github.com/bir3/gocompiler@v0.9.2202/src/go/types/predicates.go (about) 1 // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT. 2 3 // Copyright 2012 The Go Authors. All rights reserved. 4 // Use of this source code is governed by a BSD-style 5 // license that can be found in the LICENSE file. 6 7 // This file implements commonly used type predicates. 8 9 package types 10 11 // isValid reports whether t is a valid type. 12 func isValid(t Type) bool { return Unalias(t) != Typ[Invalid] } 13 14 // The isX predicates below report whether t is an X. 15 // If t is a type parameter the result is false; i.e., 16 // these predicates don't look inside a type parameter. 17 18 func isBoolean(t Type) bool { return isBasic(t, IsBoolean) } 19 func isInteger(t Type) bool { return isBasic(t, IsInteger) } 20 func isUnsigned(t Type) bool { return isBasic(t, IsUnsigned) } 21 func isFloat(t Type) bool { return isBasic(t, IsFloat) } 22 func isComplex(t Type) bool { return isBasic(t, IsComplex) } 23 func isNumeric(t Type) bool { return isBasic(t, IsNumeric) } 24 func isString(t Type) bool { return isBasic(t, IsString) } 25 func isIntegerOrFloat(t Type) bool { return isBasic(t, IsInteger|IsFloat) } 26 func isConstType(t Type) bool { return isBasic(t, IsConstType) } 27 28 // isBasic reports whether under(t) is a basic type with the specified info. 29 // If t is a type parameter the result is false; i.e., 30 // isBasic does not look inside a type parameter. 31 func isBasic(t Type, info BasicInfo) bool { 32 u, _ := under(t).(*Basic) 33 return u != nil && u.info&info != 0 34 } 35 36 // The allX predicates below report whether t is an X. 37 // If t is a type parameter the result is true if isX is true 38 // for all specified types of the type parameter's type set. 39 // allX is an optimized version of isX(coreType(t)) (which 40 // is the same as underIs(t, isX)). 41 42 func allBoolean(t Type) bool { return allBasic(t, IsBoolean) } 43 func allInteger(t Type) bool { return allBasic(t, IsInteger) } 44 func allUnsigned(t Type) bool { return allBasic(t, IsUnsigned) } 45 func allNumeric(t Type) bool { return allBasic(t, IsNumeric) } 46 func allString(t Type) bool { return allBasic(t, IsString) } 47 func allOrdered(t Type) bool { return allBasic(t, IsOrdered) } 48 func allNumericOrString(t Type) bool { return allBasic(t, IsNumeric|IsString) } 49 50 // allBasic reports whether under(t) is a basic type with the specified info. 51 // If t is a type parameter, the result is true if isBasic(t, info) is true 52 // for all specific types of the type parameter's type set. 53 // allBasic(t, info) is an optimized version of isBasic(coreType(t), info). 54 func allBasic(t Type, info BasicInfo) bool { 55 if tpar, _ := Unalias(t).(*TypeParam); tpar != nil { 56 return tpar.is(func(t *term) bool { return t != nil && isBasic(t.typ, info) }) 57 } 58 return isBasic(t, info) 59 } 60 61 // hasName reports whether t has a name. This includes 62 // predeclared types, defined types, and type parameters. 63 // hasName may be called with types that are not fully set up. 64 func hasName(t Type) bool { 65 switch Unalias(t).(type) { 66 case *Basic, *Named, *TypeParam: 67 return true 68 } 69 return false 70 } 71 72 // isTypeLit reports whether t is a type literal. 73 // This includes all non-defined types, but also basic types. 74 // isTypeLit may be called with types that are not fully set up. 75 func isTypeLit(t Type) bool { 76 switch Unalias(t).(type) { 77 case *Named, *TypeParam: 78 return false 79 } 80 return true 81 } 82 83 // isTyped reports whether t is typed; i.e., not an untyped 84 // constant or boolean. isTyped may be called with types that 85 // are not fully set up. 86 func isTyped(t Type) bool { 87 // Alias or Named types cannot denote untyped types, 88 // thus we don't need to call Unalias or under 89 // (which would be unsafe to do for types that are 90 // not fully set up). 91 b, _ := t.(*Basic) 92 return b == nil || b.info&IsUntyped == 0 93 } 94 95 // isUntyped(t) is the same as !isTyped(t). 96 func isUntyped(t Type) bool { 97 return !isTyped(t) 98 } 99 100 // IsInterface reports whether t is an interface type. 101 func IsInterface(t Type) bool { 102 _, ok := under(t).(*Interface) 103 return ok 104 } 105 106 // isNonTypeParamInterface reports whether t is an interface type but not a type parameter. 107 func isNonTypeParamInterface(t Type) bool { 108 return !isTypeParam(t) && IsInterface(t) 109 } 110 111 // isTypeParam reports whether t is a type parameter. 112 func isTypeParam(t Type) bool { 113 _, ok := Unalias(t).