github.com/bloxroute-labs/bor@v0.1.4/signer/core/signed_data.go (about)

     1  // Copyright 2018 The go-ethereum Authors
     2  // This file is part of go-ethereum.
     3  //
     4  // go-ethereum is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // go-ethereum is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU General Public License
    15  // along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
    16  //
    17  package core
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"fmt"
    24  	"math/big"
    25  	"mime"
    26  	"reflect"
    27  	"regexp"
    28  	"sort"
    29  	"strconv"
    30  	"strings"
    31  	"unicode"
    32  
    33  	"github.com/maticnetwork/bor/accounts"
    34  	"github.com/maticnetwork/bor/accounts/abi"
    35  	"github.com/maticnetwork/bor/common"
    36  	"github.com/maticnetwork/bor/common/hexutil"
    37  	"github.com/maticnetwork/bor/common/math"
    38  	"github.com/maticnetwork/bor/consensus/bor"
    39  	"github.com/maticnetwork/bor/consensus/clique"
    40  	"github.com/maticnetwork/bor/core/types"
    41  	"github.com/maticnetwork/bor/crypto"
    42  	"github.com/maticnetwork/bor/rlp"
    43  )
    44  
    45  type SigFormat struct {
    46  	Mime        string
    47  	ByteVersion byte
    48  }
    49  
    50  var (
    51  	IntendedValidator = SigFormat{
    52  		accounts.MimetypeDataWithValidator,
    53  		0x00,
    54  	}
    55  	DataTyped = SigFormat{
    56  		accounts.MimetypeTypedData,
    57  		0x01,
    58  	}
    59  	ApplicationClique = SigFormat{
    60  		accounts.MimetypeClique,
    61  		0x02,
    62  	}
    63  	ApplicationBor = SigFormat{
    64  		accounts.MimetypeBor,
    65  		0x10,
    66  	}
    67  	TextPlain = SigFormat{
    68  		accounts.MimetypeTextPlain,
    69  		0x45,
    70  	}
    71  )
    72  
    73  type ValidatorData struct {
    74  	Address common.Address
    75  	Message hexutil.Bytes
    76  }
    77  
    78  type TypedData struct {
    79  	Types       Types            `json:"types"`
    80  	PrimaryType string           `json:"primaryType"`
    81  	Domain      TypedDataDomain  `json:"domain"`
    82  	Message     TypedDataMessage `json:"message"`
    83  }
    84  
    85  type Type struct {
    86  	Name string `json:"name"`
    87  	Type string `json:"type"`
    88  }
    89  
    90  func (t *Type) isArray() bool {
    91  	return strings.HasSuffix(t.Type, "[]")
    92  }
    93  
    94  // typeName returns the canonical name of the type. If the type is 'Person[]', then
    95  // this method returns 'Person'
    96  func (t *Type) typeName() string {
    97  	if strings.HasSuffix(t.Type, "[]") {
    98  		return strings.TrimSuffix(t.Type, "[]")
    99  	}
   100  	return t.Type
   101  }
   102  
   103  func (t *Type) isReferenceType() bool {
   104  	if len(t.Type) == 0 {
   105  		return false
   106  	}
   107  	// Reference types must have a leading uppercase characer
   108  	return unicode.IsUpper([]rune(t.Type)[0])
   109  }
   110  
   111  type Types map[string][]Type
   112  
   113  type TypePriority struct {
   114  	Type  string
   115  	Value uint
   116  }
   117  
   118  type TypedDataMessage = map[string]interface{}
   119  
   120  type TypedDataDomain struct {
   121  	Name              string                `json:"name"`
   122  	Version           string                `json:"version"`
   123  	ChainId           *math.HexOrDecimal256 `json:"chainId"`
   124  	VerifyingContract string                `json:"verifyingContract"`
   125  	Salt              string                `json:"salt"`
   126  }
   127  
   128  var typedDataReferenceTypeRegexp = regexp.MustCompile(`^[A-Z](\w*)(\[\])?$`)
   129  
   130  // sign receives a request and produces a signature
   131  //
   132  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   133  // where the V value will be 27 or 28 for legacy reasons, if legacyV==true.
   134  func (api *SignerAPI) sign(addr common.MixedcaseAddress, req *SignDataRequest, legacyV bool) (hexutil.Bytes, error) {
   135  	// We make the request prior to looking up if we actually have the account, to prevent
   136  	// account-enumeration via the API
   137  	res, err := api.UI.ApproveSignData(req)
   138  	if err != nil {
   139  		return nil, err
   140  	}
   141  	if !res.Approved {
   142  		return nil, ErrRequestDenied
   143  	}
   144  	// Look up the wallet containing the requested signer
   145  	account := accounts.Account{Address: addr.Address()}
   146  	wallet, err := api.am.Find(account)
   147  	if err != nil {
   148  		return nil, err
   149  	}
   150  	pw, err := api.lookupOrQueryPassword(account.Address,
   151  		"Password for signing",
   152  		fmt.Sprintf("Please enter password for signing data with account %s", account.Address.Hex()))
   153  	if err != nil {
   154  		return nil, err
   155  	}
   156  	// Sign the data with the wallet
   157  	signature, err := wallet.SignDataWithPassphrase(account, pw, req.ContentType, req.Rawdata)
   158  	if err != nil {
   159  		return nil, err
   160  	}
   161  	if legacyV {
   162  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   163  	}
   164  	return signature, nil
   165  }
   166  
   167  // SignData signs the hash of the provided data, but does so differently
   168  // depending on the content-type specified.
