github.com/bloxroute-labs/bor@v0.1.4/crypto/bn256/google/curve.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package bn256
     6  
     7  import (
     8  	"math/big"
     9  )
    10  
    11  // curvePoint implements the elliptic curve y²=x³+3. Points are kept in
    12  // Jacobian form and t=z² when valid. G₁ is the set of points of this curve on
    13  // GF(p).
    14  type curvePoint struct {
    15  	x, y, z, t *big.Int
    16  }
    17  
    18  var curveB = new(big.Int).SetInt64(3)
    19  
    20  // curveGen is the generator of G₁.
    21  var curveGen = &curvePoint{
    22  	new(big.Int).SetInt64(1),
    23  	new(big.Int).SetInt64(2),
    24  	new(big.Int).SetInt64(1),
    25  	new(big.Int).SetInt64(1),
    26  }
    27  
    28  func newCurvePoint(pool *bnPool) *curvePoint {
    29  	return &curvePoint{
    30  		pool.Get(),
    31  		pool.Get(),
    32  		pool.Get(),
    33  		pool.Get(),
    34  	}
    35  }
    36  
    37  func (c *curvePoint) String() string {
    38  	c.MakeAffine(new(bnPool))
    39  	return "(" + c.x.String() + ", " + c.y.String() + ")"
    40  }
    41  
    42  func (c *curvePoint) Put(pool *bnPool) {
    43  	pool.Put(c.x)
    44  	pool.Put(c.y)
    45  	pool.Put(c.z)
    46  	pool.Put(c.t)
    47  }
    48  
    49  func (c *curvePoint) Set(a *curvePoint) {
    50  	c.x.Set(a.x)
    51  	c.y.Set(a.y)
    52  	c.z.Set(a.z)
    53  	c.t.Set(a.t)
    54  }
    55  
    56  // IsOnCurve returns true iff c is on the curve where c must be in affine form.
    57  func (c *curvePoint) IsOnCurve() bool {
    58  	yy := new(big.Int).Mul(c.y, c.y)
    59  	xxx := new(big.Int).Mul(c.x, c.x)
    60  	xxx.Mul(xxx, c.x)
    61  	yy.Sub(yy, xxx)
    62  	yy.Sub(yy, curveB)
    63  	if yy.Sign() < 0 || yy.Cmp(P) >= 0 {
    64  		yy.Mod(yy, P)
    65  	}
    66  	return yy.Sign() == 0
    67  }
    68  
    69  func (c *curvePoint) SetInfinity() {
    70  	c.z.SetInt64(0)
    71  }
    72  
    73  func (c *curvePoint) IsInfinity() bool {
    74  	return c.z.Sign() == 0
    75  }
    76  
    77  func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) {
    78  	if a.IsInfinity() {
    79  		c.Set(b)
    80  		return
    81  	}
    82  	if b.IsInfinity() {
    83  		c.Set(a)
    84  		return
    85  	}
    86  
    87  	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
    88  
    89  	// Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2]
    90  	// by [u1:s1:z1·z2] and [u2:s2:z1·z2]
    91  	// where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³
    92  	z1z1 := pool.Get().Mul(a.z, a.z)
    93  	z1z1.Mod(z1z1, P)
    94  	z2z2 := pool.Get().Mul(b.z, b.z)
    95  	z2z2.Mod(z2z2, P)
    96  	u1 := pool.Get().Mul(a.x, z2z2)
    97  	u1.Mod(u1, P)
    98  	u2 := pool.Get().Mul(b.x, z1z1)
    99  	u2.Mod(u2, P)
   100  
   101  	t := pool.Get().Mul(b.z, z2z2)
   102  	t.Mod(t, P)
   103  	s1 := pool.Get().Mul(a.y, t)
   104  	s1.Mod(s1, P)
   105  
   106  	t.Mul(a.z, z1z1)
   107  	t.Mod(t, P)
   108  	s2 := pool.Get().Mul(b.y, t)
   109  	s2.Mod(s2, P)
   110  
   111  	// Compute x = (2h)²(s²-u1-u2)
   112  	// where s = (s2-s1)/(u2-u1) is the slope of the line through
   113  	// (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below.
   114  	// This is also:
   115  	// 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1)
   116  	//                        = r² - j - 2v
   117  	// with the notations below.
