github.com/c0deoo1/golang1.5@v0.0.0-20220525150107-c87c805d4593/src/runtime/proc1.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import "unsafe"
     8  
     9  var (
    10  	m0 m
    11  	g0 g // g0和m0的一些初始化动作会在asm_amd64.s中执行
    12  )
    13  
    14  // Goroutine scheduler
    15  // The scheduler's job is to distribute ready-to-run goroutines over worker threads.
    16  //
    17  // The main concepts are:
    18  // G - goroutine.
    19  // M - worker thread, or machine.
    20  // P - processor, a resource that is required to execute Go code.
    21  //     M must have an associated P to execute Go code, however it can be
    22  //     blocked or in a syscall w/o an associated P.
    23  //
    24  // Design doc at https://golang.org/s/go11sched.
    25  
    26  const (
    27  	// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
    28  	// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
    29  	_GoidCacheBatch = 16
    30  )
    31  
    32  // The bootstrap sequence is:
    33  //
    34  //	call osinit
    35  //	call schedinit
    36  //	make & queue new G
    37  //	call runtime·mstart
    38  //
    39  // The new G calls runtime·main.
    40  func schedinit() {
    41  	// raceinit must be the first call to race detector.
    42  	// In particular, it must be done before mallocinit below calls racemapshadow.
    43  	_g_ := getg()
    44  	if raceenabled {
    45  		// TODO race的用法
    46  		_g_.racectx = raceinit()
    47  	}
    48  	// 最大10000个线程
    49  	sched.maxmcount = 10000
    50  
    51  	// Cache the framepointer experiment.  This affects stack unwinding.
    52  	framepointer_enabled = haveexperiment("framepointer")
    53  
    54  	tracebackinit()  		// 获取一些runtime函数的地址
    55  	moduledataverify()		// 判断modeule信息是否合法
    56  	stackinit()             // 全局的栈缓存的初始化
    57  	mallocinit()			// 内存管理的初始化
    58  	mcommoninit(_g_.m)
    59  
    60  	goargs()                // 解析并复制args,供os.runtime_args调用
    61  	goenvs()	            // 解析并复制env,供syscall.runtime_envs调用
    62  	parsedebugvars()        // 解析一些GODEBUG开关,开关配置一些调试的行为
    63  	gcinit()				// gc的初始化
    64  
    65  	sched.lastpoll = uint64(nanotime())
    66  	procs := int(ncpu)
    67  	if n := atoi(gogetenv("GOMAXPROCS")); n > 0 {
    68  		if n > _MaxGomaxprocs {
    69  			n = _MaxGomaxprocs
    70  		}
    71  		procs = n
    72  	}
    73  	if procresize(int32(procs)) != nil {
    74  		throw("unknown runnable goroutine during bootstrap")
    75  	}
    76  
    77  	if buildVersion == "" {
    78  		// Condition should never trigger.  This code just serves
    79  		// to ensure runtime·buildVersion is kept in the resulting binary.
    80  		buildVersion = "unknown"
    81  	}
    82  }
    83  
    84  func dumpgstatus(gp *g) {
    85  	_g_ := getg()
    86  	print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
    87  	print("runtime:  g:  g=", _g_, ", goid=", _g_.goid, ",  g->atomicstatus=", readgstatus(_g_), "\n")
    88  }
    89  
    90  func checkmcount() {
    91  	// sched lock is held
    92  	if sched.mcount > sched.maxmcount {
    93  		print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
    94  		throw("thread exhaustion")
    95  	}
    96  }
    97  
    98  func mcommoninit(mp *m) {
    99  	_g_ := getg()
   100  
   101  	// g0 stack won't make sense for user (and is not necessary unwindable).
   102  	if _g_ != _g_.m.g0 {
   103  		callers(1, mp.createstack[:])
   104  	}
   105  
   106  	mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
   107  	if mp.fastrand == 0 {
   108  		mp.fastrand = 0x49f6428a
   109  	}
   110  
   111  	lock(&sched.lock)
   112  	mp.id = sched.mcount
   113  	sched.mcount++
   114  	checkmcount()
   115  	mpreinit(mp)
   116  	if mp.gsignal != nil {
   117  		mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
   118  	}
   119  
   120  	// Add to allm so garbage collector doesn't free g->m
   121  	// when it is just in a register or thread-local storage.
   122  	mp.alllink = allm
   123  
   124  	// NumCgoCall() iterates over allm w/o schedlock,
   125  	// so we need to publish it safely.
   126  	atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
   127  	unlock(&sched.lock)
   128  }
   129  
   130  // Mark gp ready to run.
   131  func ready(gp *g, traceskip int) {
   132  	if trace.enabled {
   133  		traceGoUnpark(gp, traceskip)
   134  	}
   135  
   136  	status := readgstatus(gp)
   137  
   138  	// Mark runnable.
   139  	_g_ := getg()
   140  	_g_.m.locks++ // disable preemption because it can be holding p in a local var
   141  	if status&^_Gscan != _Gwaiting {
   142  		dumpgstatus(gp)
   143  		throw("bad g->status in ready")
   144  	}
   145  
   146  	// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
   147  	casgstatus(gp, _Gwaiting, _Grunnable)
   148  	runqput(_g_.m.p.ptr(), gp, true)
   149  	if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic
   150  		wakep()
   151  	}
   152  	_g_.m.locks--
   153  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
   154  		_g_.stackguard0 = stackPreempt
   155  	}
   156  }
   157  
   158  func gcprocs() int32 {
   159  	// Figure out how many CPUs to use during GC.
   160  	// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
   161  	lock(&sched.lock)
   162  	n := gomaxprocs
   163  	if n > ncpu {
   164  		n = ncpu
   165  	}
   166  	if n > _MaxGcproc {
   167  		n = _MaxGcproc
   168  	}
   169  	if n > sched.nmidle+1 { // one M is currently running
   170  		n = sched.nmidle + 1
   171  	}
   172  	unlock(&sched.lock)
   173  	return n
   174  }
   175  
   176  func needaddgcproc() bool {
   177  	lock(&sched.lock)
   178  	n := gomaxprocs
   179  	if n > ncpu {
   180  		n = ncpu
   181  	}
   182  	if n > _MaxGcproc {
   183  		n = _MaxGcproc
   184  	}
   185  	n -= sched.nmidle + 1 // one M is currently running
   186  	unlock(&sched.lock)
   187  	return n > 0
   188  }
   189  
   190  func helpgc(nproc int32) {
   191  	_g_ := getg()
   192  	lock(&sched.lock)
   193  	pos := 0
   194  	for n := int32(1); n < nproc; n++ { // one M is currently running
   195  		if allp[pos].mcache == _g_.m.mcache {
   196  			pos++
   197  		}
   198  		mp := mget()
   199  		if mp == nil {
   200  			throw("gcprocs inconsistency")
   201  		}
   202  		mp.helpgc = n
   203  		mp.p.set(allp[pos])
   204  		mp.mcache = allp[pos].mcache
   205  		pos++
   206  		notewakeup(&mp.park)
   207  	}
   208  	unlock(&sched.lock)
   209  }
   210  
   211  // freezeStopWait is a large value that freezetheworld sets
   212  // sched.stopwait to in order to request that all Gs permanently stop.
   213  const freezeStopWait = 0x7fffffff
   214  
   215  // Similar to stopTheWorld but best-effort and can be called several times.
   216  // There is no reverse operation, used during crashing.
   217  // This function must not lock any mutexes.
   218  func freezetheworld() {
   219  	// stopwait and preemption requests can be lost
   220  	// due to races with concurrently executing threads,
   221  	// so try several times
   222  	for i := 0; i < 5; i++ {
   223  		// this should tell the scheduler to not start any new goroutines
   224  		sched.stopwait = freezeStopWait
   225  		atomicstore(&sched.gcwaiting, 1)
   226  		// this should stop running goroutines
   227  		if !preemptall() {
   228  			break // no running goroutines
   229  		}
   230  		usleep(1000)
   231  	}
   232  	// to be sure
   233  	usleep(1000)
   234  	preemptall()
   235  	usleep(1000)
   236  }
   237  
   238  func isscanstatus(status uint32) bool {
   239  	if status == _Gscan {
   240  		throw("isscanstatus: Bad status Gscan")
   241  	}
   242  	return status&_Gscan == _Gscan
   243  }
   244  
   245  // All reads and writes of g's status go through readgstatus, casgstatus
   246  // castogscanstatus, casfrom_Gscanstatus.
   247  //go:nosplit
   248  func readgstatus(gp *g) uint32 {
   249  	return atomicload(&gp.atomicstatus)
   250  }
   251  
   252  // Ownership of gscanvalid:
   253  //
   254  // If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
   255  // then gp owns gp.gscanvalid, and other goroutines must not modify it.
   256  //
   257  // Otherwise, a second goroutine can lock the scan state by setting _Gscan
   258  // in the status bit and then modify gscanvalid, and then unlock the scan state.
   259  //
   260  // Note that the first condition implies an exception to the second:
   261  // if a second goroutine changes gp's status to _Grunning|_Gscan,
   262  // that second goroutine still does not have the right to modify gscanvalid.
   263  
   264  // The Gscanstatuses are acting like locks and this releases them.
   265  // If it proves to be a performance hit we should be able to make these
   266  // simple atomic stores but for now we are going to throw if
   267  // we see an inconsistent state.
   268  func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
   269  	success := false
   270  
   271  	// Check that transition is valid.
   272  	switch oldval {
   273  	default:
   274  		print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
   275  		dumpgstatus(gp)
   276  		throw("casfrom_Gscanstatus:top gp->status is not in scan state")
   277  	case _Gscanrunnable,
   278  		_Gscanwaiting,
   279  		_Gscanrunning,
   280  		_Gscansyscall:
   281  		if newval == oldval&^_Gscan {
   282  			success = cas(&gp.atomicstatus, oldval, newval)
   283  		}
   284  	case _Gscanenqueue:
   285  		if newval == _Gwaiting {
   286  			success = cas(&gp.atomicstatus, oldval, newval)
   287  		}
   288  	}
   289  	if !success {
   290  		print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
   291  		dumpgstatus(gp)
   292  		throw("casfrom_Gscanstatus: gp->status is not in scan state")
   293  	}
   294  	if newval == _Grunning {
   295  		gp.gcscanvalid = false
   296  	}
   297  }
   298  
   299  // This will return false if the gp is not in the expected status and the cas fails.
   300  // This acts like a lock acquire while the casfromgstatus acts like a lock release.
   301  func castogscanstatus(gp *g, oldval, newval uint32) bool {
   302  	switch oldval {
   303  	case _Grunnable,
   304  		_Gwaiting,
   305  		_Gsyscall:
   306  		if newval == oldval|_Gscan {
   307  			return cas(&gp.atomicstatus, oldval, newval)
   308  		}
   309  	case _Grunning:
   310  		if newval == _Gscanrunning || newval == _Gscanenqueue {
   311  			return cas(&gp.atomicstatus, oldval, newval)
   312  		}
   313  	}
   314  	print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
   315  	throw("castogscanstatus")
   316  	panic("not reached")
   317  }
   318  
   319  // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
   320  // and casfrom_Gscanstatus instead.
   321  // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
   322  // put it in the Gscan state is finished.
   323  //go:nosplit
   324  func casgstatus(gp *g, oldval, newval uint32) {
   325  	if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
   326  		systemstack(func() {
   327  			print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
   328  			throw("casgstatus: bad incoming values")
   329  		})
   330  	}
   331  
   332  	if oldval == _Grunning && gp.gcscanvalid {
   333  		// If oldvall == _Grunning, then the actual status must be
   334  		// _Grunning or _Grunning|_Gscan; either way,
   335  		// we own gp.gcscanvalid, so it's safe to read.
   336  		// gp.gcscanvalid must not be true when we are running.
   337  		print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
   338  		throw("casgstatus")
   339  	}
   340  
   341  	// loop if gp->atomicstatus is in a scan state giving
   342  	// GC time to finish and change the state to oldval.
   343  	for !cas(&gp.atomicstatus, oldval, newval) {
   344  		if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
   345  			systemstack(func() {
   346  				throw("casgstatus: waiting for Gwaiting but is Grunnable")
   347  			})
   348  		}
   349  		// Help GC if needed.
   350  		// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
   351  		// 	gp.preemptscan = false
   352  		// 	systemstack(func() {
   353  		// 		gcphasework(gp)
   354  		// 	})
   355  		// }
   356  	}
   357  	if newval == _Grunning {
   358  		gp.gcscanvalid = false
   359  	}
   360  }
   361  
   362  // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
   363  // Returns old status. Cannot call casgstatus directly, because we are racing with an
   364  // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
   365  // it might have become Grunnable by the time we get to the cas. If we called casgstatus,
   366  // it would loop waiting for the status to go back to Gwaiting, which it never will.
   367  //go:nosplit
   368  func casgcopystack(gp *g) uint32 {
   369  	for {
   370  		oldstatus := readgstatus(gp) &^ _Gscan
   371  		if oldstatus != _Gwaiting && oldstatus != _Grunnable {
   372  			throw("copystack: bad status, not Gwaiting or Grunnable")
   373  		}
   374  		if cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
   375  			return oldstatus
   376  		}
   377  	}
   378  }
   379  
   380  // scang blocks until gp's stack has been scanned.
   381  // It might be scanned by scang or it might be scanned by the goroutine itself.
   382  // Either way, the stack scan has completed when scang returns.
   383  func scang(gp *g) {
   384  	// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
   385  	// Nothing is racing with us now, but gcscandone might be set to true left over
   386  	// from an earlier round of stack scanning (we scan twice per GC).
   387  	// We use gcscandone to record whether the scan has been done during this round.
   388  	// It is important that the scan happens exactly once: if called twice,
   389  	// the installation of stack barriers will detect the double scan and die.
   390  
   391  	gp.gcscandone = false
   392  
   393  	// Endeavor to get gcscandone set to true,
   394  	// either by doing the stack scan ourselves or by coercing gp to scan itself.