   169  //
   170  // Different types of validation occur.
   171  func (api *SignerAPI) SignData(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (hexutil.Bytes, error) {
   172  	var req, transformV, err = api.determineSignatureFormat(ctx, contentType, addr, data)
   173  	if err != nil {
   174  		return nil, err
   175  	}
   176  	signature, err := api.sign(addr, req, transformV)
   177  	if err != nil {
   178  		api.UI.ShowError(err.Error())
   179  		return nil, err
   180  	}
   181  	return signature, nil
   182  }
   183  
   184  // determineSignatureFormat determines which signature method should be used based upon the mime type
   185  // In the cases where it matters ensure that the charset is handled. The charset
   186  // resides in the 'params' returned as the second returnvalue from mime.ParseMediaType
   187  // charset, ok := params["charset"]
   188  // As it is now, we accept any charset and just treat it as 'raw'.
   189  // This method returns the mimetype for signing along with the request
   190  func (api *SignerAPI) determineSignatureFormat(ctx context.Context, contentType string, addr common.MixedcaseAddress, data interface{}) (*SignDataRequest, bool, error) {
   191  	var (
   192  		req          *SignDataRequest
   193  		useEthereumV = true // Default to use V = 27 or 28, the legacy Ethereum format
   194  	)
   195  	mediaType, _, err := mime.ParseMediaType(contentType)
   196  	if err != nil {
   197  		return nil, useEthereumV, err
   198  	}
   199  
   200  	switch mediaType {
   201  	case IntendedValidator.Mime:
   202  		// Data with an intended validator
   203  		validatorData, err := UnmarshalValidatorData(data)
   204  		if err != nil {
   205  			return nil, useEthereumV, err
   206  		}
   207  		sighash, msg := SignTextValidator(validatorData)
   208  		messages := []*NameValueType{
   209  			{
   210  				Name:  "This is a request to sign data intended for a particular validator (see EIP 191 version 0)",
   211  				Typ:   "description",
   212  				Value: "",
   213  			},
   214  			{
   215  				Name:  "Intended validator address",
   216  				Typ:   "address",
   217  				Value: validatorData.Address.String(),
   218  			},
   219  			{
   220  				Name:  "Application-specific data",
   221  				Typ:   "hexdata",
   222  				Value: validatorData.Message,
   223  			},
   224  			{
   225  				Name:  "Full message for signing",
   226  				Typ:   "hexdata",
   227  				Value: fmt.Sprintf("0x%x", msg),
   228  			},
   229  		}
   230  		req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   231  	case ApplicationClique.Mime:
   232  		// Clique is the Ethereum PoA standard
   233  		stringData, ok := data.(string)
   234  		if !ok {
   235  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationClique.Mime)
   236  		}
   237  		cliqueData, err := hexutil.Decode(stringData)
   238  		if err != nil {
   239  			return nil, useEthereumV, err
   240  		}
   241  		header := &types.Header{}
   242  		if err := rlp.DecodeBytes(cliqueData, header); err != nil {
   243  			return nil, useEthereumV, err
   244  		}
   245  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   246  		if len(header.Extra) < 65 {
   247  			// Need to add it back, to get a suitable length for hashing
   248  			newExtra := make([]byte, len(header.Extra)+65)
   249  			copy(newExtra, header.Extra)
   250  			header.Extra = newExtra
   251  		}
   252  		// Get back the rlp data, encoded by us
   253  		sighash, cliqueRlp, err := cliqueHeaderHashAndRlp(header)
   254  		if err != nil {
   255  			return nil, useEthereumV, err
   256  		}
   257  		messages := []*NameValueType{
   258  			{
   259  				Name:  "Clique header",
   260  				Typ:   "clique",
   261  				Value: fmt.Sprintf("clique header %d [0x%x]", header.Number, header.Hash()),
   262  			},
   263  		}
   264  		// Clique uses V on the form 0 or 1
   265  		useEthereumV = false
   266  		req = &SignDataRequest{ContentType: mediaType, Rawdata: cliqueRlp, Messages: messages, Hash: sighash}
   267  	case ApplicationBor.Mime:
   268  		// Bor consensus
   269  		stringData, ok := data.(string)
   270  		if !ok {
   271  			return nil, useEthereumV, fmt.Errorf("input for %v must be an hex-encoded string", ApplicationBor.Mime)
   272  		}
   273  		borData, err := hexutil.Decode(stringData)
   274  		if err != nil {
   275  			return nil, useEthereumV, err
   276  		}
   277  		header := &types.Header{}
   278  		if err := rlp.DecodeBytes(borData, header); err != nil {
   279  			return nil, useEthereumV, err
   280  		}
   281  		// The incoming clique header is already truncated, sent to us with a extradata already shortened
   282  		if len(header.Extra) < 65 {
   283  			// Need to add it back, to get a suitable length for hashing
   284  			newExtra := make([]byte, len(header.Extra)+65)
   285  			copy(newExtra, header.Extra)
   286  			header.Extra = newExtra
   287  		}
   288  		// Get back the rlp data, encoded by us
   289  		sighash, borRlp, err := borHeaderHashAndRlp(header)
   290  		if err != nil {
   291  			return nil, useEthereumV, err
   292  		}
   293  		messages := []*NameValueType{
   294  			{
   295  				Name:  "Bor header",
   296  				Typ:   "bor",
   297  				Value: fmt.Sprintf("bor header %d [0x%x]", header.Number, header.Hash()),
   298  			},
   299  		}
   300  		// Bor uses V on the form 0 or 1
   301  		useEthereumV = false
   302  		req = &SignDataRequest{ContentType: mediaType, Rawdata: borRlp, Messages: messages, Hash: sighash}
   303  	default: // also case TextPlain.Mime:
   304  		// Calculates an Ethereum ECDSA signature for:
   305  		// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   306  		// We expect it to be a string
   307  		if stringData, ok := data.(string); !ok {
   308  			return nil, useEthereumV, fmt.Errorf("input for text/plain must be an hex-encoded string")
   309  		} else {
   310  			if textData, err := hexutil.Decode(stringData); err != nil {
   311  				return nil, useEthereumV, err
   312  			} else {
   313  				sighash, msg := accounts.TextAndHash(textData)
   314  				messages := []*NameValueType{
   315  					{
   316  						Name:  "message",
   317  						Typ:   accounts.MimetypeTextPlain,
   318  						Value: msg,
   319  					},
   320  				}
   321  				req = &SignDataRequest{ContentType: mediaType, Rawdata: []byte(msg), Messages: messages, Hash: sighash}
   322  			}
   323  		}
   324  	}
   325  	req.Address = addr
   326  	req.Meta = MetadataFromContext(ctx)
   327  	return req, useEthereumV, nil
   328  }
   329  
   330  // SignTextWithValidator signs the given message which can be further recovered
   331  // with the given validator.