   118  	h := pool.Get().Sub(u2, u1)
   119  	xEqual := h.Sign() == 0
   120  
   121  	t.Add(h, h)
   122  	// i = 4h²
   123  	i := pool.Get().Mul(t, t)
   124  	i.Mod(i, P)
   125  	// j = 4h³
   126  	j := pool.Get().Mul(h, i)
   127  	j.Mod(j, P)
   128  
   129  	t.Sub(s2, s1)
   130  	yEqual := t.Sign() == 0
   131  	if xEqual && yEqual {
   132  		c.Double(a, pool)
   133  		return
   134  	}
   135  	r := pool.Get().Add(t, t)
   136  
   137  	v := pool.Get().Mul(u1, i)
   138  	v.Mod(v, P)
   139  
   140  	// t4 = 4(s2-s1)²
   141  	t4 := pool.Get().Mul(r, r)
   142  	t4.Mod(t4, P)
   143  	t.Add(v, v)
   144  	t6 := pool.Get().Sub(t4, j)
   145  	c.x.Sub(t6, t)
   146  
   147  	// Set y = -(2h)³(s1 + s*(x/4h²-u1))
   148  	// This is also
   149  	// y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j
   150  	t.Sub(v, c.x) // t7
   151  	t4.Mul(s1, j) // t8
   152  	t4.Mod(t4, P)
   153  	t6.Add(t4, t4) // t9
   154  	t4.Mul(r, t)   // t10
   155  	t4.Mod(t4, P)
   156  	c.y.Sub(t4, t6)
   157  
   158  	// Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2
   159  	t.Add(a.z, b.z) // t11
   160  	t4.Mul(t, t)    // t12
   161  	t4.Mod(t4, P)
   162  	t.Sub(t4, z1z1) // t13
   163  	t4.Sub(t, z2z2) // t14
   164  	c.z.Mul(t4, h)
   165  	c.z.Mod(c.z, P)
   166  
   167  	pool.Put(z1z1)
   168  	pool.Put(z2z2)
   169  	pool.Put(u1)
   170  	pool.Put(u2)
   171  	pool.Put(t)
   172  	pool.Put(s1)
   173  	pool.Put(s2)
   174  	pool.Put(h)
   175  	pool.Put(i)
   176  	pool.Put(j)
   177  	pool.Put(r)
   178  	pool.Put(v)
   179  	pool.Put(t4)
   180  	pool.Put(t6)
   181  }
   182  
   183  func (c *curvePoint) Double(a *curvePoint, pool *bnPool) {
   184  	// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
   185  	A := pool.Get().Mul(a.x, a.x)
   186  	A.Mod(A, P)
   187  	B := pool.Get().Mul(a.y, a.y)
   188  	B.Mod(B, P)
   189  	C_ := pool.Get().Mul(B, B)
   190  	C_.Mod(C_, P)
   191  
   192  	t := pool.Get().Add(a.x, B)
   193  	t2 := pool.Get().Mul(t, t)
   194  	t2.Mod(t2, P)
   195  	t.Sub(t2, A)
   196  	t2.Sub(t, C_)
   197  	d := pool.Get().Add(t2, t2)
   198  	t.Add(A, A)
   199  	e := pool.Get().Add(t, A)
   200  	f := pool.Get().Mul(e, e)
   201  	f.Mod(f, P)
   202  
   203  	t.Add(d, d)
   204  	c.x.Sub(f, t)
   205  
   206  	t.Add(C_, C_)
   207  	t2.Add(t, t)
   208  	t.Add(t2, t2)
   209  	c.y.Sub(d, c.x)
   210  	t2.Mul(e, c.y)
   211  	t2.Mod(t2, P)
   212  	c.y.Sub(t2, t)
   213  
   214  	t.Mul(a.y, a.z)
   215  	t.Mod(t, P)
   216  	c.z.Add(t, t)
   217  
   218  	pool.Put(A)
   219  	pool.Put(B)
   220  	pool.Put(C_)
   221  	pool.Put(t)
   222  	pool.Put(t2)
   223  	pool.Put(d)
   224  	pool.Put(e)
   225  	pool.Put(f)
   226  }
   227  
   228  func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint {
   229  	sum := newCurvePoint(pool)
   230  	sum.SetInfinity()
   231  	t := newCurvePoint(pool)
   232  
   233  	for i := scalar.BitLen(); i >= 0; i-- {
   234  		t.Double(sum, pool)
   235  		if scalar.Bit(i) != 0 {
   236  			sum.Add(t, a, pool)
   237  		} else {
   238  			sum.Set(t)
   239  		}
   240  	}
   241  
   242  	c.Set(sum)
   243  	sum.Put(pool)
   244  	t.Put(pool)
   245  	return c
   246  }
   247  
   248  // MakeAffine converts c to affine form and returns c. If c is ∞, then it sets
   249  // c to 0 : 1 : 0.
   250  func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint {
   251  	if words := c.z.Bits(); len(words) == 1 && words[0] == 1 {
   252  		return c
   253  	}
   254  	if c.IsInfinity() {
   255  		c.x.SetInt64(0)
   256  		c.y.SetInt64(1)
   257  		c.z.SetInt64(0)
   258  		c.t.SetInt64(0)
   259  		return c
   260  	}
   261  	zInv := pool.Get().ModInverse(c.z, P)
   262  	t := pool.Get().Mul(c.y, zInv)
   263  	t.Mod(t, P)
   264  	zInv2 := pool.Get().Mul(zInv, zInv)
   265  	zInv2.Mod(zInv2, P)
   266  	c.y.Mul(t, zInv2)
   267  	c.y.Mod(c.y, P)
   268  	t.Mul(c.x, zInv2)
   269  	t.Mod(t, P)
   270  	c.x.Set(t)
   271  	c.z.SetInt64(1)
   272  	c.t.SetInt64(1)
   273  
   274  	pool.Put(zInv)
   275  	pool.Put(t)
   276  	pool.Put(zInv2)
   277  
   278  	return c
   279  }
   280  
   281  func (c *curvePoint) Negative(a *curvePoint) {
   282  	c.x.Set(a.x)
   283  	c.y.Neg(a.y)
   284  	c.z.Set(a.z)
   285  	c.t.SetInt64(0)
   286  }