROW, blank) 1392 p.expr0(s.Value, depth) 1393 1394 case *ast.IncDecStmt: 1395 const depth = 1 1396 p.expr0(s.X, depth+1) 1397 p.setPos(s.TokPos) 1398 p.print(s.Tok) 1399 1400 case *ast.AssignStmt: 1401 var depth = 1 1402 if len(s.Lhs) > 1 && len(s.Rhs) > 1 { 1403 depth++ 1404 } 1405 p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos, false) 1406 p.print(blank) 1407 p.setPos(s.TokPos) 1408 p.print(s.Tok, blank) 1409 p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos, false) 1410 1411 case *ast.GoStmt: 1412 p.print(token.GO, blank) 1413 p.expr(s.Call) 1414 1415 case *ast.DeferStmt: 1416 p.print(token.DEFER, blank) 1417 p.expr(s.Call) 1418 1419 case *ast.ReturnStmt: 1420 p.print(token.RETURN) 1421 if s.Results != nil { 1422 p.print(blank) 1423 // Use indentList heuristic to make corner cases look 1424 // better (issue 1207). A more systematic approach would 1425 // always indent, but this would cause significant 1426 // reformatting of the code base and not necessarily 1427 // lead to more nicely formatted code in general. 1428 if p.indentList(s.Results) { 1429 p.print(indent) 1430 // Use NoPos so that a newline never goes before 1431 // the results (see issue #32854). 1432 p.exprList(token.NoPos, s.Results, 1, noIndent, token.NoPos, false) 1433 p.print(unindent) 1434 } else { 1435 p.exprList(token.NoPos, s.Results, 1, 0, token.NoPos, false) 1436 } 1437 } 1438 1439 case *ast.BranchStmt: 1440 p.print(s.Tok) 1441 if s.Label != nil { 1442 p.print(blank) 1443 p.expr(s.Label) 1444 } 1445 1446 case *ast.BlockStmt: 1447 p.block(s, 1) 1448 1449 case *ast.IfStmt: 1450 p.print(token.IF) 1451 p.controlClause(false, s.Init, s.Cond, nil) 1452 p.block(s.Body, 1) 1453 if s.Else != nil { 1454 p.print(blank, token.ELSE, blank) 1455 switch s.Else.(type) { 1456 case *ast.BlockStmt, *ast.IfStmt: 1457 p.stmt(s.Else, nextIsRBrace) 1458 default: 1459 // This can only happen with an incorrectly 1460 // constructed AST. Permit it but print so 1461 // that it can be parsed without errors. 1462 p.print(token.LBRACE, indent, formfeed) 1463 p.stmt(s.Else, true) 1464 p.print(unindent, formfeed, token.RBRACE) 1465 } 1466 } 1467 1468 case *ast.CaseClause: 1469 if s.List != nil { 1470 p.print(token.CASE, blank) 1471 p.exprList(s.Pos(), s.List, 1, 0, s.Colon, false) 1472 } else { 1473 p.print(token.DEFAULT) 1474 } 1475 p.setPos(s.Colon) 1476 p.print(token.COLON) 1477 p.stmtList(s.Body, 1, nextIsRBrace) 1478 1479 case *ast.SwitchStmt: 1480 p.print(token.SWITCH) 1481 p.controlClause(false, s.Init, s.Tag, nil) 1482 p.block(s.Body, 0) 1483 1484 case *ast.TypeSwitchStmt: 1485 p.print(token.SWITCH) 1486 if s.Init != nil { 1487 p.print(blank) 1488 p.stmt(s.Init, false) 1489 p.print(token.SEMICOLON) 1490 } 1491 p.print(blank) 1492 p.stmt(s.Assign, false) 1493 p.print(blank) 1494 p.block(s.Body, 0) 1495 1496 case *ast.CommClause: 1497 if s.Comm != nil { 1498 p.print(token.CASE, blank) 1499 p.stmt(s.Comm, false) 1500 } else { 1501 p.print(token.DEFAULT) 1502 } 1503 p.setPos(s.Colon) 1504 p.print(token.COLON) 1505 p.stmtList(s.Body, 1, nextIsRBrace) 1506 1507 case *ast.SelectStmt: 1508 p.print(token.SELECT, blank) 1509 body := s.Body 1510 if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) { 1511 // print empty select statement w/o comments on one line 1512 p.setPos(body.Lbrace) 1513 p.print(token.LBRACE) 1514 p.setPos(body.Rbrace) 1515 p.print(token.RBRACE) 1516 } else { 1517 p.block(body, 0) 1518 } 1519 1520 case *ast.ForStmt: 1521 p.print(token.FOR) 1522 p.controlClause(true, s.Init, s.Cond, s.Post) 1523 p.block(s.Body, 1) 1524 1525 case *ast.RangeStmt: 1526 p.print(token.FOR, blank) 1527 if s.Key != nil { 1528 p.expr(s.Key) 1529 if s.Value != nil { 1530 // use position of value following the comma as 1531 // comma position for correct comment placement 1532 p.setPos(s.Value.Pos()) 1533 p.print(token.COMMA, blank) 1534 p.expr(s.Value) 1535 } 1536 p.print(blank) 1537 p.setPos(s.TokPos) 1538 p.print(s.Tok, blank) 1539 } 1540 p.print(token.RANGE, blank) 1541 p.expr(stripParens(s.X)) 1542 p.print(blank) 1543 p.block(s.Body, 1) 1544 1545 default: 1546 panic("unreachable") 1547 } 1548 } 1549 1550 // ---------------------------------------------------------------------------- 1551 // Declarations 1552 1553 // The keepTypeColumn function determines if the type column of a series of 1554 // consecutive const or var declarations must be kept, or if initialization 1555 // values (V) can be placed in the type column (T) instead. The i'th entry 1556 // in the result slice is true if the type column in spec[i] must be kept. 1557 // 1558 // For example, the declaration: 1559 // 1560 // const ( 1561 // foobar int = 42 // comment 1562 // x = 7 // comment 1563 // foo 1564 // bar = 991 1565 // ) 1566 // 1567 // leads to the type/values matrix below. A run of value columns (V) can 1568 // be moved into the type column if there is no type for any of the values 1569 // in that column (we only move entire columns so that they align properly). 1570 // 1571 // matrix formatted result 1572 // matrix 1573 // T V -> T V -> true there is a T and so the type 1574 // - V - V true column must be kept 1575 // - - - - false 1576 // - V V - false V is moved into T column 1577 func keepTypeColumn(specs []ast.Spec) []bool { 1578 m := make([]bool, len(specs)) 1579 1580 populate := func(i, j int, keepType bool) { 1581 if keepType { 1582 for ; i < j; i++ { 1583 m[i] = true 1584 } 1585 } 1586 } 1587 1588 i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run 1589 var keepType bool 1590 for i, s := range specs { 1591 t := s.(*ast.ValueSpec) 1592 if t.Values != nil { 1593 if i0 < 0 { 1594 // start of a run of ValueSpecs with non-nil Values 1595 i0 = i 1596 keepType = false 1597 } 1598 } else { 1599 if i0 >= 0 { 1600 // end of a run 1601 populate(i0, i, keepType) 1602 i0 = -1 1603 } 1604 } 1605 if t.Type != nil { 1606 keepType = true 1607 } 1608 } 1609 if i0 >= 0 { 1610 // end of a run 1611 populate(i0, len(specs), keepType) 1612 } 1613 1614 return m 1615 } 1616 1617 func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) { 1618 p.setComment(s.Doc) 1619 p.identList(s.Names, false) // always present 1620 extraTabs := 3 1621 if s.Type != nil || keepType { 1622 p.print(vtab) 1623 extraTabs-- 1624 } 1625 if s.Type != nil { 1626 p.expr(s.Type) 1627 } 1628 if s.Values != nil { 1629 p.print(vtab, token.ASSIGN, blank) 1630 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false) 1631 extraTabs-- 1632 } 1633 if s.Comment != nil { 1634 for ; extraTabs > 0; extraTabs-- { 1635 p.print(vtab) 1636 } 1637 p.setComment(s.Comment) 1638 } 1639 } 1640 1641 func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit { 1642 // Note: An unmodified AST generated by go/parser will already 1643 // contain a backward- or double-quoted path string that does 1644 // not contain any invalid characters, and most of the work 1645 // here is not needed. However, a modified or generated AST 1646 // may possibly contain non-canonical paths. Do the work in 1647 // all cases since it's not too hard and not speed-critical. 