   332  // hash = keccak256("\x19\x00"${address}${data}).
   333  func SignTextValidator(validatorData ValidatorData) (hexutil.Bytes, string) {
   334  	msg := fmt.Sprintf("\x19\x00%s%s", string(validatorData.Address.Bytes()), string(validatorData.Message))
   335  	return crypto.Keccak256([]byte(msg)), msg
   336  }
   337  
   338  // cliqueHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   339  // signing. It is the hash of the entire header apart from the 65 byte signature
   340  // contained at the end of the extra data.
   341  //
   342  // The method requires the extra data to be at least 65 bytes -- the original implementation
   343  // in clique.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   344  // and simply return an error instead
   345  func cliqueHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   346  	if len(header.Extra) < 65 {
   347  		err = fmt.Errorf("clique header extradata too short, %d < 65", len(header.Extra))
   348  		return
   349  	}
   350  	rlp = clique.CliqueRLP(header)
   351  	hash = clique.SealHash(header).Bytes()
   352  	return hash, rlp, err
   353  }
   354  
   355  // borHeaderHashAndRlp returns the hash which is used as input for the proof-of-authority
   356  // signing. It is the hash of the entire header apart from the 65 byte signature
   357  // contained at the end of the extra data.
   358  //
   359  // The method requires the extra data to be at least 65 bytes -- the original implementation
   360  // in bor.go panics if this is the case, thus it's been reimplemented here to avoid the panic
   361  // and simply return an error instead
   362  func borHeaderHashAndRlp(header *types.Header) (hash, rlp []byte, err error) {
   363  	if len(header.Extra) < 65 {
   364  		err = fmt.Errorf("bor header extradata too short, %d < 65", len(header.Extra))
   365  		return
   366  	}
   367  	rlp = bor.BorRLP(header)
   368  	hash = bor.SealHash(header).Bytes()
   369  	return hash, rlp, err
   370  }
   371  
   372  // SignTypedData signs EIP-712 conformant typed data
   373  // hash = keccak256("\x19${byteVersion}${domainSeparator}${hashStruct(message)}")
   374  func (api *SignerAPI) SignTypedData(ctx context.Context, addr common.MixedcaseAddress, typedData TypedData) (hexutil.Bytes, error) {
   375  	domainSeparator, err := typedData.HashStruct("EIP712Domain", typedData.Domain.Map())
   376  	if err != nil {
   377  		return nil, err
   378  	}
   379  	typedDataHash, err := typedData.HashStruct(typedData.PrimaryType, typedData.Message)
   380  	if err != nil {
   381  		return nil, err
   382  	}
   383  	rawData := []byte(fmt.Sprintf("\x19\x01%s%s", string(domainSeparator), string(typedDataHash)))
   384  	sighash := crypto.Keccak256(rawData)
   385  	messages, err := typedData.Format()
   386  	if err != nil {
   387  		return nil, err
   388  	}
   389  	req := &SignDataRequest{ContentType: DataTyped.Mime, Rawdata: rawData, Messages: messages, Hash: sighash}
   390  	signature, err := api.sign(addr, req, true)
   391  	if err != nil {
   392  		api.UI.ShowError(err.Error())
   393  		return nil, err
   394  	}
   395  	return signature, nil
   396  }
   397  
   398  // HashStruct generates a keccak256 hash of the encoding of the provided data
   399  func (typedData *TypedData) HashStruct(primaryType string, data TypedDataMessage) (hexutil.Bytes, error) {
   400  	encodedData, err := typedData.EncodeData(primaryType, data, 1)
   401  	if err != nil {
   402  		return nil, err
   403  	}
   404  	return crypto.Keccak256(encodedData), nil
   405  }
   406  
   407  // Dependencies returns an array of custom types ordered by their hierarchical reference tree
   408  func (typedData *TypedData) Dependencies(primaryType string, found []string) []string {
   409  	includes := func(arr []string, str string) bool {
   410  		for _, obj := range arr {
   411  			if obj == str {
   412  				return true
   413  			}
   414  		}
   415  		return false
   416  	}
   417  
   418  	if includes(found, primaryType) {
   419  		return found
   420  	}
   421  	if typedData.Types[primaryType] == nil {
   422  		return found
   423  	}
   424  	found = append(found, primaryType)
   425  	for _, field := range typedData.Types[primaryType] {
   426  		for _, dep := range typedData.Dependencies(field.Type, found) {
   427  			if !includes(found, dep) {
   428  				found = append(found, dep)
   429  			}
   430  		}
   431  	}
   432  	return found
   433  }
   434  
   435  // EncodeType generates the following encoding:
   436  // `name ‖ "(" ‖ member₁ ‖ "," ‖ member₂ ‖ "," ‖ … ‖ memberₙ ")"`
   437  //
   438  // each member is written as `type ‖ " " ‖ name` encodings cascade down and are sorted by name
   439  func (typedData *TypedData) EncodeType(primaryType string) hexutil.Bytes {
   440  	// Get dependencies primary first, then alphabetical
   441  	deps := typedData.Dependencies(primaryType, []string{})
   442  	if len(deps) > 0 {
   443  		slicedDeps := deps[1:]
   444  		sort.Strings(slicedDeps)
   445  		deps = append([]string{primaryType}, slicedDeps...)