   395  	// gp.gcscandone can transition from false to true when we're not looking
   396  	// (if we asked for preemption), so any time we lock the status using
   397  	// castogscanstatus we have to double-check that the scan is still not done.
   398  	for !gp.gcscandone {
   399  		switch s := readgstatus(gp); s {
   400  		default:
   401  			dumpgstatus(gp)
   402  			throw("stopg: invalid status")
   403  
   404  		case _Gdead:
   405  			// No stack.
   406  			gp.gcscandone = true
   407  
   408  		case _Gcopystack:
   409  			// Stack being switched. Go around again.
   410  
   411  		case _Grunnable, _Gsyscall, _Gwaiting:
   412  			// Claim goroutine by setting scan bit.
   413  			// Racing with execution or readying of gp.
   414  			// The scan bit keeps them from running
   415  			// the goroutine until we're done.
   416  			if castogscanstatus(gp, s, s|_Gscan) {
   417  				if !gp.gcscandone {
   418  					// Coordinate with traceback
   419  					// in sigprof.
   420  					for !cas(&gp.stackLock, 0, 1) {
   421  						osyield()
   422  					}
   423  					scanstack(gp)
   424  					atomicstore(&gp.stackLock, 0)
   425  					gp.gcscandone = true
   426  				}
   427  				restartg(gp)
   428  			}
   429  
   430  		case _Gscanwaiting:
   431  			// newstack is doing a scan for us right now. Wait.
   432  
   433  		case _Grunning:
   434  			// Goroutine running. Try to preempt execution so it can scan itself.
   435  			// The preemption handler (in newstack) does the actual scan.
   436  
   437  			// Optimization: if there is already a pending preemption request
   438  			// (from the previous loop iteration), don't bother with the atomics.
   439  			if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
   440  				break
   441  			}
   442  
   443  			// Ask for preemption and self scan.
   444  			if castogscanstatus(gp, _Grunning, _Gscanrunning) {
   445  				if !gp.gcscandone {
   446  					gp.preemptscan = true
   447  					gp.preempt = true
   448  					gp.stackguard0 = stackPreempt
   449  				}
   450  				casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
   451  			}
   452  		}
   453  	}
   454  
   455  	gp.preemptscan = false // cancel scan request if no longer needed
   456  }
   457  
   458  // The GC requests that this routine be moved from a scanmumble state to a mumble state.
   459  func restartg(gp *g) {
   460  	s := readgstatus(gp)
   461  	switch s {
   462  	default:
   463  		dumpgstatus(gp)
   464  		throw("restartg: unexpected status")
   465  
   466  	case _Gdead:
   467  		// ok
   468  
   469  	case _Gscanrunnable,
   470  		_Gscanwaiting,
   471  		_Gscansyscall:
   472  		casfrom_Gscanstatus(gp, s, s&^_Gscan)
   473  
   474  	// Scan is now completed.
   475  	// Goroutine now needs to be made runnable.
   476  	// We put it on the global run queue; ready blocks on the global scheduler lock.
   477  	case _Gscanenqueue:
   478  		casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
   479  		if gp != getg().m.curg {
   480  			throw("processing Gscanenqueue on wrong m")
   481  		}
   482  		dropg()
   483  		ready(gp, 0)
   484  	}
   485  }
   486  
   487  // stopTheWorld stops all P's from executing goroutines, interrupting
   488  // all goroutines at GC safe points and records reason as the reason
   489  // for the stop. On return, only the current goroutine's P is running.
   490  // stopTheWorld must not be called from a system stack and the caller
   491  // must not hold worldsema. The caller must call startTheWorld when
   492  // other P's should resume execution.
   493  //
   494  // stopTheWorld is safe for multiple goroutines to call at the
   495  // same time. Each will execute its own stop, and the stops will
   496  // be serialized.
   497  //
   498  // This is also used by routines that do stack dumps. If the system is
   499  // in panic or being exited, this may not reliably stop all
   500  // goroutines.
   501  func stopTheWorld(reason string) {
   502  	semacquire(&worldsema, false)
   503  	getg().m.preemptoff = reason
   504  	systemstack(stopTheWorldWithSema)
   505  }
   506  
   507  // startTheWorld undoes the effects of stopTheWorld.
   508  func startTheWorld() {
   509  	systemstack(startTheWorldWithSema)
   510  	// worldsema must be held over startTheWorldWithSema to ensure
   511  	// gomaxprocs cannot change while worldsema is held.
   512  	semrelease(&worldsema)
   513  	getg().m.preemptoff = ""
   514  }
   515  
   516  // Holding worldsema grants an M the right to try to stop the world
   517  // and prevents gomaxprocs from changing concurrently.
   518  var worldsema uint32 = 1
   519  
   520  // stopTheWorldWithSema is the core implementation of stopTheWorld.
   521  // The caller is responsible for acquiring worldsema and disabling
   522  // preemption first and then should stopTheWorldWithSema on the system
   523  // stack:
   524  //
   525  //	semacquire(&worldsema, false)
   526  //	m.preemptoff = "reason"
   527  //	systemstack(stopTheWorldWithSema)
   528  //
   529  // When finished, the caller must either call startTheWorld or undo
   530  // these three operations separately:
   531  //
   532  //	m.preemptoff = ""
   533  //	systemstack(startTheWorldWithSema)
   534  //	semrelease(&worldsema)
   535  //
   536  // It is allowed to acquire worldsema once and then execute multiple
   537  // startTheWorldWithSema/stopTheWorldWithSema pairs.
   538  // Other P's are able to execute between successive calls to
   539  // startTheWorldWithSema and stopTheWorldWithSema.
   540  // Holding worldsema causes any other goroutines invoking
   541  // stopTheWorld to block.
   542  func stopTheWorldWithSema() {
   543  	_g_ := getg()
   544  
   545  	// If we hold a lock, then we won't be able to stop another M
   546  	// that is blocked trying to acquire the lock.
   547  	if _g_.m.locks > 0 {
   548  		throw("stopTheWorld: holding locks")
   549  	}
   550  
   551  	lock(&sched.lock)
   552  	sched.stopwait = gomaxprocs
   553  	atomicstore(&sched.gcwaiting, 1)
   554  	preemptall()
   555  	// stop current P
   556  	_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
   557  	sched.stopwait--
   558  	// try to retake all P's in Psyscall status
   559  	for i := 0; i < int(gomaxprocs); i++ {
   560  		p := allp[i]
   561  		s := p.status
   562  		if s == _Psyscall && cas(&p.status, s, _Pgcstop) {
   563  			if trace.enabled {
   564  				traceGoSysBlock(p)
   565  				traceProcStop(p)
   566  			}
   567  			p.syscalltick++
   568  			sched.stopwait--
   569  		}
   570  	}
   571  	// stop idle P's
   572  	for {
   573  		p := pidleget()
   574  		if p == nil {
   575  			break
   576  		}
   577  		p.status = _Pgcstop
   578  		sched.stopwait--
   579  	}
   580  	wait := sched.stopwait > 0
   581  	unlock(&sched.lock)
   582  
   583  	// wait for remaining P's to stop voluntarily
   584  	if wait {
   585  		for {
   586  			// wait for 100us, then try to re-preempt in case of any races
   587  			if notetsleep(&sched.stopnote, 100*1000) {
   588  				noteclear(&sched.stopnote)
   589  				break
   590  			}
   591  			preemptall()
   592  		}
   593  	}
   594  	if sched.stopwait != 0 {
   595  		throw("stopTheWorld: not stopped")
   596  	}
   597  	for i := 0; i < int(gomaxprocs); i++ {
   598  		p := allp[i]
   599  		if p.status != _Pgcstop {
   600  			throw("stopTheWorld: not stopped")
   601  		}
   602  	}
   603  }
   604  
   605  func mhelpgc() {
   606  	_g_ := getg()
   607  	_g_.m.helpgc = -1
   608  }
   609  
   610  func startTheWorldWithSema() {
   611  	_g_ := getg()
   612  
   613  	_g_.m.locks++        // disable preemption because it can be holding p in a local var
   614  	gp := netpoll(false) // non-blocking
   615  	injectglist(gp)
   616  	add := needaddgcproc()
   617  	lock(&sched.lock)
   618  
   619  	procs := gomaxprocs
   620  	if newprocs != 0 {
   621  		procs = newprocs
   622  		newprocs = 0
   623  	}
   624  	p1 := procresize(procs)
   625  	sched.gcwaiting = 0
   626  	if sched.sysmonwait != 0 {
   627  		sched.sysmonwait = 0
   628  		notewakeup(&sched.sysmonnote)
   629  	}
   630  	unlock(&sched.lock)
   631  
   632  	for p1 != nil {
   633  		p := p1
   634  		p1 = p1.link.ptr()
   635  		if p.m != 0 {
   636  			mp := p.m.ptr()
   637  			p.m = 0
   638  			if mp.nextp != 0 {
   639  				throw("startTheWorld: inconsistent mp->nextp")
   640  			}
   641  			mp.nextp.set(p)
   642  			notewakeup(&mp.park)
   643  		} else {
   644  			// Start M to run P.  Do not start another M below.
   645  			newm(nil, p)
   646  			add = false
   647  		}
   648  	}
   649  
   650  	// Wakeup an additional proc in case we have excessive runnable goroutines
   651  	// in local queues or in the global queue. If we don't, the proc will park itself.
   652  	// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
   653  	if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 {
   654  		wakep()
   655  	}
   656  
   657  	if add {
   658  		// If GC could have used another helper proc, start one now,
   659  		// in the hope that it will be available next time.
   660  		// It would have been even better to start it before the collection,
   661  		// but doing so requires allocating memory, so it's tricky to
   662  		// coordinate.  This lazy approach works out in practice:
   663  		// we don't mind if the first couple gc rounds don't have quite
   664  		// the maximum number of procs.
   665  		newm(mhelpgc, nil)
   666  	}
   667  	_g_.m.locks--
   668  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
   669  		_g_.stackguard0 = stackPreempt
   670  	}
   671  }
   672  
   673  // Called to start an M.
   674  // 启动线程,开启调度循环
   675  //go:nosplit
   676  func mstart() {
   677  	_g_ := getg()
   678  
   679  	if _g_.stack.lo == 0 {
   680  		// Initialize stack bounds from system stack.
   681  		// Cgo may have left stack size in stack.hi.
   682  		size := _g_.stack.hi
   683  		if size == 0 {
   684  			size = 8192 * stackGuardMultiplier
   685  		}
   686  		_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
   687  		_g_.stack.lo = _g_.stack.hi - size + 1024
   688  	}
   689  	// Initialize stack guards so that we can start calling
   690  	// both Go and C functions with stack growth prologues.
   691  	_g_.stackguard0 = _g_.stack.lo + _StackGuard
   692  	_g_.stackguard1 = _g_.stackguard0
   693  	mstart1()
   694  }
   695  
   696  func mstart1() {
   697  	_g_ := getg()
   698  
   699  	if _g_ != _g_.m.g0 {
   700  		throw("bad runtime·mstart")
   701  	}
   702  
   703  	// Record top of stack for use by mcall.
   704  	// Once we call schedule we're never coming back,
   705  	// so other calls can reuse this stack space.
   706  	gosave(&_g_.m.g0.sched)
   707  	_g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
   708  	asminit()
   709  	minit()
   710  
   711  	// Install signal handlers; after minit so that minit can
   712  	// prepare the thread to be able to handle the signals.
   713  	if _g_.m == &m0 {
   714  		// Create an extra M for callbacks on threads not created by Go.
   715  		if iscgo && !cgoHasExtraM {
   716  			cgoHasExtraM = true
   717  			newextram()
   718  		}
   719  		initsig()
   720  	}
   721  
   722  	if fn := _g_.m.mstartfn; fn != nil {
   723  		fn()
   724  	}
   725  
   726  	if _g_.m.helpgc != 0 {
   727  		_g_.m.helpgc = 0
   728  		stopm()
   729  	} else if _g_.m != &m0 {
   730  		acquirep(_g_.m.nextp.ptr())
   731  		_g_.m.nextp = 0
   732  	}
   733  	schedule()
   734  }
   735  
   736  // forEachP calls fn(p) for every P p when p reaches a GC safe point.
   737  // If a P is currently executing code, this will bring the P to a GC
   738  // safe point and execute fn on that P. If the P is not executing code
   739  // (it is idle or in a syscall), this will call fn(p) directly while
   740  // preventing the P from exiting its state. This does not ensure that
   741  // fn will run on every CPU executing Go code, but it acts as a global
   742  // memory barrier. GC uses this as a "ragged barrier."
   743  //
   744  // The caller must hold worldsema.
   745  func forEachP(fn func(*p)) {
   746  	mp := acquirem()
   747  	_p_ := getg().m.p.ptr()
   748  
   749  	lock(&sched.lock)
   750  	if sched.safePointWait != 0 {
   751  		throw("forEachP: sched.safePointWait != 0")
   752  	}
   753  	sched.safePointWait = gomaxprocs - 1
   754  	sched.safePointFn = fn
   755  
   756  	// Ask all Ps to run the safe point function.
   757  	for _, p := range allp[:gomaxprocs] {
   758  		if p != _p_ {
   759  			atomicstore(&p.runSafePointFn, 1)
   760  		}
   761  	}
   762  	preemptall()
   763  
   764  	// Any P entering _Pidle or _Psyscall from now on will observe
   765  	// p.runSafePointFn == 1 and will call runSafePointFn when
   766  	// changing its status to _Pidle/_Psyscall.
   767  
   768  	// Run safe point function for all idle Ps. sched.pidle will
   769  	// not change because we hold sched.lock.
   770  	for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
   771  		if cas(&p.runSafePointFn, 1, 0) {
   772  			fn(p)
   773  			sched.safePointWait--
   774  		}
   775  	}
   776  
   777  	wait := sched.safePointWait > 0
   778  	unlock(&sched.lock)
   779  
   780  	// Run fn for the current P.