1648 1649 // if we don't have a proper string, be conservative and return whatever we have 1650 if lit.Kind != token.STRING { 1651 return lit 1652 } 1653 s, err := strconv.Unquote(lit.Value) 1654 if err != nil { 1655 return lit 1656 } 1657 1658 // if the string is an invalid path, return whatever we have 1659 // 1660 // spec: "Implementation restriction: A compiler may restrict 1661 // ImportPaths to non-empty strings using only characters belonging 1662 // to Unicode's L, M, N, P, and S general categories (the Graphic 1663 // characters without spaces) and may also exclude the characters 1664 // !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character 1665 // U+FFFD." 1666 if s == "" { 1667 return lit 1668 } 1669 const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD" 1670 for _, r := range s { 1671 if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) { 1672 return lit 1673 } 1674 } 1675 1676 // otherwise, return the double-quoted path 1677 s = strconv.Quote(s) 1678 if s == lit.Value { 1679 return lit // nothing wrong with lit 1680 } 1681 return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s} 1682 } 1683 1684 // The parameter n is the number of specs in the group. If doIndent is set, 1685 // multi-line identifier lists in the spec are indented when the first 1686 // linebreak is encountered. 1687 func (p *printer) spec(spec ast.Spec, n int, doIndent bool) { 1688 switch s := spec.(type) { 1689 case *ast.ImportSpec: 1690 p.setComment(s.Doc) 1691 if s.Name != nil { 1692 p.expr(s.Name) 1693 p.print(blank) 1694 } 1695 p.expr(sanitizeImportPath(s.Path)) 1696 p.setComment(s.Comment) 1697 p.setPos(s.EndPos) 1698 1699 case *ast.ValueSpec: 1700 if n != 1 { 1701 p.internalError("expected n = 1; got", n) 1702 } 1703 p.setComment(s.Doc) 1704 p.identList(s.Names, doIndent) // always present 1705 if s.Type != nil { 1706 p.print(blank) 1707 p.expr(s.Type) 1708 } 1709 if s.Values != nil { 1710 p.print(blank, token.ASSIGN, blank) 1711 p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false) 1712 } 1713 p.setComment(s.Comment) 1714 1715 case *ast.TypeSpec: 1716 p.setComment(s.Doc) 1717 p.expr(s.Name) 1718 if s.TypeParams != nil { 1719 p.parameters(s.TypeParams, typeTParam) 1720 } 1721 if n == 1 { 1722 p.print(blank) 1723 } else { 1724 p.print(vtab) 1725 } 1726 if s.Assign.IsValid() { 1727 p.print(token.ASSIGN, blank) 1728 } 1729 p.expr(s.Type) 1730 p.setComment(s.Comment) 1731 1732 default: 1733 panic("unreachable") 1734 } 1735 } 1736 1737 func (p *printer) genDecl(d *ast.GenDecl) { 1738 p.setComment(d.Doc) 1739 p.setPos(d.Pos()) 1740 p.print(d.Tok, blank) 1741 1742 if d.Lparen.IsValid() || len(d.Specs) != 1 { 1743 // group of parenthesized declarations 1744 p.setPos(d.Lparen) 1745 p.print(token.LPAREN) 1746 if n := len(d.Specs); n > 0 { 1747 p.print(indent, formfeed) 1748 if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) { 1749 // two or more grouped const/var declarations: 1750 // determine if the type column must be kept 1751 keepType := keepTypeColumn(d.Specs) 1752 var line int 1753 for i, s := range d.Specs { 1754 if i > 0 { 1755 p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) 1756 } 1757 p.recordLine(&line) 1758 p.valueSpec(s.