   446  	}
   447  
   448  	// Format as a string with fields
   449  	var buffer bytes.Buffer
   450  	for _, dep := range deps {
   451  		buffer.WriteString(dep)
   452  		buffer.WriteString("(")
   453  		for _, obj := range typedData.Types[dep] {
   454  			buffer.WriteString(obj.Type)
   455  			buffer.WriteString(" ")
   456  			buffer.WriteString(obj.Name)
   457  			buffer.WriteString(",")
   458  		}
   459  		buffer.Truncate(buffer.Len() - 1)
   460  		buffer.WriteString(")")
   461  	}
   462  	return buffer.Bytes()
   463  }
   464  
   465  // TypeHash creates the keccak256 hash  of the data
   466  func (typedData *TypedData) TypeHash(primaryType string) hexutil.Bytes {
   467  	return crypto.Keccak256(typedData.EncodeType(primaryType))
   468  }
   469  
   470  // EncodeData generates the following encoding:
   471  // `enc(value₁) ‖ enc(value₂) ‖ … ‖ enc(valueₙ)`
   472  //
   473  // each encoded member is 32-byte long
   474  func (typedData *TypedData) EncodeData(primaryType string, data map[string]interface{}, depth int) (hexutil.Bytes, error) {
   475  	if err := typedData.validate(); err != nil {
   476  		return nil, err
   477  	}
   478  
   479  	buffer := bytes.Buffer{}
   480  
   481  	// Verify extra data
   482  	if len(typedData.Types[primaryType]) < len(data) {
   483  		return nil, errors.New("there is extra data provided in the message")
   484  	}
   485  
   486  	// Add typehash
   487  	buffer.Write(typedData.TypeHash(primaryType))
   488  
   489  	// Add field contents. Structs and arrays have special handlers.
   490  	for _, field := range typedData.Types[primaryType] {
   491  		encType := field.Type
   492  		encValue := data[field.Name]
   493  		if encType[len(encType)-1:] == "]" {
   494  			arrayValue, ok := encValue.([]interface{})
   495  			if !ok {
   496  				return nil, dataMismatchError(encType, encValue)
   497  			}
   498  
   499  			arrayBuffer := bytes.Buffer{}
   500  			parsedType := strings.Split(encType, "[")[0]
   501  			for _, item := range arrayValue {
   502  				if typedData.Types[parsedType] != nil {
   503  					mapValue, ok := item.(map[string]interface{})
   504  					if !ok {
   505  						return nil, dataMismatchError(parsedType, item)
   506  					}
   507  					encodedData, err := typedData.EncodeData(parsedType, mapValue, depth+1)
   508  					if err != nil {
   509  						return nil, err
   510  					}
   511  					arrayBuffer.Write(encodedData)
   512  				} else {
   513  					bytesValue, err := typedData.EncodePrimitiveValue(parsedType, item, depth)
   514  					if err != nil {
   515  						return nil, err
   516  					}
   517  					arrayBuffer.Write(bytesValue)
   518  				}
   519  			}
   520  
   521  			buffer.Write(crypto.Keccak256(arrayBuffer.Bytes()))
   522  		} else if typedData.Types[field.Type] != nil {
   523  			mapValue, ok := encValue.(map[string]interface{})
   524  			if !ok {
   525  				return nil, dataMismatchError(encType, encValue)
   526  			}
   527  			encodedData, err := typedData.EncodeData(field.Type, mapValue, depth+1)
   528  			if err != nil {
   529  				return nil, err
   530  			}
   531  			buffer.Write(crypto.Keccak256(encodedData))
   532  		} else {
   533  			byteValue, err := typedData.EncodePrimitiveValue(encType, encValue, depth)
   534  			if err != nil {
   535  				return nil, err
   536  			}
   537  			buffer.Write(byteValue)
   538  		}
   539  	}
   540  	return buffer.Bytes(), nil
   541  }
   542  
   543  func parseInteger(encType string, encValue interface{}) (*big.Int, error) {
   544  	var (
   545  		length = 0
   546  		signed = strings.HasPrefix(encType, "int")
   547  		b      *big.Int
   548  	)
   549  	if encType == "int" || encType == "uint" {
   550  		length = 256
   551  	} else {
   552  		lengthStr := ""
   553  		if strings.HasPrefix(encType, "uint") {
   554  			lengthStr = strings.TrimPrefix(encType, "uint")
   555  		} else {
   556  			lengthStr = strings.TrimPrefix(encType, "int")
   557  		}
   558  		atoiSize, err := strconv.Atoi(lengthStr)
   559  		if err != nil {
   560  			return nil, fmt.Errorf("invalid size on integer: %v", lengthStr)
   561  		}
   562  		length = atoiSize
   563  	}
   564  	switch v := encValue.(type) {
   565  	case *math.HexOrDecimal256:
   566  		b = (*big.Int)(v)
   567  	case string:
   568  		var hexIntValue math.HexOrDecimal256
   569  		if err := hexIntValue.UnmarshalText([]byte(v)); err != nil {
   570  			return nil, err
   571  		}
   572  		b = (*big.Int)(&hexIntValue)
   573  	case float64:
   574  		// JSON parses non-strings as float64. Fail if we cannot
   575  		// convert it losslessly
   576  		if float64(int64(v)) == v {
   577  			b = big.NewInt(int64(v))
   578  		} else {
   579  			return nil, fmt.Errorf("invalid float value %v for type %v", v, encType)
   580  		}
   581  	}
   582  	if b == nil {
   583  		return nil, fmt.Errorf("invalid integer value %v/%v for type %v", encValue, reflect.TypeOf(encValue), encType)
   584  	}
   585  	if b.BitLen() > length {
   586  		return nil, fmt.Errorf("integer larger than '%v'", encType)
   587  	}
   588  	if !signed && b.Sign() == -1 {
   589  		return nil, fmt.Errorf("invalid negative value for unsigned type %v", encType)
   590  	}
   591  	return b, nil
   592  }
   593  
   594  // EncodePrimitiveValue deals with the primitive values found
   595  // while searching through the typed data
   596  func (typedData *TypedData) EncodePrimitiveValue(encType string, encValue interface{}, depth int) ([]byte, error) {
   597  	switch encType {
   598  	case "address":
   599  		stringValue, ok := encValue.(string)
   600  		if !ok || !common.IsHexAddress(stringValue) {
   601  			return nil, dataMismatchError(encType, encValue)
   602  		}
   603  		retval := make([]byte, 32)
   604  		copy(retval[12:], common.HexToAddress(stringValue).Bytes())
   605  		return retval, nil
   606  	case "bool":
   607  		boolValue, ok := encValue.(bool)
   608  		if !ok {
   609  			return nil, dataMismatchError(encType, encValue)
   610  		}
   611  		if boolValue {
   612  			return math.PaddedBigBytes(common.Big1, 32), nil
   613  		}
   614  		return math.PaddedBigBytes(common.Big0, 32), nil
   615  	case "string":
   616  		strVal, ok := encValue.(string)
   617  		if !ok {
   618  			return nil, dataMismatchError(encType, encValue)
   619  		}
   620  		return crypto.Keccak256([]byte(strVal)), nil
   621  	case "bytes":
   622  		bytesValue, ok := encValue.([]byte)
   623  		if !ok {
   624  			return nil, dataMismatchError(encType, encValue)
   625  		}
   626  		return crypto.Keccak256(bytesValue), nil
   627  	}
   628  	if strings.HasPrefix(encType, "bytes") {
   629  		lengthStr := strings.TrimPrefix(encType, "bytes")
   630  		length, err := strconv.Atoi(lengthStr)
   631  		if err != nil {
   632  			return nil, fmt.Errorf("invalid size on bytes: %v", lengthStr)
   633  		}
   634  		if length < 0 || length > 32 {
   635  			return nil, fmt.Errorf("invalid size on bytes: %d", length)
   636  		}
   637  		if byteValue, ok := encValue.(hexutil.Bytes); !ok {
   638  			return nil, dataMismatchError(encType, encValue)
   639  		} else {
   640  			return math.PaddedBigBytes(new(big.Int).SetBytes(byteValue), 32), nil
   641  		}
   642  	}
   643  	if strings.HasPrefix(encType, "int") || strings.HasPrefix(encType, "uint") {
   644  		b, err := parseInteger(encType, encValue)
   645  		if err != nil {
   646  			return nil, err
   647  		}
   648  		return abi.U256(b), nil
   649  	}
   650  	return nil, fmt.Errorf("unrecognized type '%s'", encType)
   651  
   652  }
   653  
   654  // dataMismatchError generates an error for a mismatch between
   655  // the provided type and data
   656  func dataMismatchError(encType string, encValue interface{}) error {
   657  	return fmt.Errorf("provided data '%v' doesn't match type '%s'", encValue, encType)
   658  }
   659  
   660  // EcRecover recovers the address associated with the given sig.
   661  // Only compatible with `text/plain`
   662  func (api *SignerAPI) EcRecover(ctx context.Context, data hexutil.Bytes, sig hexutil.Bytes) (common.Address, error) {
   663  	// Returns the address for the Account that was used to create the signature.
   664  	//
   665  	// Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   666  	// the address of:
   667  	// hash = keccak256("\x19${byteVersion}Ethereum Signed Message:\n${message length}${message}")
   668  	// addr = ecrecover(hash, signature)
   669  	//
   670  	// Note, the signature must conform to the secp256k1 curve R, S and V values, where
   671  	// the V value must be be 27 or 28 for legacy reasons.