(*TypeParam) 114 return ok 115 } 116 117 // hasEmptyTypeset reports whether t is a type parameter with an empty type set. 118 // The function does not force the computation of the type set and so is safe to 119 // use anywhere, but it may report a false negative if the type set has not been 120 // computed yet. 121 func hasEmptyTypeset(t Type) bool { 122 if tpar, _ := Unalias(t).(*TypeParam); tpar != nil && tpar.bound != nil { 123 iface, _ := safeUnderlying(tpar.bound).(*Interface) 124 return iface != nil && iface.tset != nil && iface.tset.IsEmpty() 125 } 126 return false 127 } 128 129 // isGeneric reports whether a type is a generic, uninstantiated type 130 // (generic signatures are not included). 131 // TODO(gri) should we include signatures or assert that they are not present? 132 func isGeneric(t Type) bool { 133 // A parameterized type is only generic if it doesn't have an instantiation already. 134 named := asNamed(t) 135 return named != nil && named.obj != nil && named.inst == nil && named.TypeParams().Len() > 0 136 } 137 138 // Comparable reports whether values of type T are comparable. 139 func Comparable(T Type) bool { 140 return comparable(T, true, nil, nil) 141 } 142 143 // If dynamic is set, non-type parameter interfaces are always comparable. 144 // If reportf != nil, it may be used to report why T is not comparable. 145 func comparable(T Type, dynamic bool, seen map[Type]bool, reportf func(string, ...interface{})) bool { 146 if seen[T] { 147 return true 148 } 149 if seen == nil { 150 seen = make(map[Type]bool) 151 } 152 seen[T] = true 153 154 switch t := under(T).(type) { 155 case *Basic: 156 // assume invalid types to be comparable 157 // to avoid follow-up errors 158 return t.kind != UntypedNil 159 case *Pointer, *Chan: 160 return true 161 case *Struct: 162 for _, f := range t.fields { 163 if !comparable(f.typ, dynamic, seen, nil) { 164 if reportf != nil { 165 reportf("struct containing %s cannot be compared", f.typ) 166 } 167 return false 168 } 169 } 170 return true 171 case *Array: 172 if !comparable(t.elem, dynamic, seen, nil) { 173 if reportf != nil { 174 reportf("%s cannot be compared", t) 175 } 176 return false 177 } 178 return true 179 case *Interface: 180 if dynamic && !isTypeParam(T) || t.typeSet().IsComparable(seen) { 181 return true 182 } 183 if reportf != nil { 184 if t.typeSet().IsEmpty() { 185 reportf("empty type set") 186 } else { 187 reportf("incomparable types in type set") 188 } 189 } 190 // fallthrough 191 } 192 return false 193 } 194 195 // hasNil reports whether type t includes the nil value. 196 func hasNil(t Type) bool { 197 switch u := under(t).(type) { 198 case *Basic: 199 return u.kind == UnsafePointer 200 case *Slice, *Pointer, *Signature, *Map, *Chan: 201 return true 202 case *Interface: 203 return !isTypeParam(t) || u.typeSet().underIs(func(u Type) bool { 204 return u != nil && hasNil(u) 205 }) 206 } 207 return false 208 } 209 210 // An ifacePair is a node in a stack of interface type pairs compared for identity. 211 type ifacePair struct { 212 x, y *Interface 213 prev *ifacePair 214 } 215 216 func (p *ifacePair) identical(q *ifacePair) bool { 217 return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x 218 } 219 220 // A comparer is used to compare types. 221 type comparer struct { 222 ignoreTags bool // if set, identical ignores struct tags 223 ignoreInvalids bool // if set, identical treats an invalid type as identical to any type 224 } 225 226 // For changes to this code the corresponding changes should be made to unifier.nify. 227 func (c *comparer) identical(x, y Type, p *ifacePair) bool { 228 x = Unalias(x) 229 y = Unalias(y) 230 231 if x == y { 232 return true 233 } 234 235 if c.ignoreInvalids && (!isValid(x) || !isValid(y)) { 236 return true 237 } 238 239 switch x := x.(type) { 240 case *Basic: 241 // Basic types are singletons except for the rune and byte 242 // aliases, thus we cannot solely rely on the x == y check 243 // above. See also comment in TypeName.IsAlias. 244 if y, ok := y.(*Basic); ok { 245 return x.kind == y.kind 246 } 247 248 case *Array: 249 // Two array types are identical if they have identical element types 250 // and the same array length. 251 if y, ok := y.(*Array); ok { 252 // If one or both array lengths are unknown (< 0) due to some error, 253 // assume they are the same to avoid spurious follow-on errors. 254 return (x.len < 0 || y.len < 0 || x.len == y.len) && c.identical(x.elem, y.elem, p) 255 } 256 257 case *Slice: 258 // Two slice types are identical if they have identical element types. 