(*ast.ValueSpec), keepType[i]) 1759 } 1760 } else { 1761 var line int 1762 for i, s := range d.Specs { 1763 if i > 0 { 1764 p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0) 1765 } 1766 p.recordLine(&line) 1767 p.spec(s, n, false) 1768 } 1769 } 1770 p.print(unindent, formfeed) 1771 } 1772 p.setPos(d.Rparen) 1773 p.print(token.RPAREN) 1774 1775 } else if len(d.Specs) > 0 { 1776 // single declaration 1777 p.spec(d.Specs[0], 1, true) 1778 } 1779 } 1780 1781 // sizeCounter is an io.Writer which counts the number of bytes written, 1782 // as well as whether a newline character was seen. 1783 type sizeCounter struct { 1784 hasNewline bool 1785 size int 1786 } 1787 1788 func (c *sizeCounter) Write(p []byte) (int, error) { 1789 if !c.hasNewline { 1790 for _, b := range p { 1791 if b == '\n' || b == '\f' { 1792 c.hasNewline = true 1793 break 1794 } 1795 } 1796 } 1797 c.size += len(p) 1798 return len(p), nil 1799 } 1800 1801 // nodeSize determines the size of n in chars after formatting. 1802 // The result is <= maxSize if the node fits on one line with at 1803 // most maxSize chars and the formatted output doesn't contain 1804 // any control chars. Otherwise, the result is > maxSize. 1805 func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) { 1806 // nodeSize invokes the printer, which may invoke nodeSize 1807 // recursively. For deep composite literal nests, this can 1808 // lead to an exponential algorithm. Remember previous 1809 // results to prune the recursion (was issue 1628). 1810 if size, found := p.nodeSizes[n]; found { 1811 return size 1812 } 1813 1814 size = maxSize + 1 // assume n doesn't fit 1815 p.nodeSizes[n] = size 1816 1817 // nodeSize computation must be independent of particular 1818 // style so that we always get the same decision; print 1819 // in RawFormat 1820 cfg := Config{Mode: RawFormat} 1821 var counter sizeCounter 1822 if err := cfg.fprint(&counter, p.fset, n, p.nodeSizes); err != nil { 1823 return 1824 } 1825 if counter.size <= maxSize && !counter.hasNewline { 1826 // n fits in a single line 1827 size = counter.size 1828 p.nodeSizes[n] = size 1829 } 1830 return 1831 } 1832 1833 // numLines returns the number of lines spanned by node n in the original source. 1834 func (p *printer) numLines(n ast.Node) int { 1835 if from := n.Pos(); from.IsValid() { 1836 if to := n.End(); to.IsValid() { 1837 return p.lineFor(to) - p.lineFor(from) + 1 1838 } 1839 } 1840 return infinity 1841 } 1842 1843 // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's. 1844 func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int { 1845 pos1 := b.Pos() 1846 pos2 := b.Rbrace 1847 if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) { 1848 // opening and closing brace are on different lines - don't make it a one-liner 1849 return maxSize + 1 1850 } 1851 if len(b.List) > 5 { 1852 // too many statements - don't make it a one-liner 1853 return maxSize + 1 1854 } 1855 // otherwise, estimate body size 1856 bodySize := p.commentSizeBefore(p.posFor(pos2)) 1857 for i, s := range b.List { 1858 if bodySize > maxSize { 1859 break // no need to continue 1860 } 1861 if i > 0 { 1862 bodySize += 2 // space for a semicolon and blank 1863 } 1864 bodySize += p.nodeSize(s, maxSize) 1865 } 1866 return bodySize 1867 } 1868 1869 // funcBody prints a function body following a function header of given headerSize. 1870 // If the header's and block's size are "small enough" and the block is "simple enough", 1871 // the block is printed on the current line, without line breaks, spaced from the header 1872 // by sep. Otherwise the block's opening "{" is printed on the current line, followed by 1873 // lines for the block's statements and its closing "}". 