   672  	//
   673  	// https://github.com/maticnetwork/bor/wiki/Management-APIs#personal_ecRecover
   674  	if len(sig) != 65 {
   675  		return common.Address{}, fmt.Errorf("signature must be 65 bytes long")
   676  	}
   677  	if sig[64] != 27 && sig[64] != 28 {
   678  		return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)")
   679  	}
   680  	sig[64] -= 27 // Transform yellow paper V from 27/28 to 0/1
   681  	hash := accounts.TextHash(data)
   682  	rpk, err := crypto.SigToPub(hash, sig)
   683  	if err != nil {
   684  		return common.Address{}, err
   685  	}
   686  	return crypto.PubkeyToAddress(*rpk), nil
   687  }
   688  
   689  // UnmarshalValidatorData converts the bytes input to typed data
   690  func UnmarshalValidatorData(data interface{}) (ValidatorData, error) {
   691  	raw, ok := data.(map[string]interface{})
   692  	if !ok {
   693  		return ValidatorData{}, errors.New("validator input is not a map[string]interface{}")
   694  	}
   695  	addr, ok := raw["address"].(string)
   696  	if !ok {
   697  		return ValidatorData{}, errors.New("validator address is not sent as a string")
   698  	}
   699  	addrBytes, err := hexutil.Decode(addr)
   700  	if err != nil {
   701  		return ValidatorData{}, err
   702  	}
   703  	if !ok || len(addrBytes) == 0 {
   704  		return ValidatorData{}, errors.New("validator address is undefined")
   705  	}
   706  
   707  	message, ok := raw["message"].(string)
   708  	if !ok {
   709  		return ValidatorData{}, errors.New("message is not sent as a string")
   710  	}
   711  	messageBytes, err := hexutil.Decode(message)
   712  	if err != nil {
   713  		return ValidatorData{}, err
   714  	}
   715  	if !ok || len(messageBytes) == 0 {
   716  		return ValidatorData{}, errors.New("message is undefined")
   717  	}
   718  
   719  	return ValidatorData{
   720  		Address: common.BytesToAddress(addrBytes),
   721  		Message: messageBytes,
   722  	}, nil
   723  }
   724  
   725  // validate makes sure the types are sound
   726  func (typedData *TypedData) validate() error {
   727  	if err := typedData.Types.validate(); err != nil {
   728  		return err
   729  	}
   730  	if err := typedData.Domain.validate(); err != nil {
   731  		return err
   732  	}
   733  	return nil
   734  }
   735  
   736  // Map generates a map version of the typed data
   737  func (typedData *TypedData) Map() map[string]interface{} {
   738  	dataMap := map[string]interface{}{
   739  		"types":       typedData.Types,
   740  		"domain":      typedData.Domain.Map(),
   741  		"primaryType": typedData.PrimaryType,
   742  		"message":     typedData.Message,
   743  	}
   744  	return dataMap
   745  }
   746  
   747  // Format returns a representation of typedData, which can be easily displayed by a user-interface
   748  // without in-depth knowledge about 712 rules
   749  func (typedData *TypedData) Format() ([]*NameValueType, error) {
   750  	domain, err := typedData.formatData("EIP712Domain", typedData.Domain.Map())
   751  	if err != nil {
   752  		return nil, err
   753  	}
   754  	ptype, err := typedData.formatData(typedData.PrimaryType, typedData.Message)
   755  	if err != nil {
   756  		return nil, err
   757  	}
   758  	var nvts []*NameValueType
   759  	nvts = append(nvts, &NameValueType{
   760  		Name:  "EIP712Domain",
   761  		Value: domain,
   762  		Typ:   "domain",
   763  	})
   764  	nvts = append(nvts, &NameValueType{
   765  		Name:  typedData.PrimaryType,
   766  		Value: ptype,
   767  		Typ:   "primary type",
   768  	})
   769  	return nvts, nil
   770  }
   771  
   772  func (typedData *TypedData) formatData(primaryType string, data map[string]interface{}) ([]*NameValueType, error) {
   773  	var output []*NameValueType
   774  
   775  	// Add field contents. Structs and arrays have special handlers.
