github.com/btcsuite/btcd@v0.24.0/blockchain/difficulty.go (about)

     1  // Copyright (c) 2013-2017 The btcsuite developers
     2  // Use of this source code is governed by an ISC
     3  // license that can be found in the LICENSE file.
     4  
     5  package blockchain
     6  
     7  import (
     8  	"math/big"
     9  	"time"
    10  
    11  	"github.com/btcsuite/btcd/chaincfg/chainhash"
    12  )
    13  
    14  var (
    15  	// bigOne is 1 represented as a big.Int.  It is defined here to avoid
    16  	// the overhead of creating it multiple times.
    17  	bigOne = big.NewInt(1)
    18  
    19  	// oneLsh256 is 1 shifted left 256 bits.  It is defined here to avoid
    20  	// the overhead of creating it multiple times.
    21  	oneLsh256 = new(big.Int).Lsh(bigOne, 256)
    22  )
    23  
    24  // HashToBig converts a chainhash.Hash into a big.Int that can be used to
    25  // perform math comparisons.
    26  func HashToBig(hash *chainhash.Hash) *big.Int {
    27  	// A Hash is in little-endian, but the big package wants the bytes in
    28  	// big-endian, so reverse them.
    29  	buf := *hash
    30  	blen := len(buf)
    31  	for i := 0; i < blen/2; i++ {
    32  		buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i]
    33  	}
    34  
    35  	return new(big.Int).SetBytes(buf[:])
    36  }
    37  
    38  // CompactToBig converts a compact representation of a whole number N to an
    39  // unsigned 32-bit number.  The representation is similar to IEEE754 floating
    40  // point numbers.
    41  //
    42  // Like IEEE754 floating point, there are three basic components: the sign,
    43  // the exponent, and the mantissa.  They are broken out as follows:
    44  //
    45  // - the most significant 8 bits represent the unsigned base 256 exponent
    46  // - bit 23 (the 24th bit) represents the sign bit
    47  // - the least significant 23 bits represent the mantissa
    48  //
    49  //	-------------------------------------------------
    50  //	|   Exponent     |    Sign    |    Mantissa     |
    51  //	-------------------------------------------------
    52  //	| 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
    53  //	-------------------------------------------------
    54  //
    55  // The formula to calculate N is:
    56  //
    57  //	N = (-1^sign) * mantissa * 256^(exponent-3)
    58  //
    59  // This compact form is only used in bitcoin to encode unsigned 256-bit numbers
    60  // which represent difficulty targets, thus there really is not a need for a
    61  // sign bit, but it is implemented here to stay consistent with bitcoind.
    62  func CompactToBig(compact uint32) *big.Int {
    63  	// Extract the mantissa, sign bit, and exponent.
    64  	mantissa := compact & 0x007fffff
    65  	isNegative := compact&0x00800000 != 0
    66  	exponent := uint(compact >> 24)
    67  
    68  	// Since the base for the exponent is 256, the exponent can be treated
    69  	// as the number of bytes to represent the full 256-bit number.  So,
    70  	// treat the exponent as the number of bytes and shift the mantissa
    71  	// right or left accordingly.  This is equivalent to:
    72  	// N = mantissa * 256^(exponent-3)
    73  	var bn *big.Int
    74  	if exponent <= 3 {
    75  		mantissa >>= 8 * (3 - exponent)
    76  		bn = big.NewInt(int64(mantissa))
    77  	} else {
    78  		bn = big.NewInt(int64(mantissa))
    79  		bn.Lsh(bn, 8*(exponent-3))
    80  	}
    81  
    82  	// Make it negative if the sign bit is set.
    83  	if isNegative {
    84  		bn = bn.Neg(bn)
    85  	}
    86  
    87  	return bn
    88  }
    89  
    90  // BigToCompact converts a whole number N to a compact representation using
    91  // an unsigned 32-bit number.  The compact representation only provides 23 bits
    92  // of precision, so values larger than (2^23 - 1) only encode the most
    93  // significant digits of the number.  See CompactToBig for details.
    94  func BigToCompact(n *big.Int) uint32 {
    95  	// No need to do any work if it's zero.
    96  	if n.Sign() == 0 {
    97  		return 0
    98  	}
    99  
   100  	// Since the base for the exponent is 256, the exponent can be treated
   101  	// as the number of bytes.  So, shift the number right or left
   102  	// accordingly.  This is equivalent to:
   103  	// mantissa = mantissa / 256^(exponent-3)
   104  	var mantissa uint32
   105  	exponent := uint(len(n.Bytes()))
   106  	if exponent <= 3 {
   107  		mantissa = uint32(n.Bits()[0])
   108  		mantissa <<= 8 * (3 - exponent)
   109  	} else {
   110  		// Use a copy to avoid modifying the caller's original number.
   111  		tn := new(big.Int).Set(n)
   112  		mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0])
   113  	}
   114  
   115  	// When the mantissa already has the sign bit set, the number is too
   116  	// large to fit into the available 23-bits, so divide the number by 256
   117  	// and increment the exponent accordingly.