1874 func (p *printer) funcBody(headerSize int, sep whiteSpace, b *ast.BlockStmt) { 1875 if b == nil { 1876 return 1877 } 1878 1879 // save/restore composite literal nesting level 1880 defer func(level int) { 1881 p.level = level 1882 }(p.level) 1883 p.level = 0 1884 1885 const maxSize = 100 1886 if headerSize+p.bodySize(b, maxSize) <= maxSize { 1887 p.print(sep) 1888 p.setPos(b.Lbrace) 1889 p.print(token.LBRACE) 1890 if len(b.List) > 0 { 1891 p.print(blank) 1892 for i, s := range b.List { 1893 if i > 0 { 1894 p.print(token.SEMICOLON, blank) 1895 } 1896 p.stmt(s, i == len(b.List)-1) 1897 } 1898 p.print(blank) 1899 } 1900 p.print(noExtraLinebreak) 1901 p.setPos(b.Rbrace) 1902 p.print(token.RBRACE, noExtraLinebreak) 1903 return 1904 } 1905 1906 if sep != ignore { 1907 p.print(blank) // always use blank 1908 } 1909 p.block(b, 1) 1910 } 1911 1912 // distanceFrom returns the column difference between p.out (the current output 1913 // position) and startOutCol. If the start position is on a different line from 1914 // the current position (or either is unknown), the result is infinity. 1915 func (p *printer) distanceFrom(startPos token.Pos, startOutCol int) int { 1916 if startPos.IsValid() && p.pos.IsValid() && p.posFor(startPos).Line == p.pos.Line { 1917 return p.out.Column - startOutCol 1918 } 1919 return infinity 1920 } 1921 1922 func (p *printer) funcDecl(d *ast.FuncDecl) { 1923 p.setComment(d.Doc) 1924 p.setPos(d.Pos()) 1925 p.print(token.FUNC, blank) 1926 // We have to save startCol only after emitting FUNC; otherwise it can be on a 1927 // different line (all whitespace preceding the FUNC is emitted only when the 1928 // FUNC is emitted). 1929 startCol := p.out.Column - len("func ") 1930 if d.Recv != nil { 1931 p.parameters(d.Recv, funcParam) // method: print receiver 1932 p.print(blank) 1933 } 1934 p.expr(d.Name) 1935 p.signature(d.Type) 1936 p.funcBody(p.distanceFrom(d.Pos(), startCol), vtab, d.Body) 1937 } 1938 1939 func (p *printer) decl(decl ast.Decl) { 1940 switch d := decl.(type) { 1941 case *ast.BadDecl: 1942 p.setPos(d.Pos()) 1943 p.print("BadDecl") 1944 case *ast.GenDecl: 1945 p.genDecl(d) 1946 case *ast.FuncDecl: 1947 p.funcDecl(d) 1948 default: 1949 panic("unreachable") 1950 } 1951 } 1952 1953 // ---------------------------------------------------------------------------- 1954 // Files 1955 1956 func declToken(decl ast.Decl) (tok token.Token) { 1957 tok = token.ILLEGAL 1958 switch d := decl.(type) { 1959 case *ast.GenDecl: 1960 tok = d.Tok 1961 case *ast.FuncDecl: 1962 tok = token.FUNC 1963 } 1964 return 1965 } 1966 1967 func (p *printer) declList(list []ast.Decl) { 1968 tok := token.ILLEGAL 1969 for _, d := range list { 1970 prev := tok 1971 tok = declToken(d) 1972 // If the declaration token changed (e.g., from CONST to TYPE) 1973 // or the next declaration has documentation associated with it, 1974 // print an empty line between top-level declarations. 1975 // (because p.linebreak is called with the position of d, which 1976 // is past any documentation, the minimum requirement is satisfied 1977 // even w/o the extra getDoc(d) nil-check - leave it in case the 1978 // linebreak logic improves - there's already a TODO). 1979 if len(p.output) > 0 { 1980 // only print line break if we are not at the beginning of the output 1981 // (i.e., we are not printing only a partial program) 1982 min := 1 1983 if prev != tok || getDoc(d) != nil { 1984 min = 2 1985 } 1986 // start a new section if the next declaration is a function 1987 // that spans multiple lines (see also issue #19544) 1988 p.linebreak(p.lineFor(d.Pos()), min, ignore, tok == token.FUNC && p.numLines(d) > 1) 1989 } 1990 p.decl(d) 1991 } 1992 } 1993 1994 func (p *printer) file(src *ast.File) { 1995 p.setComment(src.Doc) 1996 p.setPos(src.Pos()) 1997 p.print(token.PACKAGE, blank) 1998 p.expr(src.Name) 1999 p.declList(src.Decls) 2000 p.print(newline) 2001 }