   781  	fn(_p_)
   782  
   783  	// Force Ps currently in _Psyscall into _Pidle and hand them
   784  	// off to induce safe point function execution.
   785  	for i := 0; i < int(gomaxprocs); i++ {
   786  		p := allp[i]
   787  		s := p.status
   788  		if s == _Psyscall && p.runSafePointFn == 1 && cas(&p.status, s, _Pidle) {
   789  			if trace.enabled {
   790  				traceGoSysBlock(p)
   791  				traceProcStop(p)
   792  			}
   793  			p.syscalltick++
   794  			handoffp(p)
   795  		}
   796  	}
   797  
   798  	// Wait for remaining Ps to run fn.
   799  	if wait {
   800  		for {
   801  			// Wait for 100us, then try to re-preempt in
   802  			// case of any races.
   803  			if notetsleep(&sched.safePointNote, 100*1000) {
   804  				noteclear(&sched.safePointNote)
   805  				break
   806  			}
   807  			preemptall()
   808  		}
   809  	}
   810  	if sched.safePointWait != 0 {
   811  		throw("forEachP: not done")
   812  	}
   813  	for i := 0; i < int(gomaxprocs); i++ {
   814  		p := allp[i]
   815  		if p.runSafePointFn != 0 {
   816  			throw("forEachP: P did not run fn")
   817  		}
   818  	}
   819  
   820  	lock(&sched.lock)
   821  	sched.safePointFn = nil
   822  	unlock(&sched.lock)
   823  	releasem(mp)
   824  }
   825  
   826  // runSafePointFn runs the safe point function, if any, for this P.
   827  // This should be called like
   828  //
   829  //     if getg().m.p.runSafePointFn != 0 {
   830  //         runSafePointFn()
   831  //     }
   832  //
   833  // runSafePointFn must be checked on any transition in to _Pidle or
   834  // _Psyscall to avoid a race where forEachP sees that the P is running
   835  // just before the P goes into _Pidle/_Psyscall and neither forEachP
   836  // nor the P run the safe-point function.
   837  func runSafePointFn() {
   838  	p := getg().m.p.ptr()
   839  	// Resolve the race between forEachP running the safe-point
   840  	// function on this P's behalf and this P running the
   841  	// safe-point function directly.
   842  	if !cas(&p.runSafePointFn, 1, 0) {
   843  		return
   844  	}
   845  	sched.safePointFn(p)
   846  	lock(&sched.lock)
   847  	sched.safePointWait--
   848  	if sched.safePointWait == 0 {
   849  		notewakeup(&sched.safePointNote)
   850  	}
   851  	unlock(&sched.lock)
   852  }
   853  
   854  // When running with cgo, we call _cgo_thread_start
   855  // to start threads for us so that we can play nicely with
   856  // foreign code.
   857  var cgoThreadStart unsafe.Pointer
   858  
   859  type cgothreadstart struct {
   860  	g   guintptr
   861  	tls *uint64
   862  	fn  unsafe.Pointer
   863  }
   864  
   865  // Allocate a new m unassociated with any thread.
   866  // Can use p for allocation context if needed.
   867  // fn is recorded as the new m's m.mstartfn.
   868  func allocm(_p_ *p, fn func()) *m {
   869  	_g_ := getg()
   870  	_g_.m.locks++ // disable GC because it can be called from sysmon
   871  	if _g_.m.p == 0 {
   872  		acquirep(_p_) // temporarily borrow p for mallocs in this function
   873  	}
   874  	mp := new(m)
   875  	mp.mstartfn = fn
   876  	mcommoninit(mp)
   877  
   878  	// In case of cgo or Solaris, pthread_create will make us a stack.
   879  	// Windows and Plan 9 will layout sched stack on OS stack.
   880  	if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
   881  		mp.g0 = malg(-1)
   882  	} else {
   883  		mp.g0 = malg(8192 * stackGuardMultiplier)
   884  	}
   885  	mp.g0.m = mp
   886  
   887  	if _p_ == _g_.m.p.ptr() {
   888  		releasep()
   889  	}
   890  	_g_.m.locks--
   891  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
   892  		_g_.stackguard0 = stackPreempt
   893  	}
   894  
   895  	return mp
   896  }
   897  
   898  // needm is called when a cgo callback happens on a
   899  // thread without an m (a thread not created by Go).
   900  // In this case, needm is expected to find an m to use
   901  // and return with m, g initialized correctly.
   902  // Since m and g are not set now (likely nil, but see below)
   903  // needm is limited in what routines it can call. In particular
   904  // it can only call nosplit functions (textflag 7) and cannot
   905  // do any scheduling that requires an m.
   906  //
   907  // In order to avoid needing heavy lifting here, we adopt
   908  // the following strategy: there is a stack of available m's
   909  // that can be stolen. Using compare-and-swap
   910  // to pop from the stack has ABA races, so we simulate
   911  // a lock by doing an exchange (via casp) to steal the stack
   912  // head and replace the top pointer with MLOCKED (1).
   913  // This serves as a simple spin lock that we can use even
   914  // without an m. The thread that locks the stack in this way
   915  // unlocks the stack by storing a valid stack head pointer.
   916  //
   917  // In order to make sure that there is always an m structure
   918  // available to be stolen, we maintain the invariant that there
   919  // is always one more than needed. At the beginning of the
   920  // program (if cgo is in use) the list is seeded with a single m.
   921  // If needm finds that it has taken the last m off the list, its job
   922  // is - once it has installed its own m so that it can do things like
   923  // allocate memory - to create a spare m and put it on the list.
   924  //
   925  // Each of these extra m's also has a g0 and a curg that are
   926  // pressed into service as the scheduling stack and current
   927  // goroutine for the duration of the cgo callback.
   928  //
   929  // When the callback is done with the m, it calls dropm to
   930  // put the m back on the list.
   931  //go:nosplit
   932  func needm(x byte) {
   933  	if iscgo && !cgoHasExtraM {
   934  		// Can happen if C/C++ code calls Go from a global ctor.
   935  		// Can not throw, because scheduler is not initialized yet.
   936  		write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
   937  		exit(1)
   938  	}
   939  
   940  	// Lock extra list, take head, unlock popped list.
   941  	// nilokay=false is safe here because of the invariant above,
   942  	// that the extra list always contains or will soon contain
   943  	// at least one m.
   944  	mp := lockextra(false)
   945  
   946  	// Set needextram when we've just emptied the list,
   947  	// so that the eventual call into cgocallbackg will
   948  	// allocate a new m for the extra list. We delay the
   949  	// allocation until then so that it can be done
   950  	// after exitsyscall makes sure it is okay to be
   951  	// running at all (that is, there's no garbage collection
   952  	// running right now).
   953  	mp.needextram = mp.schedlink == 0
   954  	unlockextra(mp.schedlink.ptr())
   955  
   956  	// Install g (= m->g0) and set the stack bounds
   957  	// to match the current stack. We don't actually know
   958  	// how big the stack is, like we don't know how big any
   959  	// scheduling stack is, but we assume there's at least 32 kB,
   960  	// which is more than enough for us.
   961  	setg(mp.g0)
   962  	_g_ := getg()
   963  	_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
   964  	_g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
   965  	_g_.stackguard0 = _g_.stack.lo + _StackGuard
   966  
   967  	msigsave(mp)
   968  	// Initialize this thread to use the m.
   969  	asminit()
   970  	minit()
   971  }
   972  
   973  var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
   974  
   975  // newextram allocates an m and puts it on the extra list.
   976  // It is called with a working local m, so that it can do things
   977  // like call schedlock and allocate.
   978  func newextram() {
   979  	// Create extra goroutine locked to extra m.
   980  	// The goroutine is the context in which the cgo callback will run.
   981  	// The sched.pc will never be returned to, but setting it to
   982  	// goexit makes clear to the traceback routines where
   983  	// the goroutine stack ends.
   984  	mp := allocm(nil, nil)
   985  	gp := malg(4096)
   986  	gp.sched.pc = funcPC(goexit) + _PCQuantum
   987  	gp.sched.sp = gp.stack.hi
   988  	gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame
   989  	gp.sched.lr = 0
   990  	gp.sched.g = guintptr(unsafe.Pointer(gp))
   991  	gp.syscallpc = gp.sched.pc
   992  	gp.syscallsp = gp.sched.sp
   993  	// malg returns status as Gidle, change to Gsyscall before adding to allg
   994  	// where GC will see it.
   995  	casgstatus(gp, _Gidle, _Gsyscall)
   996  	gp.m = mp
   997  	mp.curg = gp
   998  	mp.locked = _LockInternal
   999  	mp.lockedg = gp
  1000  	gp.lockedm = mp
  1001  	gp.goid = int64(xadd64(&sched.goidgen, 1))
  1002  	if raceenabled {
  1003  		gp.racectx = racegostart(funcPC(newextram))
  1004  	}
  1005  	// put on allg for garbage collector
  1006  	allgadd(gp)
  1007  
  1008  	// Add m to the extra list.
  1009  	mnext := lockextra(true)
  1010  	mp.schedlink.set(mnext)
  1011  	unlockextra(mp)
  1012  }
  1013  
  1014  // dropm is called when a cgo callback has called needm but is now
  1015  // done with the callback and returning back into the non-Go thread.
  1016  // It puts the current m back onto the extra list.
  1017  //
  1018  // The main expense here is the call to signalstack to release the
  1019  // m's signal stack, and then the call to needm on the next callback
  1020  // from this thread. It is tempting to try to save the m for next time,
  1021  // which would eliminate both these costs, but there might not be
  1022  // a next time: the current thread (which Go does not control) might exit.
  1023  // If we saved the m for that thread, there would be an m leak each time
  1024  // such a thread exited. Instead, we acquire and release an m on each
  1025  // call. These should typically not be scheduling operations, just a few
  1026  // atomics, so the cost should be small.
  1027  //
  1028  // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
  1029  // variable using pthread_key_create. Unlike the pthread keys we already use
  1030  // on OS X, this dummy key would never be read by Go code. It would exist
  1031  // only so that we could register at thread-exit-time destructor.
  1032  // That destructor would put the m back onto the extra list.
  1033  // This is purely a performance optimization. The current version,
  1034  // in which dropm happens on each cgo call, is still correct too.
  1035  // We may have to keep the current version on systems with cgo
  1036  // but without pthreads, like Windows.
  1037  func dropm() {
  1038  	// Undo whatever initialization minit did during needm.
  1039  	unminit()
  1040  
  1041  	// Clear m and g, and return m to the extra list.
  1042  	// After the call to setg we can only call nosplit functions
  1043  	// with no pointer manipulation.
  1044  	mp := getg().m
  1045  	mnext := lockextra(true)
  1046  	mp.schedlink.set(mnext)
  1047  
  1048  	setg(nil)
  1049  	unlockextra(mp)
  1050  }
  1051  
  1052  var extram uintptr
  1053  
  1054  // lockextra locks the extra list and returns the list head.
  1055  // The caller must unlock the list by storing a new list head
  1056  // to extram. If nilokay is true, then lockextra will
  1057  // return a nil list head if that's what it finds. If nilokay is false,
  1058  // lockextra will keep waiting until the list head is no longer nil.
  1059  //go:nosplit
  1060  func lockextra(nilokay bool) *m {
  1061  	const locked = 1
  1062  
  1063  	for {
  1064  		old := atomicloaduintptr(&extram)
  1065  		if old == locked {
  1066  			yield := osyield
  1067  			yield()
  1068  			continue
  1069  		}
  1070  		if old == 0 && !nilokay {
  1071  			usleep(1)
  1072  			continue
  1073  		}
  1074  		if casuintptr(&extram, old, locked) {
  1075  			return (*m)(unsafe.Pointer(old))
  1076  		}
  1077  		yield := osyield
  1078  		yield()
  1079  		continue
  1080  	}
  1081  }
  1082  
  1083  //go:nosplit
  1084  func unlockextra(mp *m) {
  1085  	atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp)))
  1086  }
  1087  
  1088  // Create a new m.  It will start off with a call to fn, or else the scheduler.
  1089  // fn needs to be static and not a heap allocated closure.
  1090  // May run with m.p==nil, so write barriers are not allowed.
  1091  //go:nowritebarrier
  1092  func newm(fn func(), _p_ *p) {
  1093  	mp := allocm(_p_, fn)
  1094  	mp.nextp.set(_p_)
  1095  	msigsave(mp)
  1096  	if iscgo {
  1097  		var ts cgothreadstart
  1098  		if _cgo_thread_start == nil {
  1099  			throw("_cgo_thread_start missing")
  1100  		}
  1101  		ts.g.set(mp.g0)
  1102  		ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
  1103  		ts.fn = unsafe.Pointer(funcPC(mstart))
  1104  		asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
  1105  		return
  1106  	}
  1107  	newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
  1108  }
  1109  
  1110  // Stops execution of the current m until new work is available.
  1111  // Returns with acquired P.
  1112  func stopm() {
  1113  	_g_ := getg()
  1114  
  1115  	if _g_.m.locks != 0 {
  1116  		throw("stopm holding locks")
  1117  	}
  1118  	if _g_.m.p != 0 {
  1119  		throw("stopm holding p")
  1120  	}
  1121  	if _g_.m.spinning {
  1122  		_g_.m.spinning = false
  1123  		xadd(&sched.nmspinning, -1)
  1124  	}
  1125  
  1126  retry:
  1127  	lock(&sched.lock)
  1128  	mput(_g_.m)
  1129  	unlock(&sched.lock)
  1130  	notesleep(&_g_.m.park)
  1131  	noteclear(&_g_.m.park)
  1132  	if _g_.m.helpgc != 0 {
  1133  		gchelper()
  1134  		_g_.m.helpgc = 0
  1135  		_g_.m.mcache = nil
  1136  		_g_.m.p = 0
  1137  		goto retry
  1138  	}
  1139  	acquirep(_g_.m.nextp.ptr())
  1140  	_g_.m.nextp = 0
  1141  }
  1142  
  1143  func mspinning() {
  1144  	gp := getg()
  1145  	if !runqempty(gp.m.nextp.ptr()) {
  1146  		// Something (presumably the GC) was readied while the
  1147  		// runtime was starting up this M, so the M is no
  1148  		// longer spinning.