   118  	if mantissa&0x00800000 != 0 {
   119  		mantissa >>= 8
   120  		exponent++
   121  	}
   122  
   123  	// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit
   124  	// int and return it.
   125  	compact := uint32(exponent<<24) | mantissa
   126  	if n.Sign() < 0 {
   127  		compact |= 0x00800000
   128  	}
   129  	return compact
   130  }
   131  
   132  // CalcWork calculates a work value from difficulty bits.  Bitcoin increases
   133  // the difficulty for generating a block by decreasing the value which the
   134  // generated hash must be less than.  This difficulty target is stored in each
   135  // block header using a compact representation as described in the documentation
   136  // for CompactToBig.  The main chain is selected by choosing the chain that has
   137  // the most proof of work (highest difficulty).  Since a lower target difficulty
   138  // value equates to higher actual difficulty, the work value which will be
   139  // accumulated must be the inverse of the difficulty.  Also, in order to avoid
   140  // potential division by zero and really small floating point numbers, the
   141  // result adds 1 to the denominator and multiplies the numerator by 2^256.
   142  func CalcWork(bits uint32) *big.Int {
   143  	// Return a work value of zero if the passed difficulty bits represent
   144  	// a negative number. Note this should not happen in practice with valid
   145  	// blocks, but an invalid block could trigger it.
   146  	difficultyNum := CompactToBig(bits)
   147  	if difficultyNum.Sign() <= 0 {
   148  		return big.NewInt(0)
   149  	}
   150  
   151  	// (1 << 256) / (difficultyNum + 1)
   152  	denominator := new(big.Int).Add(difficultyNum, bigOne)
   153  	return new(big.Int).Div(oneLsh256, denominator)
   154  }
   155  
   156  // calcEasiestDifficulty calculates the easiest possible difficulty that a block
   157  // can have given starting difficulty bits and a duration.  It is mainly used to
   158  // verify that claimed proof of work by a block is sane as compared to a
   159  // known good checkpoint.
   160  func (b *BlockChain) calcEasiestDifficulty(bits uint32, duration time.Duration) uint32 {
   161  	// Convert types used in the calculations below.
   162  	durationVal := int64(duration / time.Second)
   163  	adjustmentFactor := big.NewInt(b.chainParams.RetargetAdjustmentFactor)
   164  
   165  	// The test network rules allow minimum difficulty blocks after more
   166  	// than twice the desired amount of time needed to generate a block has
   167  	// elapsed.
   168  	if b.chainParams.ReduceMinDifficulty {
   169  		reductionTime := int64(b.chainParams.MinDiffReductionTime /
   170  			time.Second)
   171  		if durationVal > reductionTime {
   172  			return b.chainParams.PowLimitBits
   173  		}
   174  	}
   175  
   176  	// Since easier difficulty equates to higher numbers, the easiest
   177  	// difficulty for a given duration is the largest value possible given
   178  	// the number of retargets for the duration and starting difficulty
   179  	// multiplied by the max adjustment factor.
   180  	newTarget := CompactToBig(bits)
   181  	for durationVal > 0 && newTarget.Cmp(b.chainParams.PowLimit) < 0 {
   182  		newTarget.Mul(newTarget, adjustmentFactor)
   183  		durationVal -= b.maxRetargetTimespan
   184  	}
   185  
   186  	// Limit new value to the proof of work limit.
   187  	if newTarget.Cmp(b.chainParams.PowLimit) > 0 {
   188  		newTarget.Set(b.chainParams.PowLimit)
   189  	}
   190  
   191  	return BigToCompact(newTarget)
   192  }
   193  
   194  // findPrevTestNetDifficulty returns the difficulty of the previous block which
   195  // did not have the special testnet minimum difficulty rule applied.
   196  func findPrevTestNetDifficulty(startNode HeaderCtx, c ChainCtx) uint32 {
   197  	// Search backwards through the chain for the last block without
   198  	// the special rule applied.
   199  	iterNode := startNode
   200  	for iterNode != nil && iterNode.Height()%c.BlocksPerRetarget() != 0 &&
   201  		iterNode.Bits() == c.ChainParams().PowLimitBits {
   202  
   203  		iterNode = iterNode.Parent()
   204  	}
   205  
   206  	// Return the found difficulty or the minimum difficulty if no
   207  	// appropriate block was found.
   208  	lastBits := c.ChainParams().PowLimitBits
   209  	if iterNode != nil {
   210  		lastBits = iterNode.Bits()
   211  	}
   212  	return lastBits
   213  }
   214  
   215  // calcNextRequiredDifficulty calculates the required difficulty for the block
   216  // after the passed previous HeaderCtx based on the difficulty retarget rules.
   217  // This function differs from the exported CalcNextRequiredDifficulty in that
   218  // the exported version uses the current best chain as the previous HeaderCtx
   219  // while this function accepts any block node. This function accepts a ChainCtx
   220  // parameter that gives the necessary difficulty context variables.