   776  	for _, field := range typedData.Types[primaryType] {
   777  		encName := field.Name
   778  		encValue := data[encName]
   779  		item := &NameValueType{
   780  			Name: encName,
   781  			Typ:  field.Type,
   782  		}
   783  		if field.isArray() {
   784  			arrayValue, _ := encValue.([]interface{})
   785  			parsedType := field.typeName()
   786  			for _, v := range arrayValue {
   787  				if typedData.Types[parsedType] != nil {
   788  					mapValue, _ := v.(map[string]interface{})
   789  					mapOutput, err := typedData.formatData(parsedType, mapValue)
   790  					if err != nil {
   791  						return nil, err
   792  					}
   793  					item.Value = mapOutput
   794  				} else {
   795  					primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   796  					if err != nil {
   797  						return nil, err
   798  					}
   799  					item.Value = primitiveOutput
   800  				}
   801  			}
   802  		} else if typedData.Types[field.Type] != nil {
   803  			if mapValue, ok := encValue.(map[string]interface{}); ok {
   804  				mapOutput, err := typedData.formatData(field.Type, mapValue)
   805  				if err != nil {
   806  					return nil, err
   807  				}
   808  				item.Value = mapOutput
   809  			} else {
   810  				item.Value = "<nil>"
   811  			}
   812  		} else {
   813  			primitiveOutput, err := formatPrimitiveValue(field.Type, encValue)
   814  			if err != nil {
   815  				return nil, err
   816  			}
   817  			item.Value = primitiveOutput
   818  		}
   819  		output = append(output, item)
   820  	}
   821  	return output, nil
   822  }
   823  
   824  func formatPrimitiveValue(encType string, encValue interface{}) (string, error) {
   825  	switch encType {
   826  	case "address":
   827  		if stringValue, ok := encValue.(string); !ok {
   828  			return "", fmt.Errorf("could not format value %v as address", encValue)
   829  		} else {
   830  			return common.HexToAddress(stringValue).String(), nil
   831  		}
   832  	case "bool":
   833  		if boolValue, ok := encValue.(bool); !ok {
   834  			return "", fmt.Errorf("could not format value %v as bool", encValue)
   835  		} else {
   836  			return fmt.Sprintf("%t", boolValue), nil
   837  		}
   838  	case "bytes", "string":
   839  		return fmt.Sprintf("%s", encValue), nil
   840  	}
   841  	if strings.HasPrefix(encType, "bytes") {
   842  		return fmt.Sprintf("%s", encValue), nil
   843  
   844  	}
   845  	if strings.HasPrefix(encType, "uint") || strings.HasPrefix(encType, "int") {
   846  		if b, err := parseInteger(encType, encValue); err != nil {
   847  			return "", err
   848  		} else {
   849  			return fmt.Sprintf("%d (0x%x)", b, b), nil
   850  		}
   851  	}
   852  	return "", fmt.Errorf("unhandled type %v", encType)
   853  }
   854  
   855  // NameValueType is a very simple struct with Name, Value and Type. It's meant for simple
   856  // json structures used to communicate signing-info about typed data with the UI
   857  type NameValueType struct {
   858  	Name  string      `json:"name"`
   859  	Value interface{} `json:"value"`
   860  	Typ   string      `json:"type"`
   861  }
   862  
   863  // Pprint returns a pretty-printed version of nvt
   864  func (nvt *NameValueType) Pprint(depth int) string {
   865  	output := bytes.Buffer{}
   866  	output.WriteString(strings.Repeat("\u00a0", depth*2))
   867  	output.WriteString(fmt.Sprintf("%s [%s]: ", nvt.Name, nvt.Typ))
   868  	if nvts, ok := nvt.Value.([]*NameValueType); ok {
   869  		output.WriteString("\n")
   870  		for _, next := range nvts {
   871  			sublevel := next.Pprint(depth + 1)
   872  			output.WriteString(sublevel)
   873  		}
   874  	} else {
   875  		output.WriteString(fmt.Sprintf("%q\n", nvt.Value))
   876  	}
   877  	return output.String()
   878  }
   879  
   880  // Validate checks if the types object is conformant to the specs
   881  func (t Types) validate() error {
   882  	for typeKey, typeArr := range t {
   883  		if len(typeKey) == 0 {
   884  			return fmt.Errorf("empty type key")
   885  		}
   886  		for i, typeObj := range typeArr {
   887  			if len(typeObj.Type) == 0 {
   888  				return fmt.Errorf("type %v:%d: empty Type", typeKey, i)
   889  			}
   890  			if len(typeObj.Name) == 0 {
   891  				return fmt.Errorf("type %v:%d: empty Name", typeKey, i)
   892  			}
   893  			if typeKey == typeObj.Type {
   894  				return fmt.Errorf("type '%s' cannot reference itself", typeObj.Type)
   895  			}
   896  			if typeObj.isReferenceType() {
   897  				if _, exist := t[typeObj.typeName()]; !exist {
   898  					return fmt.Errorf("reference type '%s' is undefined", typeObj.Type)
   899  				}
   900  				if !typedDataReferenceTypeRegexp.MatchString(typeObj.Type) {
   901  					return fmt.Errorf("unknown reference type '%s", typeObj.Type)
   902  				}
   903  			} else if !isPrimitiveTypeValid(typeObj.Type) {
   904  				return fmt.Errorf("unknown type '%s'", typeObj.Type)
   905  			}
   906  		}
   907  	}
   908  	return nil
   909  }
   910  
   911  // Checks if the primitive value is valid
   912  func isPrimitiveTypeValid(primitiveType string) bool {
   913  	if primitiveType == "address" ||
   914  		primitiveType == "address[]" ||
   915  		primitiveType == "bool" ||