  1149  		if int32(xadd(&sched.nmspinning, -1)) < 0 {
  1150  			throw("mspinning: nmspinning underflowed")
  1151  		}
  1152  	} else {
  1153  		gp.m.spinning = true
  1154  	}
  1155  }
  1156  
  1157  // Schedules some M to run the p (creates an M if necessary).
  1158  // If p==nil, tries to get an idle P, if no idle P's does nothing.
  1159  // May run with m.p==nil, so write barriers are not allowed.
  1160  //go:nowritebarrier
  1161  func startm(_p_ *p, spinning bool) {
  1162  	lock(&sched.lock)
  1163  	if _p_ == nil {
  1164  		_p_ = pidleget()
  1165  		if _p_ == nil {
  1166  			unlock(&sched.lock)
  1167  			if spinning {
  1168  				xadd(&sched.nmspinning, -1)
  1169  			}
  1170  			return
  1171  		}
  1172  	}
  1173  	mp := mget()
  1174  	unlock(&sched.lock)
  1175  	if mp == nil {
  1176  		var fn func()
  1177  		if spinning {
  1178  			fn = mspinning
  1179  		}
  1180  		newm(fn, _p_)
  1181  		return
  1182  	}
  1183  	if mp.spinning {
  1184  		throw("startm: m is spinning")
  1185  	}
  1186  	if mp.nextp != 0 {
  1187  		throw("startm: m has p")
  1188  	}
  1189  	if spinning && !runqempty(_p_) {
  1190  		throw("startm: p has runnable gs")
  1191  	}
  1192  	mp.spinning = spinning
  1193  	mp.nextp.set(_p_)
  1194  	notewakeup(&mp.park)
  1195  }
  1196  
  1197  // Hands off P from syscall or locked M.
  1198  // Always runs without a P, so write barriers are not allowed.
  1199  //go:nowritebarrier
  1200  func handoffp(_p_ *p) {
  1201  	// if it has local work, start it straight away
  1202  	if !runqempty(_p_) || sched.runqsize != 0 {
  1203  		startm(_p_, false)
  1204  		return
  1205  	}
  1206  	// no local work, check that there are no spinning/idle M's,
  1207  	// otherwise our help is not required
  1208  	if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
  1209  		startm(_p_, true)
  1210  		return
  1211  	}
  1212  	lock(&sched.lock)
  1213  	if sched.gcwaiting != 0 {
  1214  		_p_.status = _Pgcstop
  1215  		sched.stopwait--
  1216  		if sched.stopwait == 0 {
  1217  			notewakeup(&sched.stopnote)
  1218  		}
  1219  		unlock(&sched.lock)
  1220  		return
  1221  	}
  1222  	if _p_.runSafePointFn != 0 && cas(&_p_.runSafePointFn, 1, 0) {
  1223  		sched.safePointFn(_p_)
  1224  		sched.safePointWait--
  1225  		if sched.safePointWait == 0 {
  1226  			notewakeup(&sched.safePointNote)
  1227  		}
  1228  	}
  1229  	if sched.runqsize != 0 {
  1230  		unlock(&sched.lock)
  1231  		startm(_p_, false)
  1232  		return
  1233  	}
  1234  	// If this is the last running P and nobody is polling network,
  1235  	// need to wakeup another M to poll network.
  1236  	if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 {
  1237  		unlock(&sched.lock)
  1238  		startm(_p_, false)
  1239  		return
  1240  	}
  1241  	pidleput(_p_)
  1242  	unlock(&sched.lock)
  1243  }
  1244  
  1245  // Tries to add one more P to execute G's.
  1246  // Called when a G is made runnable (newproc, ready).
  1247  func wakep() {
  1248  	// be conservative about spinning threads
  1249  	if !cas(&sched.nmspinning, 0, 1) {
  1250  		return
  1251  	}
  1252  	startm(nil, true)
  1253  }
  1254  
  1255  // Stops execution of the current m that is locked to a g until the g is runnable again.
  1256  // Returns with acquired P.
  1257  func stoplockedm() {
  1258  	_g_ := getg()
  1259  
  1260  	if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
  1261  		throw("stoplockedm: inconsistent locking")
  1262  	}
  1263  	if _g_.m.p != 0 {
  1264  		// Schedule another M to run this p.
  1265  		_p_ := releasep()
  1266  		handoffp(_p_)
  1267  	}
  1268  	incidlelocked(1)
  1269  	// Wait until another thread schedules lockedg again.
  1270  	notesleep(&_g_.m.park)
  1271  	noteclear(&_g_.m.park)
  1272  	status := readgstatus(_g_.m.lockedg)
  1273  	if status&^_Gscan != _Grunnable {
  1274  		print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
  1275  		dumpgstatus(_g_)
  1276  		throw("stoplockedm: not runnable")
  1277  	}
  1278  	acquirep(_g_.m.nextp.ptr())
  1279  	_g_.m.nextp = 0
  1280  }
  1281  
  1282  // Schedules the locked m to run the locked gp.
  1283  // May run during STW, so write barriers are not allowed.
  1284  //go:nowritebarrier
  1285  func startlockedm(gp *g) {
  1286  	_g_ := getg()
  1287  
  1288  	mp := gp.lockedm
  1289  	if mp == _g_.m {
  1290  		throw("startlockedm: locked to me")
  1291  	}
  1292  	if mp.nextp != 0 {
  1293  		throw("startlockedm: m has p")
  1294  	}
  1295  	// directly handoff current P to the locked m
  1296  	incidlelocked(-1)
  1297  	_p_ := releasep()
  1298  	mp.nextp.set(_p_)
  1299  	notewakeup(&mp.park)
  1300  	stopm()
  1301  }
  1302  
  1303  // Stops the current m for stopTheWorld.
  1304  // Returns when the world is restarted.
  1305  func gcstopm() {
  1306  	_g_ := getg()
  1307  
  1308  	if sched.gcwaiting == 0 {
  1309  		throw("gcstopm: not waiting for gc")
  1310  	}
  1311  	if _g_.m.spinning {
  1312  		_g_.m.spinning = false
  1313  		xadd(&sched.nmspinning, -1)
  1314  	}
  1315  	_p_ := releasep()
  1316  	lock(&sched.lock)
  1317  	_p_.status = _Pgcstop
  1318  	sched.stopwait--
  1319  	if sched.stopwait == 0 {
  1320  		notewakeup(&sched.stopnote)
  1321  	}
  1322  	unlock(&sched.lock)
  1323  	stopm()
  1324  }
  1325  
  1326  // Schedules gp to run on the current M.
  1327  // If inheritTime is true, gp inherits the remaining time in the
  1328  // current time slice. Otherwise, it starts a new time slice.
  1329  // Never returns.
  1330  func execute(gp *g, inheritTime bool) {
  1331  	_g_ := getg()
  1332  
  1333  	casgstatus(gp, _Grunnable, _Grunning)
  1334  	gp.waitsince = 0
  1335  	gp.preempt = false
  1336  	gp.stackguard0 = gp.stack.lo + _StackGuard
  1337  	if !inheritTime {
  1338  		_g_.m.p.ptr().schedtick++
  1339  	}
  1340  	_g_.m.curg = gp
  1341  	gp.m = _g_.m
  1342  
  1343  	// Check whether the profiler needs to be turned on or off.
  1344  	hz := sched.profilehz
  1345  	if _g_.m.profilehz != hz {
  1346  		resetcpuprofiler(hz)
  1347  	}
  1348  
  1349  	if trace.enabled {
  1350  		// GoSysExit has to happen when we have a P, but before GoStart.
  1351  		// So we emit it here.
  1352  		if gp.syscallsp != 0 && gp.sysblocktraced {
  1353  			traceGoSysExit(gp.sysexitseq, gp.sysexitticks)
  1354  		}
  1355  		traceGoStart()
  1356  	}
  1357  
  1358  	gogo(&gp.sched)
  1359  }
  1360  
  1361  // Finds a runnable goroutine to execute.
  1362  // Tries to steal from other P's, get g from global queue, poll network.
  1363  func findrunnable() (gp *g, inheritTime bool) {
  1364  	_g_ := getg()
  1365  
  1366  top:
  1367  	if sched.gcwaiting != 0 {
  1368  		gcstopm()
  1369  		goto top
  1370  	}
  1371  	if _g_.m.p.ptr().runSafePointFn != 0 {
  1372  		runSafePointFn()
  1373  	}
  1374  	if fingwait && fingwake {
  1375  		if gp := wakefing(); gp != nil {
  1376  			ready(gp, 0)
  1377  		}
  1378  	}
  1379  
  1380  	// local runq
  1381  	if gp, inheritTime := runqget(_g_.m.p.ptr()); gp != nil {
  1382  		return gp, inheritTime
  1383  	}
  1384  
  1385  	// global runq
  1386  	if sched.runqsize != 0 {
  1387  		lock(&sched.lock)
  1388  		gp := globrunqget(_g_.m.p.ptr(), 0)
  1389  		unlock(&sched.lock)
  1390  		if gp != nil {
  1391  			return gp, false
  1392  		}
  1393  	}
  1394  
  1395  	// Poll network.
  1396  	// This netpoll is only an optimization before we resort to stealing.
  1397  	// We can safely skip it if there a thread blocked in netpoll already.
  1398  	// If there is any kind of logical race with that blocked thread
  1399  	// (e.g. it has already returned from netpoll, but does not set lastpoll yet),
  1400  	// this thread will do blocking netpoll below anyway.
  1401  	if netpollinited() && sched.lastpoll != 0 {
  1402  		if gp := netpoll(false); gp != nil { // non-blocking
  1403  			// netpoll returns list of goroutines linked by schedlink.
  1404  			injectglist(gp.schedlink.ptr())
  1405  			casgstatus(gp, _Gwaiting, _Grunnable)
  1406  			if trace.enabled {
  1407  				traceGoUnpark(gp, 0)
  1408  			}
  1409  			return gp, false
  1410  		}
  1411  	}
  1412  
  1413  	// If number of spinning M's >= number of busy P's, block.
  1414  	// This is necessary to prevent excessive CPU consumption
  1415  	// when GOMAXPROCS>>1 but the program parallelism is low.
  1416  	if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic
  1417  		goto stop
  1418  	}
  1419  	if !_g_.m.spinning {
  1420  		_g_.m.spinning = true
  1421  		xadd(&sched.nmspinning, 1)
  1422  	}
  1423  	// random steal from other P's
  1424  	for i := 0; i < int(4*gomaxprocs); i++ {
  1425  		if sched.gcwaiting != 0 {
  1426  			goto top
  1427  		}
  1428  		_p_ := allp[fastrand1()%uint32(gomaxprocs)]
  1429  		var gp *g
  1430  		if _p_ == _g_.m.p.ptr() {
  1431  			gp, _ = runqget(_p_)
  1432  		} else {
  1433  			stealRunNextG := i > 2*int(gomaxprocs) // first look for ready queues with more than 1 g
  1434  			gp = runqsteal(_g_.m.p.ptr(), _p_, stealRunNextG)
  1435  		}
  1436  		if gp != nil {
  1437  			return gp, false
  1438  		}
  1439  	}
  1440  
  1441  stop:
  1442  
  1443  	// We have nothing to do. If we're in the GC mark phase and can
  1444  	// safely scan and blacken objects, run idle-time marking
  1445  	// rather than give up the P.
  1446  	if _p_ := _g_.m.p.ptr(); gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != nil && gcMarkWorkAvailable(_p_) {
  1447  		_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
  1448  		gp := _p_.gcBgMarkWorker
  1449  		casgstatus(gp, _Gwaiting, _Grunnable)
  1450  		if trace.enabled {
  1451  			traceGoUnpark(gp, 0)
  1452  		}
  1453  		return gp, false
  1454  	}
  1455  
  1456  	// return P and block
  1457  	lock(&sched.lock)
  1458  	if sched.gcwaiting != 0 || _g_.m.p.ptr().runSafePointFn != 0 {
  1459  		unlock(&sched.lock)
  1460  		goto top
  1461  	}
  1462  	if sched.runqsize != 0 {
  1463  		gp := globrunqget(_g_.m.p.ptr(), 0)
  1464  		unlock(&sched.lock)
  1465  		return gp, false
  1466  	}
  1467  	_p_ := releasep()
  1468  	pidleput(_p_)
  1469  	unlock(&sched.lock)
  1470  	if _g_.m.spinning {
  1471  		_g_.m.spinning = false
  1472  		xadd(&sched.nmspinning, -1)
  1473  	}
  1474  
  1475  	// check all runqueues once again
  1476  	for i := 0; i < int(gomaxprocs); i++ {
  1477  		_p_ := allp[i]
  1478  		if _p_ != nil && !runqempty(_p_) {
  1479  			lock(&sched.lock)
  1480  			_p_ = pidleget()
  1481  			unlock(&sched.lock)
  1482  			if _p_ != nil {
  1483  				acquirep(_p_)
  1484  				goto top
  1485  			}
  1486  			break
  1487  		}
  1488  	}
  1489  
  1490  	// poll network
  1491  	if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 {
  1492  		if _g_.m.p != 0 {
  1493  			throw("findrunnable: netpoll with p")
  1494  		}
  1495  		if _g_.m.spinning {
  1496  			throw("findrunnable: netpoll with spinning")
  1497  		}
  1498  		gp := netpoll(true) // block until new work is available
  1499  		atomicstore64(&sched.lastpoll, uint64(nanotime()))
  1500  		if gp != nil {
  1501  			lock(&sched.lock)
  1502  			_p_ = pidleget()
  1503  			unlock(&sched.lock)
  1504  			if _p_ != nil {
  1505  				acquirep(_p_)
  1506  				injectglist(gp.schedlink.ptr())
  1507  				casgstatus(gp, _Gwaiting, _Grunnable)
  1508  				if trace.enabled {
  1509  					traceGoUnpark(gp, 0)
  1510  				}
  1511  				return gp, false
  1512  			}
  1513  			injectglist(gp)
  1514  		}
  1515  	}
  1516  	stopm()
  1517  	goto top
  1518  }
  1519  
  1520  func resetspinning() {
  1521  	_g_ := getg()
  1522  
  1523  	var nmspinning uint32
  1524  	if _g_.m.spinning {
  1525  		_g_.m.spinning = false
  1526  		nmspinning = xadd(&sched.nmspinning, -1)
  1527  		if nmspinning < 0 {
  1528  			throw("findrunnable: negative nmspinning")
  1529  		}
  1530  	} else {
  1531  		nmspinning = atomicload(&sched.nmspinning)
  1532  	}
  1533  
  1534  	// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
  1535  	// so see if we need to wakeup another P here.