   221  func calcNextRequiredDifficulty(lastNode HeaderCtx, newBlockTime time.Time,
   222  	c ChainCtx) (uint32, error) {
   223  
   224  	// Emulate the same behavior as Bitcoin Core that for regtest there is
   225  	// no difficulty retargeting.
   226  	if c.ChainParams().PoWNoRetargeting {
   227  		return c.ChainParams().PowLimitBits, nil
   228  	}
   229  
   230  	// Genesis block.
   231  	if lastNode == nil {
   232  		return c.ChainParams().PowLimitBits, nil
   233  	}
   234  
   235  	// Return the previous block's difficulty requirements if this block
   236  	// is not at a difficulty retarget interval.
   237  	if (lastNode.Height()+1)%c.BlocksPerRetarget() != 0 {
   238  		// For networks that support it, allow special reduction of the
   239  		// required difficulty once too much time has elapsed without
   240  		// mining a block.
   241  		if c.ChainParams().ReduceMinDifficulty {
   242  			// Return minimum difficulty when more than the desired
   243  			// amount of time has elapsed without mining a block.
   244  			reductionTime := int64(c.ChainParams().MinDiffReductionTime /
   245  				time.Second)
   246  			allowMinTime := lastNode.Timestamp() + reductionTime
   247  			if newBlockTime.Unix() > allowMinTime {
   248  				return c.ChainParams().PowLimitBits, nil
   249  			}
   250  
   251  			// The block was mined within the desired timeframe, so
   252  			// return the difficulty for the last block which did
   253  			// not have the special minimum difficulty rule applied.
   254  			return findPrevTestNetDifficulty(lastNode, c), nil
   255  		}
   256  
   257  		// For the main network (or any unrecognized networks), simply
   258  		// return the previous block's difficulty requirements.
   259  		return lastNode.Bits(), nil
   260  	}
   261  
   262  	// Get the block node at the previous retarget (targetTimespan days
   263  	// worth of blocks).
   264  	firstNode := lastNode.RelativeAncestorCtx(c.BlocksPerRetarget() - 1)
   265  	if firstNode == nil {
   266  		return 0, AssertError("unable to obtain previous retarget block")
   267  	}
   268  
   269  	// Limit the amount of adjustment that can occur to the previous
   270  	// difficulty.
   271  	actualTimespan := lastNode.Timestamp() - firstNode.Timestamp()
   272  	adjustedTimespan := actualTimespan
   273  	if actualTimespan < c.MinRetargetTimespan() {
   274  		adjustedTimespan = c.MinRetargetTimespan()
   275  	} else if actualTimespan > c.MaxRetargetTimespan() {
   276  		adjustedTimespan = c.MaxRetargetTimespan()
   277  	}
   278  
   279  	// Calculate new target difficulty as:
   280  	//  currentDifficulty * (adjustedTimespan / targetTimespan)
   281  	// The result uses integer division which means it will be slightly
   282  	// rounded down.  Bitcoind also uses integer division to calculate this
   283  	// result.
   284  	oldTarget := CompactToBig(lastNode.Bits())
   285  	newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan))
   286  	targetTimeSpan := int64(c.ChainParams().TargetTimespan / time.Second)
   287  	newTarget.Div(newTarget, big.NewInt(targetTimeSpan))
   288  
   289  	// Limit new value to the proof of work limit.
   290  	if newTarget.Cmp(c.ChainParams().PowLimit) > 0 {
   291  		newTarget.Set(c.ChainParams().PowLimit)
   292  	}
   293  
   294  	// Log new target difficulty and return it.  The new target logging is
   295  	// intentionally converting the bits back to a number instead of using
   296  	// newTarget since conversion to the compact representation loses
   297  	// precision.
   298  	newTargetBits := BigToCompact(newTarget)
   299  	log.Debugf("Difficulty retarget at block height %d", lastNode.Height()+1)
   300  	log.Debugf("Old target %08x (%064x)", lastNode.Bits(), oldTarget)
   301  	log.Debugf("New target %08x (%064x)", newTargetBits, CompactToBig(newTargetBits))
   302  	log.Debugf("Actual timespan %v, adjusted timespan %v, target timespan %v",
   303  		time.Duration(actualTimespan)*time.Second,
   304  		time.Duration(adjustedTimespan)*time.Second,
   305  		c.ChainParams().TargetTimespan)
   306  
   307  	return newTargetBits, nil
   308  }
   309  
   310  // CalcNextRequiredDifficulty calculates the required difficulty for the block
   311  // after the end of the current best chain based on the difficulty retarget
   312  // rules.
   313  //
   314  // This function is safe for concurrent access.
   315  func (b *BlockChain) CalcNextRequiredDifficulty(timestamp time.Time) (uint32, error) {
   316  	b.chainLock.Lock()
   317  	difficulty, err := calcNextRequiredDifficulty(b.bestChain.Tip(), timestamp, b)
   318  	b.chainLock.Unlock()
   319  	return difficulty, err
   320  }