259 if y, ok := y.(*Slice); ok { 260 return c.identical(x.elem, y.elem, p) 261 } 262 263 case *Struct: 264 // Two struct types are identical if they have the same sequence of fields, 265 // and if corresponding fields have the same names, and identical types, 266 // and identical tags. Two embedded fields are considered to have the same 267 // name. Lower-case field names from different packages are always different. 268 if y, ok := y.(*Struct); ok { 269 if x.NumFields() == y.NumFields() { 270 for i, f := range x.fields { 271 g := y.fields[i] 272 if f.embedded != g.embedded || 273 !c.ignoreTags && x.Tag(i) != y.Tag(i) || 274 !f.sameId(g.pkg, g.name) || 275 !c.identical(f.typ, g.typ, p) { 276 return false 277 } 278 } 279 return true 280 } 281 } 282 283 case *Pointer: 284 // Two pointer types are identical if they have identical base types. 285 if y, ok := y.(*Pointer); ok { 286 return c.identical(x.base, y.base, p) 287 } 288 289 case *Tuple: 290 // Two tuples types are identical if they have the same number of elements 291 // and corresponding elements have identical types. 292 if y, ok := y.(*Tuple); ok { 293 if x.Len() == y.Len() { 294 if x != nil { 295 for i, v := range x.vars { 296 w := y.vars[i] 297 if !c.identical(v.typ, w.typ, p) { 298 return false 299 } 300 } 301 } 302 return true 303 } 304 } 305 306 case *Signature: 307 y, _ := y.(*Signature) 308 if y == nil { 309 return false 310 } 311 312 // Two function types are identical if they have the same number of 313 // parameters and result values, corresponding parameter and result types 314 // are identical, and either both functions are variadic or neither is. 315 // Parameter and result names are not required to match, and type 316 // parameters are considered identical modulo renaming. 317 318 if x.TypeParams().Len() != y.TypeParams().Len() { 319 return false 320 } 321 322 // In the case of generic signatures, we will substitute in yparams and 323 // yresults. 324 yparams := y.params 325 yresults := y.results 326 327 if x.TypeParams().Len() > 0 { 328 // We must ignore type parameter names when comparing x and y. The 329 // easiest way to do this is to substitute x's type parameters for y's. 330 xtparams := x.TypeParams().list() 331 ytparams := y.TypeParams().list() 332 333 var targs []Type 334 for i := range xtparams { 335 targs = append(targs, x.TypeParams().At(i)) 336 } 337 smap := makeSubstMap(ytparams, targs) 338 339 var check *Checker // ok to call subst on a nil *Checker 340 ctxt := NewContext() // need a non-nil Context for the substitution below 341 342 // Constraints must be pair-wise identical, after substitution. 343 for i, xtparam := range xtparams { 344 ybound := check.subst(nopos, ytparams[i].bound, smap, nil, ctxt) 345 if !c.identical(xtparam.bound, ybound, p) { 346 return false 347 } 348 } 349 350 yparams = check.subst(nopos, y.params, smap, nil, ctxt).(*Tuple) 351 yresults = check.subst(nopos, y.results, smap, nil, ctxt).(*Tuple) 352 } 353 354 return x.variadic == y.variadic && 355 c.identical(x.params, yparams, p) && 356 c.identical(x.results, yresults, p) 357 358 case *Union: 359 if y, _ := y.(*Union); y != nil { 360 // TODO(rfindley): can this be reached during type checking? If so, 361 // consider passing a type set map. 362 unionSets := make(map[*Union]*_TypeSet) 363 xset := computeUnionTypeSet(nil, unionSets, nopos, x) 364 yset := computeUnionTypeSet(nil, unionSets, nopos, y) 365 return xset.terms.equal(yset.terms) 366 } 367 368 case *Interface: 369 // Two interface types are identical if they describe the same type sets. 370 // With the existing implementation restriction, this simplifies to: 371 // 372 // Two interface types are identical if they have the same set of methods with 373 // the same names and identical function types, and if any type restrictions 374 // are the same. Lower-case method names from different packages are always 375 // different. The order of the methods is irrelevant. 376 if y, ok := y.(*Interface); ok { 377 xset := x.typeSet() 378 yset := y.typeSet() 379 if xset.comparable != yset.comparable { 380 return false 381 } 382 if !xset.terms.equal(yset.terms) { 383 return false 384 } 385 a := xset.methods 386 b := yset.methods 387 if len(a) == len(b) { 388 // Interface types are the only types where cycles can occur 389 // that are not "terminated" via named types; and such cycles 390 // can only be created via method parameter types that are 391 // anonymous interfaces (directly or indirectly) embedding 392 // the current interface. Example: 393 // 394 // type T interface { 395 // m() interface{T} 396 // } 397 // 398 // If two such (differently named) interfaces are compared, 399 // endless recursion occurs if the cycle is not detected. 