  1536  	if nmspinning == 0 && atomicload(&sched.npidle) > 0 {
  1537  		wakep()
  1538  	}
  1539  }
  1540  
  1541  // Injects the list of runnable G's into the scheduler.
  1542  // Can run concurrently with GC.
  1543  func injectglist(glist *g) {
  1544  	if glist == nil {
  1545  		return
  1546  	}
  1547  	if trace.enabled {
  1548  		for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
  1549  			traceGoUnpark(gp, 0)
  1550  		}
  1551  	}
  1552  	lock(&sched.lock)
  1553  	var n int
  1554  	for n = 0; glist != nil; n++ {
  1555  		gp := glist
  1556  		glist = gp.schedlink.ptr()
  1557  		casgstatus(gp, _Gwaiting, _Grunnable)
  1558  		globrunqput(gp)
  1559  	}
  1560  	unlock(&sched.lock)
  1561  	for ; n != 0 && sched.npidle != 0; n-- {
  1562  		startm(nil, false)
  1563  	}
  1564  }
  1565  
  1566  // One round of scheduler: find a runnable goroutine and execute it.
  1567  // Never returns.
  1568  func schedule() {
  1569  	_g_ := getg()
  1570  
  1571  	if _g_.m.locks != 0 {
  1572  		throw("schedule: holding locks")
  1573  	}
  1574  
  1575  	if _g_.m.lockedg != nil {
  1576  		stoplockedm()
  1577  		execute(_g_.m.lockedg, false) // Never returns.
  1578  	}
  1579  
  1580  top:
  1581  	if sched.gcwaiting != 0 {
  1582  		gcstopm()
  1583  		goto top
  1584  	}
  1585  	if _g_.m.p.ptr().runSafePointFn != 0 {
  1586  		runSafePointFn()
  1587  	}
  1588  
  1589  	var gp *g
  1590  	var inheritTime bool
  1591  	if trace.enabled || trace.shutdown {
  1592  		gp = traceReader()
  1593  		if gp != nil {
  1594  			casgstatus(gp, _Gwaiting, _Grunnable)
  1595  			traceGoUnpark(gp, 0)
  1596  			resetspinning()
  1597  		}
  1598  	}
  1599  	if gp == nil && gcBlackenEnabled != 0 {
  1600  		gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
  1601  		if gp != nil {
  1602  			resetspinning()
  1603  		}
  1604  	}
  1605  	if gp == nil {
  1606  		// Check the global runnable queue once in a while to ensure fairness.
  1607  		// Otherwise two goroutines can completely occupy the local runqueue
  1608  		// by constantly respawning each other.
  1609  		if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
  1610  			lock(&sched.lock)
  1611  			gp = globrunqget(_g_.m.p.ptr(), 1)
  1612  			unlock(&sched.lock)
  1613  			if gp != nil {
  1614  				resetspinning()
  1615  			}
  1616  		}
  1617  	}
  1618  	if gp == nil {
  1619  		gp, inheritTime = runqget(_g_.m.p.ptr())
  1620  		if gp != nil && _g_.m.spinning {
  1621  			throw("schedule: spinning with local work")
  1622  		}
  1623  	}
  1624  	if gp == nil {
  1625  		gp, inheritTime = findrunnable() // blocks until work is available
  1626  		resetspinning()
  1627  	}
  1628  
  1629  	if gp.lockedm != nil {
  1630  		// Hands off own p to the locked m,
  1631  		// then blocks waiting for a new p.
  1632  		startlockedm(gp)
  1633  		goto top
  1634  	}
  1635  
  1636  	execute(gp, inheritTime)
  1637  }
  1638  
  1639  // dropg removes the association between m and the current goroutine m->curg (gp for short).
  1640  // Typically a caller sets gp's status away from Grunning and then
  1641  // immediately calls dropg to finish the job. The caller is also responsible
  1642  // for arranging that gp will be restarted using ready at an
  1643  // appropriate time. After calling dropg and arranging for gp to be
  1644  // readied later, the caller can do other work but eventually should
  1645  // call schedule to restart the scheduling of goroutines on this m.
  1646  func dropg() {
  1647  	_g_ := getg()
  1648  
  1649  	if _g_.m.lockedg == nil {
  1650  		_g_.m.curg.m = nil
  1651  		_g_.m.curg = nil
  1652  	}
  1653  }
  1654  
  1655  func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
  1656  	unlock((*mutex)(lock))
  1657  	return true
  1658  }
  1659  
  1660  // park continuation on g0.
  1661  func park_m(gp *g) {
  1662  	_g_ := getg()
  1663  
  1664  	if trace.enabled {
  1665  		traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
  1666  	}
  1667  
  1668  	casgstatus(gp, _Grunning, _Gwaiting)
  1669  	dropg()
  1670  
  1671  	if _g_.m.waitunlockf != nil {
  1672  		fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
  1673  		ok := fn(gp, _g_.m.waitlock)
  1674  		_g_.m.waitunlockf = nil
  1675  		_g_.m.waitlock = nil
  1676  		if !ok {
  1677  			if trace.enabled {
  1678  				traceGoUnpark(gp, 2)
  1679  			}
  1680  			casgstatus(gp, _Gwaiting, _Grunnable)
  1681  			execute(gp, true) // Schedule it back, never returns.
  1682  		}
  1683  	}
  1684  	schedule()
  1685  }
  1686  
  1687  func goschedImpl(gp *g) {
  1688  	status := readgstatus(gp)
  1689  	if status&^_Gscan != _Grunning {
  1690  		dumpgstatus(gp)
  1691  		throw("bad g status")
  1692  	}
  1693  	casgstatus(gp, _Grunning, _Grunnable)
  1694  	dropg()
  1695  	lock(&sched.lock)
  1696  	globrunqput(gp)
  1697  	unlock(&sched.lock)
  1698  
  1699  	schedule()
  1700  }
  1701  
  1702  // Gosched continuation on g0.
  1703  func gosched_m(gp *g) {
  1704  	if trace.enabled {
  1705  		traceGoSched()
  1706  	}
  1707  	goschedImpl(gp)
  1708  }
  1709  
  1710  func gopreempt_m(gp *g) {
  1711  	if trace.enabled {
  1712  		traceGoPreempt()
  1713  	}
  1714  	goschedImpl(gp)
  1715  }
  1716  
  1717  // Finishes execution of the current goroutine.
  1718  func goexit1() {
  1719  	if raceenabled {
  1720  		racegoend()
  1721  	}
  1722  	if trace.enabled {
  1723  		traceGoEnd()
  1724  	}
  1725  	mcall(goexit0)
  1726  }
  1727  
  1728  // goexit continuation on g0.
  1729  func goexit0(gp *g) {
  1730  	_g_ := getg()
  1731  
  1732  	casgstatus(gp, _Grunning, _Gdead)
  1733  	gp.m = nil
  1734  	gp.lockedm = nil
  1735  	_g_.m.lockedg = nil
  1736  	gp.paniconfault = false
  1737  	gp._defer = nil // should be true already but just in case.
  1738  	gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
  1739  	gp.writebuf = nil
  1740  	gp.waitreason = ""
  1741  	gp.param = nil
  1742  
  1743  	dropg()
  1744  
  1745  	if _g_.m.locked&^_LockExternal != 0 {
  1746  		print("invalid m->locked = ", _g_.m.locked, "\n")
  1747  		throw("internal lockOSThread error")
  1748  	}
  1749  	_g_.m.locked = 0
  1750  	gfput(_g_.m.p.ptr(), gp)
  1751  	schedule()
  1752  }
  1753  
  1754  //go:nosplit
  1755  //go:nowritebarrier
  1756  func save(pc, sp uintptr) {
  1757  	_g_ := getg()
  1758  
  1759  	_g_.sched.pc = pc
  1760  	_g_.sched.sp = sp
  1761  	_g_.sched.lr = 0
  1762  	_g_.sched.ret = 0
  1763  	_g_.sched.ctxt = nil
  1764  	_g_.sched.g = guintptr(unsafe.Pointer(_g_))
  1765  }
  1766  
  1767  // The goroutine g is about to enter a system call.
  1768  // Record that it's not using the cpu anymore.
  1769  // This is called only from the go syscall library and cgocall,
  1770  // not from the low-level system calls used by the
  1771  //
  1772  // Entersyscall cannot split the stack: the gosave must
  1773  // make g->sched refer to the caller's stack segment, because
  1774  // entersyscall is going to return immediately after.
  1775  //
  1776  // Nothing entersyscall calls can split the stack either.
  1777  // We cannot safely move the stack during an active call to syscall,
  1778  // because we do not know which of the uintptr arguments are
  1779  // really pointers (back into the stack).
  1780  // In practice, this means that we make the fast path run through
  1781  // entersyscall doing no-split things, and the slow path has to use systemstack
  1782  // to run bigger things on the system stack.
  1783  //
  1784  // reentersyscall is the entry point used by cgo callbacks, where explicitly
  1785  // saved SP and PC are restored. This is needed when exitsyscall will be called
  1786  // from a function further up in the call stack than the parent, as g->syscallsp
  1787  // must always point to a valid stack frame. entersyscall below is the normal
  1788  // entry point for syscalls, which obtains the SP and PC from the caller.
  1789  //
  1790  // Syscall tracing:
  1791  // At the start of a syscall we emit traceGoSysCall to capture the stack trace.
  1792  // If the syscall does not block, that is it, we do not emit any other events.
  1793  // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
  1794  // when syscall returns we emit traceGoSysExit and when the goroutine starts running
  1795  // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
  1796  // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
  1797  // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
  1798  // whoever emits traceGoSysBlock increments p.syscalltick afterwards;
  1799  // and we wait for the increment before emitting traceGoSysExit.
  1800  // Note that the increment is done even if tracing is not enabled,
  1801  // because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
  1802  //
  1803  //go:nosplit
  1804  func reentersyscall(pc, sp uintptr) {
  1805  	_g_ := getg()
  1806  
  1807  	// Disable preemption because during this function g is in Gsyscall status,
  1808  	// but can have inconsistent g->sched, do not let GC observe it.
  1809  	_g_.m.locks++
  1810  
  1811  	if trace.enabled {
  1812  		systemstack(traceGoSysCall)
  1813  	}
  1814  
  1815  	// Entersyscall must not call any function that might split/grow the stack.
  1816  	// (See details in comment above.)
  1817  	// Catch calls that might, by replacing the stack guard with something that
  1818  	// will trip any stack check and leaving a flag to tell newstack to die.
  1819  	_g_.stackguard0 = stackPreempt
  1820  	_g_.throwsplit = true
  1821  
  1822  	// Leave SP around for GC and traceback.
  1823  	save(pc, sp)
  1824  	_g_.syscallsp = sp
  1825  	_g_.syscallpc = pc
  1826  	casgstatus(_g_, _Grunning, _Gsyscall)
  1827  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  1828  		systemstack(func() {
  1829  			print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  1830  			throw("entersyscall")
  1831  		})
  1832  	}
  1833  
  1834  	if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic
  1835  		systemstack(entersyscall_sysmon)
  1836  		save(pc, sp)
  1837  	}
  1838  
  1839  	if _g_.m.p.ptr().runSafePointFn != 0 {
  1840  		// runSafePointFn may stack split if run on this stack
  1841  		systemstack(runSafePointFn)
  1842  		save(pc, sp)
  1843  	}
  1844  
  1845  	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
  1846  	_g_.sysblocktraced = true
  1847  	_g_.m.mcache = nil
  1848  	_g_.m.p.ptr().m = 0
  1849  	atomicstore(&_g_.m.p.ptr().status, _Psyscall)
  1850  	if sched.gcwaiting != 0 {
  1851  		systemstack(entersyscall_gcwait)
  1852  		save(pc, sp)
  1853  	}
  1854  
  1855  	// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
  1856  	// We set _StackGuard to StackPreempt so that first split stack check calls morestack.
  1857  	// Morestack detects this case and throws.
  1858  	_g_.stackguard0 = stackPreempt
  1859  	_g_.m.locks--
  1860  }
  1861  
  1862  // Standard syscall entry used by the go syscall library and normal cgo calls.
  1863  //go:nosplit
  1864  func entersyscall(dummy int32) {
  1865  	reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
  1866  }
  1867  
  1868  func entersyscall_sysmon() {
  1869  	lock(&sched.lock)
  1870  	if atomicload(&sched.sysmonwait) != 0 {
  1871  		atomicstore(&sched.sysmonwait, 0)
  1872  		notewakeup(&sched.sysmonnote)
  1873  	}
  1874  	unlock(&sched.lock)
  1875  }
  1876  
  1877  func entersyscall_gcwait() {
  1878  	_g_ := getg()
  1879  	_p_ := _g_.m.p.ptr()
  1880  
  1881  	lock(&sched.lock)
  1882  	if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) {
  1883  		if trace.enabled {
  1884  			traceGoSysBlock(_p_)
  1885  			traceProcStop(_p_)
  1886  		}
  1887  		_p_.syscalltick++
  1888  		if sched.stopwait--; sched.stopwait == 0 {
  1889  			notewakeup(&sched.stopnote)
  1890  		}
  1891  	}
  1892  	unlock(&sched.lock)
  1893  }
  1894  
  1895  // The same as entersyscall(), but with a hint that the syscall is blocking.
