github.com/c0deoo1/golang1.5@v0.0.0-20220525150107-c87c805d4593/src/runtime/os1_linux.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import "unsafe" 8 9 var sigset_all sigset = sigset{^uint32(0), ^uint32(0)} 10 11 // Linux futex. 12 // 13 // futexsleep(uint32 *addr, uint32 val) 14 // futexwakeup(uint32 *addr) 15 // 16 // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. 17 // Futexwakeup wakes up threads sleeping on addr. 18 // Futexsleep is allowed to wake up spuriously. 19 20 const ( 21 _FUTEX_WAIT = 0 22 _FUTEX_WAKE = 1 23 ) 24 25 // Atomically, 26 // if(*addr == val) sleep 27 // Might be woken up spuriously; that's allowed. 28 // Don't sleep longer than ns; ns < 0 means forever. 29 //go:nosplit 30 func futexsleep(addr *uint32, val uint32, ns int64) { 31 var ts timespec 32 33 // Some Linux kernels have a bug where futex of 34 // FUTEX_WAIT returns an internal error code 35 // as an errno. Libpthread ignores the return value 36 // here, and so can we: as it says a few lines up, 37 // spurious wakeups are allowed. 38 if ns < 0 { 39 futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0) 40 return 41 } 42 43 // It's difficult to live within the no-split stack limits here. 44 // On ARM and 386, a 64-bit divide invokes a general software routine 45 // that needs more stack than we can afford. So we use timediv instead. 46 // But on real 64-bit systems, where words are larger but the stack limit 47 // is not, even timediv is too heavy, and we really need to use just an 48 // ordinary machine instruction. 49 if ptrSize == 8 { 50 ts.set_sec(ns / 1000000000) 51 ts.set_nsec(int32(ns % 1000000000)) 52 } else { 53 ts.tv_nsec = 0 54 ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))) 55 } 56 futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0) 57 } 58 59 // If any procs are sleeping on addr, wake up at most cnt. 60 //go:nosplit 61 func futexwakeup(addr *uint32, cnt uint32) { 62 ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0) 63 if ret >= 0 { 64 return 65 } 66 67 // I don't know that futex wakeup can return 68 // EAGAIN or EINTR, but if it does, it would be 69 // safe to loop and call futex again. 70 systemstack(func() { 71 print("futexwakeup addr=", addr, " returned ", ret, "\n") 72 }) 73 74 *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 75 } 76 77 func getproccount() int32 { 78 // This buffer is huge (8 kB) but we are on the system stack 79 // and there should be plenty of space (64 kB) -- except on ARM where 80 // the system stack itself is only 8kb (see golang.org/issue/11873). 81 // Also this is a leaf, so we're not holding up the memory for long. 82 // See golang.org/issue/11823. 83 // The suggested behavior here is to keep trying with ever-larger 84 // buffers, but we don't have a dynamic memory allocator at the 85 // moment, so that's a bit tricky and seems like overkill. 86 const maxCPUs = 64*1024*(1-goarch_arm) + 1024*goarch_arm 87 var buf [maxCPUs / (ptrSize * 8)]uintptr 88 r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) 89 n := int32(0) 90 for _, v := range buf[:r/ptrSize] { 91 for v != 0 { 92 n += int32(v & 1) 93 v >>= 1 94 } 95 } 96 if n == 0 { 97 n = 1 98 } 99 return n 100 } 101 102 // Clone, the Linux rfork. 