github.com/bloxroute-labs/bor@v0.1.4/accounts/abi/type.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "errors" 21 "fmt" 22 "reflect" 23 "regexp" 24 "strconv" 25 "strings" 26 ) 27 28 // Type enumerator 29 const ( 30 IntTy byte = iota 31 UintTy 32 BoolTy 33 StringTy 34 SliceTy 35 ArrayTy 36 TupleTy 37 AddressTy 38 FixedBytesTy 39 BytesTy 40 HashTy 41 FixedPointTy 42 FunctionTy 43 ) 44 45 // Type is the reflection of the supported argument type 46 type Type struct { 47 Elem *Type 48 Kind reflect.Kind 49 Type reflect.Type 50 Size int 51 T byte // Our own type checking 52 53 stringKind string // holds the unparsed string for deriving signatures 54 55 // Tuple relative fields 56 TupleElems []*Type // Type information of all tuple fields 57 TupleRawNames []string // Raw field name of all tuple fields 58 } 59 60 var ( 61 // typeRegex parses the abi sub types 62 typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?") 63 ) 64 65 // NewType creates a new reflection type of abi type given in t. 66 func NewType(t string, components []ArgumentMarshaling) (typ Type, err error) { 67 // check that array brackets are equal if they exist 68 if strings.Count(t, "[") != strings.Count(t, "]") { 69 return Type{}, fmt.Errorf("invalid arg type in abi") 70 } 71 typ.stringKind = t 72 73 // if there are brackets, get ready to go into slice/array mode and 74 // recursively create the type 75 if strings.Count(t, "[") != 0 { 76 i := strings.LastIndex(t, "[") 77 // recursively embed the type 78 embeddedType, err := NewType(t[:i], components) 79 if err != nil { 80 return Type{}, err 81 } 82 // grab the last cell and create a type from there 83 sliced := t[i:] 84 // grab the slice size with regexp 85 re := regexp.MustCompile("[0-9]+") 86 intz := re.FindAllString(sliced, -1) 87 88 if len(intz) == 0 { 89 // is a slice 90 typ.T = SliceTy 91 typ.Kind = reflect.Slice 92 typ.Elem = &embeddedType 93 typ.Type = reflect.SliceOf(embeddedType.Type) 94 typ.stringKind = embeddedType.stringKind + sliced 95 } else if len(intz) == 1 { 96 // is a array 97 typ.T = ArrayTy 98 typ.Kind = reflect.Array 99 typ.Elem = &embeddedType 100 typ.Size, err = strconv.Atoi(intz[0]) 101 if err != nil { 102 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 103 } 104 typ.Type = reflect.ArrayOf(typ.Size, embeddedType.Type) 105 typ.stringKind = embeddedType.stringKind + sliced 106 } else { 107 return Type{}, fmt.Errorf("invalid formatting of array type") 108 } 109 return typ, err 110 } 111 // parse the type and size of the abi-type. 112 matches := typeRegex.FindAllStringSubmatch(t, -1) 113 if len(matches) == 0 { 114 return Type{}, fmt.Errorf("invalid type '%v'", t) 115 } 116 parsedType := matches[0] 117 118 // varSize is the size of the variable 119 var varSize int 120 if len(parsedType[3]) > 0 { 121 var err error 122 varSize, err = strconv.Atoi(parsedType[2]) 123 if err != nil { 124 return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err) 125 } 126 } else { 127 if parsedType[0] == "uint" || parsedType[0] == "int" { 128 // this should fail because it means that there's something wrong with 129 // the abi type (the compiler should always format it to the size...always) 130 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 131 } 132 } 133 // varType is the parsed abi type 134 switch varType := parsedType[1]; varType { 135 case "int": 136 typ.Kind, typ.Type = reflectIntKindAndType(false, varSize) 137 typ.Size = varSize 138 typ.T = IntTy 139 case "uint": 140 typ.Kind, typ.Type = reflectIntKindAndType(true, varSize) 141 typ.Size = varSize 142 typ.T = UintTy 143 case "bool": 144 typ.Kind = reflect.Bool 145 typ.T = BoolTy 146 typ.Type = reflect.TypeOf(bool(false)) 147 case "address": 148 typ.Kind = reflect.Array 149 typ.Type = addressT 150 typ.Size = 20 151 typ.T = AddressTy 152 case "string": 153 typ.Kind = reflect.String 154 typ.Type = reflect.TypeOf("") 155 typ.T = StringTy 156 case "bytes": 157 if varSize == 0 { 158 typ.T = BytesTy 159 typ.Kind = reflect.Slice 160 typ.Type = reflect.SliceOf(reflect.TypeOf(byte(0))) 161 } else { 162 typ.T = FixedBytesTy 163 typ.Kind = reflect.Array 164 typ.Size = varSize 165 typ.Type = reflect.ArrayOf(varSize, reflect.TypeOf(byte(0))) 166 } 167 case "tuple": 168 var ( 169 fields []reflect.StructField 170 elems []*Type 171 names []string 172 expression string // canonical parameter expression 173 ) 174 expression += "(" 175 for idx, c := range components { 176 cType, err := NewType(c.Type, c.Components) 177 if err != nil { 178 return Type{}, err 179 } 180 if ToCamelCase(c.Name) == "" { 181 return Type{}, errors.New("abi: purely anonymous or underscored field is not supported") 182 } 183 fields = append(fields, reflect.StructField{ 184 Name: ToCamelCase(c.Name), // reflect.StructOf will panic for any exported field. 