  1896  //go:nosplit
  1897  func entersyscallblock(dummy int32) {
  1898  	_g_ := getg()
  1899  
  1900  	_g_.m.locks++ // see comment in entersyscall
  1901  	_g_.throwsplit = true
  1902  	_g_.stackguard0 = stackPreempt // see comment in entersyscall
  1903  	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
  1904  	_g_.sysblocktraced = true
  1905  	_g_.m.p.ptr().syscalltick++
  1906  
  1907  	// Leave SP around for GC and traceback.
  1908  	pc := getcallerpc(unsafe.Pointer(&dummy))
  1909  	sp := getcallersp(unsafe.Pointer(&dummy))
  1910  	save(pc, sp)
  1911  	_g_.syscallsp = _g_.sched.sp
  1912  	_g_.syscallpc = _g_.sched.pc
  1913  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  1914  		sp1 := sp
  1915  		sp2 := _g_.sched.sp
  1916  		sp3 := _g_.syscallsp
  1917  		systemstack(func() {
  1918  			print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  1919  			throw("entersyscallblock")
  1920  		})
  1921  	}
  1922  	casgstatus(_g_, _Grunning, _Gsyscall)
  1923  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  1924  		systemstack(func() {
  1925  			print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  1926  			throw("entersyscallblock")
  1927  		})
  1928  	}
  1929  
  1930  	systemstack(entersyscallblock_handoff)
  1931  
  1932  	// Resave for traceback during blocked call.
  1933  	save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
  1934  
  1935  	_g_.m.locks--
  1936  }
  1937  
  1938  func entersyscallblock_handoff() {
  1939  	if trace.enabled {
  1940  		traceGoSysCall()
  1941  		traceGoSysBlock(getg().m.p.ptr())
  1942  	}
  1943  	handoffp(releasep())
  1944  }
  1945  
  1946  // The goroutine g exited its system call.
  1947  // Arrange for it to run on a cpu again.
  1948  // This is called only from the go syscall library, not
  1949  // from the low-level system calls used by the
  1950  //go:nosplit
  1951  func exitsyscall(dummy int32) {
  1952  	_g_ := getg()
  1953  
  1954  	_g_.m.locks++ // see comment in entersyscall
  1955  	if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
  1956  		throw("exitsyscall: syscall frame is no longer valid")
  1957  	}
  1958  
  1959  	_g_.waitsince = 0
  1960  	oldp := _g_.m.p.ptr()
  1961  	if exitsyscallfast() {
  1962  		if _g_.m.mcache == nil {
  1963  			throw("lost mcache")
  1964  		}
  1965  		if trace.enabled {
  1966  			if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
  1967  				systemstack(traceGoStart)
  1968  			}
  1969  		}
  1970  		// There's a cpu for us, so we can run.
  1971  		_g_.m.p.ptr().syscalltick++
  1972  		// We need to cas the status and scan before resuming...
  1973  		casgstatus(_g_, _Gsyscall, _Grunning)
  1974  
  1975  		// Garbage collector isn't running (since we are),
  1976  		// so okay to clear syscallsp.
  1977  		_g_.syscallsp = 0
  1978  		_g_.m.locks--
  1979  		if _g_.preempt {
  1980  			// restore the preemption request in case we've cleared it in newstack
  1981  			_g_.stackguard0 = stackPreempt
  1982  		} else {
  1983  			// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
  1984  			_g_.stackguard0 = _g_.stack.lo + _StackGuard
  1985  		}
  1986  		_g_.throwsplit = false
  1987  		return
  1988  	}
  1989  
  1990  	_g_.sysexitticks = 0
  1991  	_g_.sysexitseq = 0
  1992  	if trace.enabled {
  1993  		// Wait till traceGoSysBlock event is emitted.
  1994  		// This ensures consistency of the trace (the goroutine is started after it is blocked).
  1995  		for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
  1996  			osyield()
  1997  		}
  1998  		// We can't trace syscall exit right now because we don't have a P.
  1999  		// Tracing code can invoke write barriers that cannot run without a P.
  2000  		// So instead we remember the syscall exit time and emit the event
  2001  		// in execute when we have a P.
  2002  		_g_.sysexitseq, _g_.sysexitticks = tracestamp()
  2003  	}
  2004  
  2005  	_g_.m.locks--
  2006  
  2007  	// Call the scheduler.
  2008  	mcall(exitsyscall0)
  2009  
  2010  	if _g_.m.mcache == nil {
  2011  		throw("lost mcache")
  2012  	}
  2013  
  2014  	// Scheduler returned, so we're allowed to run now.
  2015  	// Delete the syscallsp information that we left for
  2016  	// the garbage collector during the system call.
  2017  	// Must wait until now because until gosched returns
  2018  	// we don't know for sure that the garbage collector
  2019  	// is not running.
  2020  	_g_.syscallsp = 0
  2021  	_g_.m.p.ptr().syscalltick++
  2022  	_g_.throwsplit = false
  2023  }
  2024  
  2025  //go:nosplit
  2026  func exitsyscallfast() bool {
  2027  	_g_ := getg()
  2028  
  2029  	// Freezetheworld sets stopwait but does not retake P's.
  2030  	if sched.stopwait == freezeStopWait {
  2031  		_g_.m.mcache = nil
  2032  		_g_.m.p = 0
  2033  		return false
  2034  	}
  2035  
  2036  	// Try to re-acquire the last P.
  2037  	if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
  2038  		// There's a cpu for us, so we can run.
  2039  		_g_.m.mcache = _g_.m.p.ptr().mcache
  2040  		_g_.m.p.ptr().m.set(_g_.m)
  2041  		if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
  2042  			if trace.enabled {
  2043  				// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
  2044  				// traceGoSysBlock for this syscall was already emitted,
  2045  				// but here we effectively retake the p from the new syscall running on the same p.
  2046  				systemstack(func() {
  2047  					// Denote blocking of the new syscall.
  2048  					traceGoSysBlock(_g_.m.p.ptr())
  2049  					// Denote completion of the current syscall.
  2050  					traceGoSysExit(tracestamp())
  2051  				})
  2052  			}
  2053  			_g_.m.p.ptr().syscalltick++
  2054  		}
  2055  		return true
  2056  	}
  2057  
  2058  	// Try to get any other idle P.
  2059  	oldp := _g_.m.p.ptr()
  2060  	_g_.m.mcache = nil
  2061  	_g_.m.p = 0
  2062  	if sched.pidle != 0 {
  2063  		var ok bool
  2064  		systemstack(func() {
  2065  			ok = exitsyscallfast_pidle()
  2066  			if ok && trace.enabled {
  2067  				if oldp != nil {
  2068  					// Wait till traceGoSysBlock event is emitted.
  2069  					// This ensures consistency of the trace (the goroutine is started after it is blocked).
  2070  					for oldp.syscalltick == _g_.m.syscalltick {
  2071  						osyield()
  2072  					}
  2073  				}
  2074  				traceGoSysExit(tracestamp())
  2075  			}
  2076  		})
  2077  		if ok {
  2078  			return true
  2079  		}
  2080  	}
  2081  	return false
  2082  }
  2083  
  2084  func exitsyscallfast_pidle() bool {
  2085  	lock(&sched.lock)
  2086  	_p_ := pidleget()
  2087  	if _p_ != nil && atomicload(&sched.sysmonwait) != 0 {
  2088  		atomicstore(&sched.sysmonwait, 0)
  2089  		notewakeup(&sched.sysmonnote)
  2090  	}
  2091  	unlock(&sched.lock)
  2092  	if _p_ != nil {
  2093  		acquirep(_p_)
  2094  		return true
  2095  	}
  2096  	return false
  2097  }
  2098  
  2099  // exitsyscall slow path on g0.
  2100  // Failed to acquire P, enqueue gp as runnable.
  2101  func exitsyscall0(gp *g) {
  2102  	_g_ := getg()
  2103  
  2104  	casgstatus(gp, _Gsyscall, _Grunnable)
  2105  	dropg()
  2106  	lock(&sched.lock)
  2107  	_p_ := pidleget()
  2108  	if _p_ == nil {
  2109  		globrunqput(gp)
  2110  	} else if atomicload(&sched.sysmonwait) != 0 {
  2111  		atomicstore(&sched.sysmonwait, 0)
  2112  		notewakeup(&sched.sysmonnote)
  2113  	}
  2114  	unlock(&sched.lock)
  2115  	if _p_ != nil {
  2116  		acquirep(_p_)
  2117  		execute(gp, false) // Never returns.
  2118  	}
  2119  	if _g_.m.lockedg != nil {
  2120  		// Wait until another thread schedules gp and so m again.
  2121  		stoplockedm()
  2122  		execute(gp, false) // Never returns.
  2123  	}
  2124  	stopm()
  2125  	schedule() // Never returns.
  2126  }
  2127  
  2128  func beforefork() {
  2129  	gp := getg().m.curg
  2130  
  2131  	// Fork can hang if preempted with signals frequently enough (see issue 5517).
  2132  	// Ensure that we stay on the same M where we disable profiling.
  2133  	gp.m.locks++
  2134  	if gp.m.profilehz != 0 {
  2135  		resetcpuprofiler(0)
  2136  	}
  2137  
  2138  	// This function is called before fork in syscall package.
  2139  	// Code between fork and exec must not allocate memory nor even try to grow stack.
  2140  	// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
  2141  	// runtime_AfterFork will undo this in parent process, but not in child.
  2142  	gp.stackguard0 = stackFork
  2143  }
  2144  
  2145  // Called from syscall package before fork.
  2146  //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
  2147  //go:nosplit
  2148  func syscall_runtime_BeforeFork() {
  2149  	systemstack(beforefork)
  2150  }
  2151  
  2152  func afterfork() {
  2153  	gp := getg().m.curg
  2154  
  2155  	// See the comment in beforefork.
  2156  	gp.stackguard0 = gp.stack.lo + _StackGuard
  2157  
  2158  	hz := sched.profilehz
  2159  	if hz != 0 {
  2160  		resetcpuprofiler(hz)
  2161  	}
  2162  	gp.m.locks--
  2163  }
  2164  
  2165  // Called from syscall package after fork in parent.
  2166  //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
  2167  //go:nosplit
  2168  func syscall_runtime_AfterFork() {
  2169  	systemstack(afterfork)
  2170  }
  2171  
  2172  // Allocate a new g, with a stack big enough for stacksize bytes.
  2173  func malg(stacksize int32) *g {
  2174  	newg := new(g)
  2175  	if stacksize >= 0 {
  2176  		stacksize = round2(_StackSystem + stacksize)
  2177  		systemstack(func() {
  2178  			newg.stack, newg.stkbar = stackalloc(uint32(stacksize))
  2179  		})
  2180  		newg.stackguard0 = newg.stack.lo + _StackGuard
  2181  		newg.stackguard1 = ^uintptr(0)
  2182  		newg.stackAlloc = uintptr(stacksize)
  2183  	}
  2184  	return newg
  2185  }
  2186  
  2187  // Create a new g running fn with siz bytes of arguments.
  2188  // Put it on the queue of g's waiting to run.
  2189  // The compiler turns a go statement into a call to this.
  2190  // Cannot split the stack because it assumes that the arguments
  2191  // are available sequentially after &fn; they would not be
  2192  // copied if a stack split occurred.
  2193  // Go关键字的底层实现
  2194  //go:nosplit
  2195  func newproc(siz int32, fn *funcval) {
  2196  	argp := add(unsafe.Pointer(&fn), ptrSize)
  2197  	pc := getcallerpc(unsafe.Pointer(&siz))
  2198  	systemstack(func() {
  2199  		newproc1(fn, (*uint8)(argp), siz, 0, pc)
  2200  	})
  2201  }
  2202  
  2203  // Create a new g running fn with narg bytes of arguments starting
  2204  // at argp and returning nret bytes of results.  callerpc is the
  2205  // address of the go statement that created this.  The new g is put
  2206  // on the queue of g's waiting to run.
  2207  func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
  2208  	_g_ := getg()
  2209  
  2210  	if fn == nil {
  2211  		_g_.m.throwing = -1 // do not dump full stacks
  2212  		throw("go of nil func value")
  2213  	}
  2214  	_g_.m.locks++ // disable preemption because it can be holding p in a local var
  2215  	siz := narg + nret
  2216  	siz = (siz + 7) &^ 7
  2217  
  2218  	// We could allocate a larger initial stack if necessary.
  2219  	// Not worth it: this is almost always an error.
  2220  	// 4*sizeof(uintreg): extra space added below
  2221  	// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
  2222  	if siz >= _StackMin-4*regSize-regSize {
  2223  		throw("newproc: function arguments too large for new goroutine")
  2224  	}
  2225  
  2226  	_p_ := _g_.m.p.ptr()
  2227  	newg := gfget(_p_)
  2228  	if newg == nil {
  2229  		newg = malg(_StackMin)
  2230  		casgstatus(newg, _Gidle, _Gdead)
  2231  		allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
  2232  	}
  2233  	if newg.stack.hi == 0 {
  2234  		throw("newproc1: newg missing stack")
  2235  	}
  2236  
  2237  	if readgstatus(newg) != _Gdead {
  2238  		throw("newproc1: new g is not Gdead")
  2239  	}
  2240  
  2241  	totalSize := 4*regSize + uintptr(siz) // extra space in case of reads slightly beyond frame
  2242  	if hasLinkRegister {
  2243  		totalSize += ptrSize
  2244  	}
  2245  	totalSize += -totalSize & (spAlign - 1) // align to spAlign
  2246  	sp := newg.stack.hi - totalSize
  2247  	spArg := sp
  2248  	if hasLinkRegister {
  2249  		// caller's LR
  2250  		*(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
  2251  		spArg += ptrSize
  2252  	}
  2253  	memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
  2254  
  2255  	memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
  2256  	newg.sched.sp = sp
  2257  	newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function
  2258  	newg.sched.g = guintptr(unsafe.Pointer(newg))
  2259  	gostartcallfn(&newg.sched, fn)
  2260  	newg.gopc = callerpc
  2261  	newg.startpc = fn.fn
  2262  	casgstatus(newg, _Gdead, _Grunnable)
  2263  
  2264  	if _p_.goidcache == _p_.goidcacheend {
  2265  		// Sched.goidgen is the last allocated id,
  2266  		// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
  2267  		// At startup sched.goidgen=0, so main goroutine receives goid=1.