103 const ( 104 _CLONE_VM = 0x100 105 _CLONE_FS = 0x200 106 _CLONE_FILES = 0x400 107 _CLONE_SIGHAND = 0x800 108 _CLONE_PTRACE = 0x2000 109 _CLONE_VFORK = 0x4000 110 _CLONE_PARENT = 0x8000 111 _CLONE_THREAD = 0x10000 112 _CLONE_NEWNS = 0x20000 113 _CLONE_SYSVSEM = 0x40000 114 _CLONE_SETTLS = 0x80000 115 _CLONE_PARENT_SETTID = 0x100000 116 _CLONE_CHILD_CLEARTID = 0x200000 117 _CLONE_UNTRACED = 0x800000 118 _CLONE_CHILD_SETTID = 0x1000000 119 _CLONE_STOPPED = 0x2000000 120 _CLONE_NEWUTS = 0x4000000 121 _CLONE_NEWIPC = 0x8000000 122 123 cloneFlags = _CLONE_VM | /* share memory */ 124 _CLONE_FS | /* share cwd, etc */ 125 _CLONE_FILES | /* share fd table */ 126 _CLONE_SIGHAND | /* share sig handler table */ 127 _CLONE_THREAD /* revisit - okay for now */ 128 ) 129 130 // May run with m.p==nil, so write barriers are not allowed. 131 //go:nowritebarrier 132 func newosproc(mp *m, stk unsafe.Pointer) { 133 /* 134 * note: strace gets confused if we use CLONE_PTRACE here. 135 */ 136 mp.tls[0] = uintptr(mp.id) // so 386 asm can find it 137 if false { 138 print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, "/", mp.tls[0], " ostk=", &mp, "\n") 139 } 140 141 // Disable signals during clone, so that the new thread starts 142 // with signals disabled. It will enable them in minit. 143 var oset sigset 144 rtsigprocmask(_SIG_SETMASK, &sigset_all, &oset, int32(unsafe.Sizeof(oset))) 145 ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart))) 146 rtsigprocmask(_SIG_SETMASK, &oset, nil, int32(unsafe.Sizeof(oset))) 147 148 if ret < 0 { 149 print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n") 150 throw("newosproc") 151 } 152 } 153 154 // Version of newosproc that doesn't require a valid G. 155 //go:nosplit 156 func newosproc0(stacksize uintptr, fn unsafe.Pointer) { 157 stack := sysAlloc(stacksize, &memstats.stacks_sys) 158 if stack == nil { 159 write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) 160 exit(1) 161 } 162 ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) 163 if ret < 0 { 164 write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) 165 exit(1) 166 } 167 } 168 169 var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") 170 var failthreadcreate = []byte("runtime: failed to create new OS thread\n") 171 172 func osinit() { 173 // 获取CPU数量 174 ncpu = getproccount() 175 } 176 177 var urandom_dev = []byte("/dev/urandom\x00") 178 179 func getRandomData(r []byte) { 180 if startupRandomData != nil { 181 n := copy(r, startupRandomData) 182 extendRandom(r, n) 183 return 184 } 185 fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) 186 n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) 187 closefd(fd) 188 extendRandom(r, int(n)) 189 } 190 191 func goenvs() { 192 goenvs_unix() 193 } 194 195 // Called to initialize a new m (including the bootstrap m). 196 // Called on the parent thread (main thread in case of bootstrap), can allocate memory. 197 func mpreinit(mp *m) { 198 mp.gsignal = malg(32 * 1024) // Linux wants >= 2K 199 mp.gsignal.m = mp 200 } 201 202 func msigsave(mp *m) { 203 smask := (*sigset)(unsafe.Pointer(&mp.sigmask)) 204 if unsafe.Sizeof(*smask) > unsafe.Sizeof(mp.sigmask) { 205 throw("insufficient storage for signal mask") 206 } 207 rtsigprocmask(_SIG_SETMASK, nil, smask, int32(unsafe.Sizeof(*smask))) 208 } 209 210 func gettid() uint32 211 212 // Called to initialize a new m (including the bootstrap m). 213 // Called on the new thread, can not allocate memory. 214 func minit() { 215 // Initialize signal handling. 216 _g_ := getg() 217 signalstack(&_g_.m.gsignal.stack) 218 219 // for debuggers, in case cgo created the thread 220 _g_.m.procid = uint64(gettid()) 221 222 // restore signal mask from m.sigmask and unblock essential signals 223 nmask := *(*sigset)(unsafe.Pointer(&_g_.m.sigmask)) 224 for i := range sigtable { 225 if sigtable[i].flags&_SigUnblock != 0 { 226 nmask[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) 227 } 228 } 229 rtsigprocmask(_SIG_SETMASK, &nmask, nil, int32(unsafe.Sizeof(nmask))) 230 } 231 232 // Called from dropm to undo the effect of an minit. 