185 Type: cType.Type, 186 Tag: reflect.StructTag("json:\"" + c.Name + "\""), 187 }) 188 elems = append(elems, &cType) 189 names = append(names, c.Name) 190 expression += cType.stringKind 191 if idx != len(components)-1 { 192 expression += "," 193 } 194 } 195 expression += ")" 196 typ.Kind = reflect.Struct 197 typ.Type = reflect.StructOf(fields) 198 typ.TupleElems = elems 199 typ.TupleRawNames = names 200 typ.T = TupleTy 201 typ.stringKind = expression 202 case "function": 203 typ.Kind = reflect.Array 204 typ.T = FunctionTy 205 typ.Size = 24 206 typ.Type = reflect.ArrayOf(24, reflect.TypeOf(byte(0))) 207 default: 208 return Type{}, fmt.Errorf("unsupported arg type: %s", t) 209 } 210 211 return 212 } 213 214 // String implements Stringer 215 func (t Type) String() (out string) { 216 return t.stringKind 217 } 218 219 func (t Type) pack(v reflect.Value) ([]byte, error) { 220 // dereference pointer first if it's a pointer 221 v = indirect(v) 222 if err := typeCheck(t, v); err != nil { 223 return nil, err 224 } 225 226 switch t.T { 227 case SliceTy, ArrayTy: 228 var ret []byte 229 230 if t.requiresLengthPrefix() { 231 // append length 232 ret = append(ret, packNum(reflect.ValueOf(v.Len()))...) 233 } 234 235 // calculate offset if any 236 offset := 0 237 offsetReq := isDynamicType(*t.Elem) 238 if offsetReq { 239 offset = getTypeSize(*t.Elem) * v.Len() 240 } 241 var tail []byte 242 for i := 0; i < v.Len(); i++ { 243 val, err := t.Elem.pack(v.Index(i)) 244 if err != nil { 245 return nil, err 246 } 247 if !offsetReq { 248 ret = append(ret, val...) 249 continue 250 } 251 ret = append(ret, packNum(reflect.ValueOf(offset))...) 252 offset += len(val) 253 tail = append(tail, val...) 254 } 255 return append(ret, tail...), nil 256 case TupleTy: 257 // (T1,...,Tk) for k >= 0 and any types T1, …, Tk 258 // enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k)) 259 // where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static 260 // type as 261 // head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string) 262 // and as 263 // head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1)))) 264 // tail(X(i)) = enc(X(i)) 265 // otherwise, i.e. if Ti is a dynamic type. 266 fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v) 267 if err != nil { 268 return nil, err 269 } 270 // Calculate prefix occupied size. 271 offset := 0 272 for _, elem := range t.TupleElems { 273 offset += getTypeSize(*elem) 274 } 275 var ret, tail []byte 276 for i, elem := range t.TupleElems { 277 field := v.FieldByName(fieldmap[t.TupleRawNames[i]]) 278 if !field.IsValid() { 279 return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i]) 280 } 281 val, err := elem.pack(field) 282 if err != nil { 283 return nil, err 284 } 285 if isDynamicType(*elem) { 286 ret = append(ret, packNum(reflect.ValueOf(offset))...) 287 tail = append(tail, val...) 288 offset += len(val) 289 } else { 290 ret = append(ret, val...) 291 } 292 } 293 return append(ret, tail...), nil 294 295 default: 296 return packElement(t, v), nil 297 } 298 } 299 300 // requireLengthPrefix returns whether the type requires any sort of length 301 // prefixing. 302 func (t Type) requiresLengthPrefix() bool { 303 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy 304 } 305 306 // isDynamicType returns true if the type is dynamic. 307 // The following types are called “dynamic”: 308 // * bytes 309 // * string 310 // * T[] for any T 311 // * T[k] for any dynamic T and any k >= 0 312 // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k 313 func isDynamicType(t Type) bool { 314 if t.T == TupleTy { 315 for _, elem := range t.TupleElems { 316 if isDynamicType(*elem) { 317 return true 318 } 319 } 320 return false 321 } 322 return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem)) 323 } 324 325 // getTypeSize returns the size that this type needs to occupy. 326 // We distinguish static and dynamic types. Static types are encoded in-place 327 // and dynamic types are encoded at a separately allocated location after the 328 // current block. 329 // So for a static variable, the size returned represents the size that the 330 // variable actually occupies. 331 // For a dynamic variable, the returned size is fixed 32 bytes, which is used 332 // to store the location reference for actual value storage. 333 func getTypeSize(t Type) int { 334 if t.T == ArrayTy && !isDynamicType(*t.Elem) { 335 // Recursively calculate type size if it is a nested array 336 if t.Elem.T == ArrayTy { 337 return t.Size * getTypeSize(*t.Elem) 338 } 339 return t.Size * 32 340 } else if t.T == TupleTy && !isDynamicType(t) { 341 total := 0 342 for _, elem := range t.TupleElems { 343 total += getTypeSize(*elem) 344 } 345 return total 346 } 347 return 32 348 }