  2268  		_p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch)
  2269  		_p_.goidcache -= _GoidCacheBatch - 1
  2270  		_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
  2271  	}
  2272  	newg.goid = int64(_p_.goidcache)
  2273  	_p_.goidcache++
  2274  	if raceenabled {
  2275  		newg.racectx = racegostart(callerpc)
  2276  	}
  2277  	if trace.enabled {
  2278  		traceGoCreate(newg, newg.startpc)
  2279  	}
  2280  	runqput(_p_, newg, true)
  2281  
  2282  	if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
  2283  		wakep()
  2284  	}
  2285  	_g_.m.locks--
  2286  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
  2287  		_g_.stackguard0 = stackPreempt
  2288  	}
  2289  	return newg
  2290  }
  2291  
  2292  // Put on gfree list.
  2293  // If local list is too long, transfer a batch to the global list.
  2294  func gfput(_p_ *p, gp *g) {
  2295  	if readgstatus(gp) != _Gdead {
  2296  		throw("gfput: bad status (not Gdead)")
  2297  	}
  2298  
  2299  	stksize := gp.stackAlloc
  2300  
  2301  	if stksize != _FixedStack {
  2302  		// non-standard stack size - free it.
  2303  		stackfree(gp.stack, gp.stackAlloc)
  2304  		gp.stack.lo = 0
  2305  		gp.stack.hi = 0
  2306  		gp.stackguard0 = 0
  2307  		gp.stkbar = nil
  2308  		gp.stkbarPos = 0
  2309  	} else {
  2310  		// Reset stack barriers.
  2311  		gp.stkbar = gp.stkbar[:0]
  2312  		gp.stkbarPos = 0
  2313  	}
  2314  
  2315  	gp.schedlink.set(_p_.gfree)
  2316  	_p_.gfree = gp
  2317  	_p_.gfreecnt++
  2318  	if _p_.gfreecnt >= 64 {
  2319  		lock(&sched.gflock)
  2320  		for _p_.gfreecnt >= 32 {
  2321  			_p_.gfreecnt--
  2322  			gp = _p_.gfree
  2323  			_p_.gfree = gp.schedlink.ptr()
  2324  			gp.schedlink.set(sched.gfree)
  2325  			sched.gfree = gp
  2326  			sched.ngfree++
  2327  		}
  2328  		unlock(&sched.gflock)
  2329  	}
  2330  }
  2331  
  2332  // Get from gfree list.
  2333  // If local list is empty, grab a batch from global list.
  2334  func gfget(_p_ *p) *g {
  2335  retry:
  2336  	gp := _p_.gfree
  2337  	if gp == nil && sched.gfree != nil {
  2338  		lock(&sched.gflock)
  2339  		for _p_.gfreecnt < 32 && sched.gfree != nil {
  2340  			_p_.gfreecnt++
  2341  			gp = sched.gfree
  2342  			sched.gfree = gp.schedlink.ptr()
  2343  			sched.ngfree--
  2344  			gp.schedlink.set(_p_.gfree)
  2345  			_p_.gfree = gp
  2346  		}
  2347  		unlock(&sched.gflock)
  2348  		goto retry
  2349  	}
  2350  	if gp != nil {
  2351  		_p_.gfree = gp.schedlink.ptr()
  2352  		_p_.gfreecnt--
  2353  		if gp.stack.lo == 0 {
  2354  			// Stack was deallocated in gfput.  Allocate a new one.
  2355  			systemstack(func() {
  2356  				gp.stack, gp.stkbar = stackalloc(_FixedStack)
  2357  			})
  2358  			gp.stackguard0 = gp.stack.lo + _StackGuard
  2359  			gp.stackAlloc = _FixedStack
  2360  		} else {
  2361  			if raceenabled {
  2362  				racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
  2363  			}
  2364  		}
  2365  	}
  2366  	return gp
  2367  }
  2368  
  2369  // Purge all cached G's from gfree list to the global list.
  2370  func gfpurge(_p_ *p) {
  2371  	lock(&sched.gflock)
  2372  	for _p_.gfreecnt != 0 {
  2373  		_p_.gfreecnt--
  2374  		gp := _p_.gfree
  2375  		_p_.gfree = gp.schedlink.ptr()
  2376  		gp.schedlink.set(sched.gfree)
  2377  		sched.gfree = gp
  2378  		sched.ngfree++
  2379  	}
  2380  	unlock(&sched.gflock)
  2381  }
  2382  
  2383  // Breakpoint executes a breakpoint trap.
  2384  func Breakpoint() {
  2385  	breakpoint()
  2386  }
  2387  
  2388  // dolockOSThread is called by LockOSThread and lockOSThread below
  2389  // after they modify m.locked. Do not allow preemption during this call,
  2390  // or else the m might be different in this function than in the caller.
  2391  //go:nosplit
  2392  func dolockOSThread() {
  2393  	_g_ := getg()
  2394  	_g_.m.lockedg = _g_
  2395  	_g_.lockedm = _g_.m
  2396  }
  2397  
  2398  //go:nosplit
  2399  
  2400  // LockOSThread wires the calling goroutine to its current operating system thread.
  2401  // Until the calling goroutine exits or calls UnlockOSThread, it will always
  2402  // execute in that thread, and no other goroutine can.
  2403  func LockOSThread() {
  2404  	getg().m.locked |= _LockExternal
  2405  	dolockOSThread()
  2406  }
  2407  
  2408  //go:nosplit
  2409  func lockOSThread() {
  2410  	getg().m.locked += _LockInternal
  2411  	dolockOSThread()
  2412  }
  2413  
  2414  // dounlockOSThread is called by UnlockOSThread and unlockOSThread below
  2415  // after they update m->locked. Do not allow preemption during this call,
  2416  // or else the m might be in different in this function than in the caller.
  2417  //go:nosplit
  2418  func dounlockOSThread() {
  2419  	_g_ := getg()
  2420  	if _g_.m.locked != 0 {
  2421  		return
  2422  	}
  2423  	_g_.m.lockedg = nil
  2424  	_g_.lockedm = nil
  2425  }
  2426  
  2427  //go:nosplit
  2428  
  2429  // UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
  2430  // If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
  2431  func UnlockOSThread() {
  2432  	getg().m.locked &^= _LockExternal
  2433  	dounlockOSThread()
  2434  }
  2435  
  2436  //go:nosplit
  2437  func unlockOSThread() {
  2438  	_g_ := getg()
  2439  	if _g_.m.locked < _LockInternal {
  2440  		systemstack(badunlockosthread)
  2441  	}
  2442  	_g_.m.locked -= _LockInternal
  2443  	dounlockOSThread()
  2444  }
  2445  
  2446  func badunlockosthread() {
  2447  	throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
  2448  }
  2449  
  2450  func gcount() int32 {
  2451  	n := int32(allglen) - sched.ngfree
  2452  	for i := 0; ; i++ {
  2453  		_p_ := allp[i]
  2454  		if _p_ == nil {
  2455  			break
  2456  		}
  2457  		n -= _p_.gfreecnt
  2458  	}
  2459  
  2460  	// All these variables can be changed concurrently, so the result can be inconsistent.
  2461  	// But at least the current goroutine is running.
  2462  	if n < 1 {
  2463  		n = 1
  2464  	}
  2465  	return n
  2466  }
  2467  
  2468  func mcount() int32 {
  2469  	return sched.mcount
  2470  }
  2471  
  2472  var prof struct {
  2473  	lock uint32
  2474  	hz   int32
  2475  }
  2476  
  2477  func _System()       { _System() }
  2478  func _ExternalCode() { _ExternalCode() }
  2479  func _GC()           { _GC() }
  2480  
  2481  // Called if we receive a SIGPROF signal.
  2482  func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
  2483  	if prof.hz == 0 {
  2484  		return
  2485  	}
  2486  
  2487  	// Profiling runs concurrently with GC, so it must not allocate.
  2488  	mp.mallocing++
  2489  
  2490  	// Coordinate with stack barrier insertion in scanstack.
  2491  	for !cas(&gp.stackLock, 0, 1) {
  2492  		osyield()
  2493  	}
  2494  
  2495  	// Define that a "user g" is a user-created goroutine, and a "system g"
  2496  	// is one that is m->g0 or m->gsignal.
  2497  	//
  2498  	// We might be interrupted for profiling halfway through a
  2499  	// goroutine switch. The switch involves updating three (or four) values:
  2500  	// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
  2501  	// because once it gets updated the new g is running.
  2502  	//
  2503  	// When switching from a user g to a system g, LR is not considered live,
  2504  	// so the update only affects g, SP, and PC. Since PC must be last, there
  2505  	// the possible partial transitions in ordinary execution are (1) g alone is updated,
  2506  	// (2) both g and SP are updated, and (3) SP alone is updated.
  2507  	// If SP or g alone is updated, we can detect the partial transition by checking
  2508  	// whether the SP is within g's stack bounds. (We could also require that SP
  2509  	// be changed only after g, but the stack bounds check is needed by other
  2510  	// cases, so there is no need to impose an additional requirement.)
  2511  	//
  2512  	// There is one exceptional transition to a system g, not in ordinary execution.
  2513  	// When a signal arrives, the operating system starts the signal handler running
  2514  	// with an updated PC and SP. The g is updated last, at the beginning of the
  2515  	// handler. There are two reasons this is okay. First, until g is updated the
  2516  	// g and SP do not match, so the stack bounds check detects the partial transition.
  2517  	// Second, signal handlers currently run with signals disabled, so a profiling
  2518  	// signal cannot arrive during the handler.
  2519  	//
  2520  	// When switching from a system g to a user g, there are three possibilities.
  2521  	//
  2522  	// First, it may be that the g switch has no PC update, because the SP
  2523  	// either corresponds to a user g throughout (as in asmcgocall)
  2524  	// or because it has been arranged to look like a user g frame
  2525  	// (as in cgocallback_gofunc). In this case, since the entire
  2526  	// transition is a g+SP update, a partial transition updating just one of
  2527  	// those will be detected by the stack bounds check.
  2528  	//
  2529  	// Second, when returning from a signal handler, the PC and SP updates
  2530  	// are performed by the operating system in an atomic update, so the g
  2531  	// update must be done before them. The stack bounds check detects
  2532  	// the partial transition here, and (again) signal handlers run with signals
  2533  	// disabled, so a profiling signal cannot arrive then anyway.
  2534  	//
  2535  	// Third, the common case: it may be that the switch updates g, SP, and PC
  2536  	// separately. If the PC is within any of the functions that does this,
  2537  	// we don't ask for a traceback. C.F. the function setsSP for more about this.
  2538  	//
  2539  	// There is another apparently viable approach, recorded here in case
  2540  	// the "PC within setsSP function" check turns out not to be usable.
  2541  	// It would be possible to delay the update of either g or SP until immediately
  2542  	// before the PC update instruction. Then, because of the stack bounds check,
  2543  	// the only problematic interrupt point is just before that PC update instruction,
  2544  	// and the sigprof handler can detect that instruction and simulate stepping past
  2545  	// it in order to reach a consistent state. On ARM, the update of g must be made
  2546  	// in two places (in R10 and also in a TLS slot), so the delayed update would
  2547  	// need to be the SP update. The sigprof handler must read the instruction at
  2548  	// the current PC and if it was the known instruction (for example, JMP BX or
  2549  	// MOV R2, PC), use that other register in place of the PC value.
  2550  	// The biggest drawback to this solution is that it requires that we can tell
  2551  	// whether it's safe to read from the memory pointed at by PC.
  2552  	// In a correct program, we can test PC == nil and otherwise read,
  2553  	// but if a profiling signal happens at the instant that a program executes
  2554  	// a bad jump (before the program manages to handle the resulting fault)
  2555  	// the profiling handler could fault trying to read nonexistent memory.
  2556  	//
  2557  	// To recap, there are no constraints on the assembly being used for the
  2558  	// transition. We simply require that g and SP match and that the PC is not
  2559  	// in gogo.
  2560  	traceback := true
  2561  	if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) {
  2562  		traceback = false
  2563  	}
  2564  	var stk [maxCPUProfStack]uintptr
  2565  	n := 0
  2566  	if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
  2567  		// Cgo, we can't unwind and symbolize arbitrary C code,
  2568  		// so instead collect Go stack that leads to the cgo call.
  2569  		// This is especially important on windows, since all syscalls are cgo calls.
  2570  		n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0)
  2571  	} else if traceback {
  2572  		n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
  2573  	}
  2574  	if !traceback || n <= 0 {
  2575  		// Normal traceback is impossible or has failed.
  2576  		// See if it falls into several common cases.
  2577  		n = 0
  2578  		if GOOS == "windows" && n == 0 && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
  2579  			// Libcall, i.e. runtime syscall on windows.
  2580  			// Collect Go stack that leads to the call.
  2581  			n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
  2582  		}
  2583  		if n == 0 {
  2584  			// If all of the above has failed, account it against abstract "System" or "GC".