   916  		primitiveType == "bool[]" ||
   917  		primitiveType == "string" ||
   918  		primitiveType == "string[]" {
   919  		return true
   920  	}
   921  	if primitiveType == "bytes" ||
   922  		primitiveType == "bytes[]" ||
   923  		primitiveType == "bytes1" ||
   924  		primitiveType == "bytes1[]" ||
   925  		primitiveType == "bytes2" ||
   926  		primitiveType == "bytes2[]" ||
   927  		primitiveType == "bytes3" ||
   928  		primitiveType == "bytes3[]" ||
   929  		primitiveType == "bytes4" ||
   930  		primitiveType == "bytes4[]" ||
   931  		primitiveType == "bytes5" ||
   932  		primitiveType == "bytes5[]" ||
   933  		primitiveType == "bytes6" ||
   934  		primitiveType == "bytes6[]" ||
   935  		primitiveType == "bytes7" ||
   936  		primitiveType == "bytes7[]" ||
   937  		primitiveType == "bytes8" ||
   938  		primitiveType == "bytes8[]" ||
   939  		primitiveType == "bytes9" ||
   940  		primitiveType == "bytes9[]" ||
   941  		primitiveType == "bytes10" ||
   942  		primitiveType == "bytes10[]" ||
   943  		primitiveType == "bytes11" ||
   944  		primitiveType == "bytes11[]" ||
   945  		primitiveType == "bytes12" ||
   946  		primitiveType == "bytes12[]" ||
   947  		primitiveType == "bytes13" ||
   948  		primitiveType == "bytes13[]" ||
   949  		primitiveType == "bytes14" ||
   950  		primitiveType == "bytes14[]" ||
   951  		primitiveType == "bytes15" ||
   952  		primitiveType == "bytes15[]" ||
   953  		primitiveType == "bytes16" ||
   954  		primitiveType == "bytes16[]" ||
   955  		primitiveType == "bytes17" ||
   956  		primitiveType == "bytes17[]" ||
   957  		primitiveType == "bytes18" ||
   958  		primitiveType == "bytes18[]" ||
   959  		primitiveType == "bytes19" ||
   960  		primitiveType == "bytes19[]" ||
   961  		primitiveType == "bytes20" ||
   962  		primitiveType == "bytes20[]" ||
   963  		primitiveType == "bytes21" ||
   964  		primitiveType == "bytes21[]" ||
   965  		primitiveType == "bytes22" ||
   966  		primitiveType == "bytes22[]" ||
   967  		primitiveType == "bytes23" ||
   968  		primitiveType == "bytes23[]" ||
   969  		primitiveType == "bytes24" ||
   970  		primitiveType == "bytes24[]" ||
   971  		primitiveType == "bytes25" ||
   972  		primitiveType == "bytes25[]" ||
   973  		primitiveType == "bytes26" ||
   974  		primitiveType == "bytes26[]" ||
   975  		primitiveType == "bytes27" ||
   976  		primitiveType == "bytes27[]" ||
   977  		primitiveType == "bytes28" ||
   978  		primitiveType == "bytes28[]" ||
   979  		primitiveType == "bytes29" ||
   980  		primitiveType == "bytes29[]" ||
   981  		primitiveType == "bytes30" ||
   982  		primitiveType == "bytes30[]" ||
   983  		primitiveType == "bytes31" ||
   984  		primitiveType == "bytes31[]" {
   985  		return true
   986  	}
   987  	if primitiveType == "int" ||
   988  		primitiveType == "int[]" ||
   989  		primitiveType == "int8" ||
   990  		primitiveType == "int8[]" ||
   991  		primitiveType == "int16" ||
   992  		primitiveType == "int16[]" ||
   993  		primitiveType == "int32" ||
   994  		primitiveType == "int32[]" ||
   995  		primitiveType == "int64" ||
   996  		primitiveType == "int64[]" ||
   997  		primitiveType == "int128" ||
   998  		primitiveType == "int128[]" ||
   999  		primitiveType == "int256" ||
  1000  		primitiveType == "int256[]" {
  1001  		return true
  1002  	}
  1003  	if primitiveType == "uint" ||
  1004  		primitiveType == "uint[]" ||
  1005  		primitiveType == "uint8" ||
  1006  		primitiveType == "uint8[]" ||
  1007  		primitiveType == "uint16" ||
  1008  		primitiveType == "uint16[]" ||
  1009  		primitiveType == "uint32" ||
  1010  		primitiveType == "uint32[]" ||
  1011  		primitiveType == "uint64" ||
  1012  		primitiveType == "uint64[]" ||
  1013  		primitiveType == "uint128" ||
  1014  		primitiveType == "uint128[]" ||
  1015  		primitiveType == "uint256" ||
  1016  		primitiveType == "uint256[]" {
  1017  		return true
  1018  	}
  1019  	return false
  1020  }
  1021  
  1022  // validate checks if the given domain is valid, i.e. contains at least
  1023  // the minimum viable keys and values
  1024  func (domain *TypedDataDomain) validate() error {
  1025  	if domain.ChainId == nil {
  1026  		return errors.New("chainId must be specified according to EIP-155")
  1027  	}
  1028  
  1029  	if len(domain.Name) == 0 && len(domain.Version) == 0 && len(domain.VerifyingContract) == 0 && len(domain.Salt) == 0 {
  1030  		return errors.New("domain is undefined")
  1031  	}
  1032  
  1033  	return nil
  1034  }
  1035  
  1036  // Map is a helper function to generate a map version of the domain
  1037  func (domain *TypedDataDomain) Map() map[string]interface{} {
  1038  	dataMap := map[string]interface{}{}
  1039  
  1040  	if domain.ChainId != nil {
  1041  		dataMap["chainId"] = domain.ChainId
  1042  	}
  1043  
  1044  	if len(domain.Name) > 0 {
  1045  		dataMap["name"] = domain.Name
  1046  	}
  1047  
  1048  	if len(domain.Version) > 0 {
  1049  		dataMap["version"] = domain.Version
  1050  	}
  1051  
  1052  	if len(domain.VerifyingContract) > 0 {
  1053  		dataMap["verifyingContract"] = domain.VerifyingContract
  1054  	}
  1055  
  1056  	if len(domain.Salt) > 0 {
  1057  		dataMap["salt"] = domain.Salt
  1058  	}
  1059  	return dataMap
  1060  }