400 // 401 // If x and y were compared before, they must be equal 402 // (if they were not, the recursion would have stopped); 403 // search the ifacePair stack for the same pair. 404 // 405 // This is a quadratic algorithm, but in practice these stacks 406 // are extremely short (bounded by the nesting depth of interface 407 // type declarations that recur via parameter types, an extremely 408 // rare occurrence). An alternative implementation might use a 409 // "visited" map, but that is probably less efficient overall. 410 q := &ifacePair{x, y, p} 411 for p != nil { 412 if p.identical(q) { 413 return true // same pair was compared before 414 } 415 p = p.prev 416 } 417 if debug { 418 assertSortedMethods(a) 419 assertSortedMethods(b) 420 } 421 for i, f := range a { 422 g := b[i] 423 if f.Id() != g.Id() || !c.identical(f.typ, g.typ, q) { 424 return false 425 } 426 } 427 return true 428 } 429 } 430 431 case *Map: 432 // Two map types are identical if they have identical key and value types. 433 if y, ok := y.(*Map); ok { 434 return c.identical(x.key, y.key, p) && c.identical(x.elem, y.elem, p) 435 } 436 437 case *Chan: 438 // Two channel types are identical if they have identical value types 439 // and the same direction. 440 if y, ok := y.(*Chan); ok { 441 return x.dir == y.dir && c.identical(x.elem, y.elem, p) 442 } 443 444 case *Named: 445 // Two named types are identical if their type names originate 446 // in the same type declaration; if they are instantiated they 447 // must have identical type argument lists. 448 if y := asNamed(y); y != nil { 449 // check type arguments before origins to match unifier 450 // (for correct source code we need to do all checks so 451 // order doesn't matter) 452 xargs := x.TypeArgs().list() 453 yargs := y.TypeArgs().list() 454 if len(xargs) != len(yargs) { 455 return false 456 } 457 for i, xarg := range xargs { 458 if !Identical(xarg, yargs[i]) { 459 return false 460 } 461 } 462 return identicalOrigin(x, y) 463 } 464 465 case *TypeParam: 466 // nothing to do (x and y being equal is caught in the very beginning of this function) 467 468 case nil: 469 // avoid a crash in case of nil type 470 471 default: 472 unreachable() 473 } 474 475 return false 476 } 477 478 // identicalOrigin reports whether x and y originated in the same declaration. 479 func identicalOrigin(x, y *Named) bool { 480 // TODO(gri) is this correct? 481 return x.Origin().obj == y.Origin().obj 482 } 483 484 // identicalInstance reports if two type instantiations are identical. 485 // Instantiations are identical if their origin and type arguments are 486 // identical. 487 func identicalInstance(xorig Type, xargs []Type, yorig Type, yargs []Type) bool { 488 if len(xargs) != len(yargs) { 489 return false 490 } 491 492 for i, xa := range xargs { 493 if !Identical(xa, yargs[i]) { 494 return false 495 } 496 } 497 498 return Identical(xorig, yorig) 499 } 500 501 // Default returns the default "typed" type for an "untyped" type; 502 // it returns the incoming type for all other types. The default type 503 // for untyped nil is untyped nil. 504 func Default(t Type) Type { 505 if t, ok := Unalias(t).(*Basic); ok { 506 switch t.kind { 507 case UntypedBool: 508 return Typ[Bool] 509 case UntypedInt: 510 return Typ[Int] 511 case UntypedRune: 512 return universeRune // use 'rune' name 513 case UntypedFloat: 514 return Typ[Float64] 515 case UntypedComplex: 516 return Typ[Complex128] 517 case UntypedString: 518 return Typ[String] 519 } 520 } 521 return t 522 } 523 524 // maxType returns the "largest" type that encompasses both x and y. 525 // If x and y are different untyped numeric types, the result is the type of x or y 526 // that appears later in this list: integer, rune, floating-point, complex. 527 // Otherwise, if x != y, the result is nil. 528 func maxType(x, y Type) Type { 529 // We only care about untyped types (for now), so == is good enough. 530 // TODO(gri) investigate generalizing this function to simplify code elsewhere 531 if x == y { 532 return x 533 } 534 if isUntyped(x) && isUntyped(y) && isNumeric(x) && isNumeric(y) { 535 // untyped types are basic types 536 if x.(*Basic).kind > y.(*Basic).kind { 537 return x 538 } 539 return y 540 } 541 return nil 542 } 543 544 // clone makes a "flat copy" of *p and returns a pointer to the copy. 545 func clone[P *T, T any](p P) P { 546 c := *p 547 return &c 548 }