233 func unminit() { 234 _g_ := getg() 235 smask := (*sigset)(unsafe.Pointer(&_g_.m.sigmask)) 236 rtsigprocmask(_SIG_SETMASK, smask, nil, int32(unsafe.Sizeof(*smask))) 237 signalstack(nil) 238 } 239 240 func memlimit() uintptr { 241 /* 242 TODO: Convert to Go when something actually uses the result. 243 244 Rlimit rl; 245 extern byte runtime·text[], runtime·end[]; 246 uintptr used; 247 248 if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) 249 return 0; 250 if(rl.rlim_cur >= 0x7fffffff) 251 return 0; 252 253 // Estimate our VM footprint excluding the heap. 254 // Not an exact science: use size of binary plus 255 // some room for thread stacks. 256 used = runtime·end - runtime·text + (64<<20); 257 if(used >= rl.rlim_cur) 258 return 0; 259 260 // If there's not at least 16 MB left, we're probably 261 // not going to be able to do much. Treat as no limit. 262 rl.rlim_cur -= used; 263 if(rl.rlim_cur < (16<<20)) 264 return 0; 265 266 return rl.rlim_cur - used; 267 */ 268 269 return 0 270 } 271 272 //#ifdef GOARCH_386 273 //#define sa_handler k_sa_handler 274 //#endif 275 276 func sigreturn() 277 func sigtramp() 278 279 func setsig(i int32, fn uintptr, restart bool) { 280 var sa sigactiont 281 memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) 282 sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER 283 if restart { 284 sa.sa_flags |= _SA_RESTART 285 } 286 sa.sa_mask = ^uint64(0) 287 // Although Linux manpage says "sa_restorer element is obsolete and 288 // should not be used". x86_64 kernel requires it. Only use it on 289 // x86. 290 if GOARCH == "386" || GOARCH == "amd64" { 291 sa.sa_restorer = funcPC(sigreturn) 292 } 293 if fn == funcPC(sighandler) { 294 fn = funcPC(sigtramp) 295 } 296 sa.sa_handler = fn 297 if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 { 298 throw("rt_sigaction failure") 299 } 300 } 301 302 func setsigstack(i int32) { 303 var sa sigactiont 304 if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { 305 throw("rt_sigaction failure") 306 } 307 if sa.sa_handler == 0 || sa.sa_handler == _SIG_DFL || sa.sa_handler == _SIG_IGN || sa.sa_flags&_SA_ONSTACK != 0 { 308 return 309 } 310 sa.sa_flags |= _SA_ONSTACK 311 if rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) != 0 { 312 throw("rt_sigaction failure") 313 } 314 } 315 316 func getsig(i int32) uintptr { 317 var sa sigactiont 318 319 memclr(unsafe.Pointer(&sa), unsafe.Sizeof(sa)) 320 if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { 321 throw("rt_sigaction read failure") 322 } 323 if sa.sa_handler == funcPC(sigtramp) { 324 return funcPC(sighandler) 325 } 326 return sa.sa_handler 327 } 328 329 func signalstack(s *stack) { 330 var st sigaltstackt 331 if s == nil { 332 st.ss_flags = _SS_DISABLE 333 } else { 334 st.ss_sp = (*byte)(unsafe.Pointer(s.lo)) 335 st.ss_size = s.hi - s.lo 336 st.ss_flags = 0 337 } 338 sigaltstack(&st, nil) 339 } 340 341 func updatesigmask(m sigmask) { 342 var mask sigset 343 copy(mask[:], m[:]) 344 rtsigprocmask(_SIG_SETMASK, &mask, nil, int32(unsafe.Sizeof(mask))) 345 } 346 347 func unblocksig(sig int32) { 348 var mask sigset 349 mask[(sig-1)/32] |= 1 << ((uint32(sig) - 1) & 31) 350 rtsigprocmask(_SIG_UNBLOCK, &mask, nil, int32(unsafe.Sizeof(mask))) 351 }