  2585  			n = 2
  2586  			// "ExternalCode" is better than "etext".
  2587  			if pc > firstmoduledata.etext {
  2588  				pc = funcPC(_ExternalCode) + _PCQuantum
  2589  			}
  2590  			stk[0] = pc
  2591  			if mp.preemptoff != "" || mp.helpgc != 0 {
  2592  				stk[1] = funcPC(_GC) + _PCQuantum
  2593  			} else {
  2594  				stk[1] = funcPC(_System) + _PCQuantum
  2595  			}
  2596  		}
  2597  	}
  2598  	atomicstore(&gp.stackLock, 0)
  2599  
  2600  	if prof.hz != 0 {
  2601  		// Simple cas-lock to coordinate with setcpuprofilerate.
  2602  		for !cas(&prof.lock, 0, 1) {
  2603  			osyield()
  2604  		}
  2605  		if prof.hz != 0 {
  2606  			cpuprof.add(stk[:n])
  2607  		}
  2608  		atomicstore(&prof.lock, 0)
  2609  	}
  2610  	mp.mallocing--
  2611  }
  2612  
  2613  // Reports whether a function will set the SP
  2614  // to an absolute value. Important that
  2615  // we don't traceback when these are at the bottom
  2616  // of the stack since we can't be sure that we will
  2617  // find the caller.
  2618  //
  2619  // If the function is not on the bottom of the stack
  2620  // we assume that it will have set it up so that traceback will be consistent,
  2621  // either by being a traceback terminating function
  2622  // or putting one on the stack at the right offset.
  2623  func setsSP(pc uintptr) bool {
  2624  	f := findfunc(pc)
  2625  	if f == nil {
  2626  		// couldn't find the function for this PC,
  2627  		// so assume the worst and stop traceback
  2628  		return true
  2629  	}
  2630  	switch f.entry {
  2631  	case gogoPC, systemstackPC, mcallPC, morestackPC:
  2632  		return true
  2633  	}
  2634  	return false
  2635  }
  2636  
  2637  // Arrange to call fn with a traceback hz times a second.
  2638  func setcpuprofilerate_m(hz int32) {
  2639  	// Force sane arguments.
  2640  	if hz < 0 {
  2641  		hz = 0
  2642  	}
  2643  
  2644  	// Disable preemption, otherwise we can be rescheduled to another thread
  2645  	// that has profiling enabled.
  2646  	_g_ := getg()
  2647  	_g_.m.locks++
  2648  
  2649  	// Stop profiler on this thread so that it is safe to lock prof.
  2650  	// if a profiling signal came in while we had prof locked,
  2651  	// it would deadlock.
  2652  	resetcpuprofiler(0)
  2653  
  2654  	for !cas(&prof.lock, 0, 1) {
  2655  		osyield()
  2656  	}
  2657  	prof.hz = hz
  2658  	atomicstore(&prof.lock, 0)
  2659  
  2660  	lock(&sched.lock)
  2661  	sched.profilehz = hz
  2662  	unlock(&sched.lock)
  2663  
  2664  	if hz != 0 {
  2665  		resetcpuprofiler(hz)
  2666  	}
  2667  
  2668  	_g_.m.locks--
  2669  }
  2670  
  2671  // Change number of processors.  The world is stopped, sched is locked.
  2672  // gcworkbufs are not being modified by either the GC or
  2673  // the write barrier code.
  2674  // Returns list of Ps with local work, they need to be scheduled by the caller.
  2675  func procresize(nprocs int32) *p {
  2676  	old := gomaxprocs
  2677  	if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
  2678  		throw("procresize: invalid arg")
  2679  	}
  2680  	// TODO trace的实现
  2681  	if trace.enabled {
  2682  		traceGomaxprocs(nprocs)
  2683  	}
  2684  
  2685  	// update statistics
  2686  	now := nanotime()
  2687  	if sched.procresizetime != 0 {
  2688  		sched.totaltime += int64(old) * (now - sched.procresizetime)
  2689  	}
  2690  	sched.procresizetime = now
  2691  
  2692  	// initialize new P's
  2693  	for i := int32(0); i < nprocs; i++ {
  2694  		pp := allp[i]
  2695  		if pp == nil {
  2696  			pp = new(p)
  2697  			pp.id = i
  2698  			pp.status = _Pgcstop
  2699  			pp.sudogcache = pp.sudogbuf[:0]
  2700  			for i := range pp.deferpool {
  2701  				pp.deferpool[i] = pp.deferpoolbuf[i][:0]
  2702  			}
  2703  			atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
  2704  		}
  2705  		if pp.mcache == nil {
  2706  			if old == 0 && i == 0 {
  2707  				if getg().m.mcache == nil {
  2708  					throw("missing mcache?")
  2709  				}
  2710  				pp.mcache = getg().m.mcache // bootstrap
  2711  			} else {
  2712  				pp.mcache = allocmcache()
  2713  			}
  2714  		}
  2715  	}
  2716  
  2717  	// free unused P's
  2718  	for i := nprocs; i < old; i++ {
  2719  		p := allp[i]
  2720  		if trace.enabled {
  2721  			if p == getg().m.p.ptr() {
  2722  				// moving to p[0], pretend that we were descheduled
  2723  				// and then scheduled again to keep the trace sane.
  2724  				traceGoSched()
  2725  				traceProcStop(p)
  2726  			}
  2727  		}
  2728  		// move all runnable goroutines to the global queue
  2729  		for p.runqhead != p.runqtail {
  2730  			// pop from tail of local queue
  2731  			p.runqtail--
  2732  			gp := p.runq[p.runqtail%uint32(len(p.runq))]
  2733  			// push onto head of global queue
  2734  			globrunqputhead(gp)
  2735  		}
  2736  		if p.runnext != 0 {
  2737  			globrunqputhead(p.runnext.ptr())
  2738  			p.runnext = 0
  2739  		}
  2740  		// if there's a background worker, make it runnable and put
  2741  		// it on the global queue so it can clean itself up
  2742  		if p.gcBgMarkWorker != nil {
  2743  			casgstatus(p.gcBgMarkWorker, _Gwaiting, _Grunnable)
  2744  			if trace.enabled {
  2745  				traceGoUnpark(p.gcBgMarkWorker, 0)
  2746  			}
  2747  			globrunqput(p.gcBgMarkWorker)
  2748  			p.gcBgMarkWorker = nil
  2749  		}
  2750  		for i := range p.sudogbuf {
  2751  			p.sudogbuf[i] = nil
  2752  		}
  2753  		p.sudogcache = p.sudogbuf[:0]
  2754  		for i := range p.deferpool {
  2755  			for j := range p.deferpoolbuf[i] {
  2756  				p.deferpoolbuf[i][j] = nil
  2757  			}
  2758  			p.deferpool[i] = p.deferpoolbuf[i][:0]
  2759  		}
  2760  		freemcache(p.mcache)
  2761  		p.mcache = nil
  2762  		gfpurge(p)
  2763  		traceProcFree(p)
  2764  		p.status = _Pdead
  2765  		// can't free P itself because it can be referenced by an M in syscall
  2766  	}
  2767  
  2768  	_g_ := getg()
  2769  	if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
  2770  		// continue to use the current P
  2771  		_g_.m.p.ptr().status = _Prunning
  2772  	} else {
  2773  		// release the current P and acquire allp[0]
  2774  		if _g_.m.p != 0 {
  2775  			_g_.m.p.ptr().m = 0
  2776  		}
  2777  		_g_.m.p = 0
  2778  		_g_.m.mcache = nil
  2779  		p := allp[0]
  2780  		p.m = 0
  2781  		p.status = _Pidle
  2782  		acquirep(p)
  2783  		if trace.enabled {
  2784  			traceGoStart()
  2785  		}
  2786  	}
  2787  	var runnablePs *p
  2788  	for i := nprocs - 1; i >= 0; i-- {
  2789  		p := allp[i]
  2790  		if _g_.m.p.ptr() == p {
  2791  			continue
  2792  		}
  2793  		p.status = _Pidle
  2794  		if runqempty(p) {
  2795  			pidleput(p)
  2796  		} else {
  2797  			p.m.set(mget())
  2798  			p.link.set(runnablePs)
  2799  			runnablePs = p
  2800  		}
  2801  	}
  2802  	var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
  2803  	atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
  2804  	return runnablePs
  2805  }
  2806  
  2807  // Associate p and the current m.
  2808  func acquirep(_p_ *p) {
  2809  	acquirep1(_p_)
  2810  
  2811  	// have p; write barriers now allowed
  2812  	_g_ := getg()
  2813  	_g_.m.mcache = _p_.mcache
  2814  
  2815  	if trace.enabled {
  2816  		traceProcStart()
  2817  	}
  2818  }
  2819  
  2820  // May run during STW, so write barriers are not allowed.
  2821  //go:nowritebarrier
  2822  func acquirep1(_p_ *p) {
  2823  	_g_ := getg()
  2824  
  2825  	if _g_.m.p != 0 || _g_.m.mcache != nil {
  2826  		throw("acquirep: already in go")
  2827  	}
  2828  	if _p_.m != 0 || _p_.status != _Pidle {
  2829  		id := int32(0)
  2830  		if _p_.m != 0 {
  2831  			id = _p_.m.ptr().id
  2832  		}
  2833  		print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
  2834  		throw("acquirep: invalid p state")
  2835  	}
  2836  	_g_.m.p.set(_p_)
  2837  	_p_.m.set(_g_.m)
  2838  	_p_.status = _Prunning
  2839  }
  2840  
  2841  // Disassociate p and the current m.
  2842  func releasep() *p {
  2843  	_g_ := getg()
  2844  
  2845  	if _g_.m.p == 0 || _g_.m.mcache == nil {
  2846  		throw("releasep: invalid arg")
  2847  	}
  2848  	_p_ := _g_.m.p.ptr()
  2849  	if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
  2850  		print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
  2851  		throw("releasep: invalid p state")
  2852  	}
  2853  	if trace.enabled {
  2854  		traceProcStop(_g_.m.p.ptr())
  2855  	}
  2856  	_g_.m.p = 0
  2857  	_g_.m.mcache = nil
  2858  	_p_.m = 0
  2859  	_p_.status = _Pidle
  2860  	return _p_
  2861  }
  2862  
  2863  func incidlelocked(v int32) {
  2864  	lock(&sched.lock)
  2865  	sched.nmidlelocked += v
  2866  	if v > 0 {
  2867  		checkdead()
  2868  	}
  2869  	unlock(&sched.lock)
  2870  }
  2871  
  2872  // Check for deadlock situation.
  2873  // The check is based on number of running M's, if 0 -> deadlock.
  2874  func checkdead() {
  2875  	// For -buildmode=c-shared or -buildmode=c-archive it's OK if
  2876  	// there are no running goroutines.  The calling program is
  2877  	// assumed to be running.
  2878  	if islibrary || isarchive {
  2879  		return
  2880  	}
  2881  
  2882  	// If we are dying because of a signal caught on an already idle thread,
  2883  	// freezetheworld will cause all running threads to block.
  2884  	// And runtime will essentially enter into deadlock state,
  2885  	// except that there is a thread that will call exit soon.
  2886  	if panicking > 0 {
  2887  		return
  2888  	}
  2889  
  2890  	// -1 for sysmon
  2891  	run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
  2892  	if run > 0 {
  2893  		return
  2894  	}
  2895  	if run < 0 {
  2896  		print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
  2897  		throw("checkdead: inconsistent counts")
  2898  	}
  2899  
  2900  	grunning := 0
  2901  	lock(&allglock)
  2902  	for i := 0; i < len(allgs); i++ {
  2903  		gp := allgs[i]
  2904  		if isSystemGoroutine(gp) {
  2905  			continue
  2906  		}
  2907  		s := readgstatus(gp)
  2908  		switch s &^ _Gscan {
  2909  		case _Gwaiting:
  2910  			grunning++
  2911  		case _Grunnable,
  2912  			_Grunning,
  2913  			_Gsyscall:
  2914  			unlock(&allglock)
  2915  			print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
  2916  			throw("checkdead: runnable g")
  2917  		}
  2918  	}
  2919  	unlock(&allglock)
  2920  	if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
  2921  		throw("no goroutines (main called runtime.Goexit) - deadlock!")
  2922  	}
  2923  
  2924  	// Maybe jump time forward for playground.
  2925  	gp := timejump()
  2926  	if gp != nil {
  2927  		casgstatus(gp, _Gwaiting, _Grunnable)
  2928  		globrunqput(gp)
  2929  		_p_ := pidleget()
  2930  		if _p_ == nil {
  2931  			throw("checkdead: no p for timer")
  2932  		}
  2933  		mp := mget()
  2934  		if mp == nil {
  2935  			newm(nil, _p_)
  2936  		} else {
  2937  			mp.nextp.set(_p_)
  2938  			notewakeup(&mp.park)
  2939  		}
  2940  		return
  2941  	}
  2942  
  2943  	getg().m.throwing = -1 // do not dump full stacks
  2944  	throw("all goroutines are asleep - deadlock!")
  2945  }
  2946  
  2947  func sysmon() {
  2948  	// If we go two minutes without a garbage collection, force one to run.
  2949  	forcegcperiod := int64(2 * 60 * 1e9)
  2950  
  2951  	// If a heap span goes unused for 5 minutes after a garbage collection,
  2952  	// we hand it back to the operating system.
  2953  	scavengelimit := int64(5 * 60 * 1e9)
  2954  
  2955  	if debug.scavenge > 0 {
  2956  		// Scavenge-a-lot for testing.
  2957  		forcegcperiod = 10 * 1e6
  2958  		scavengelimit = 20 * 1e6
  2959  	}
  2960  
  2961  	lastscavenge := nanotime()
  2962  	nscavenge := 0
  2963  
  2964  	// Make wake-up period small enough for the sampling to be correct.
  2965  	maxsleep := forcegcperiod / 2
  2966  	if scavengelimit < forcegcperiod {
  2967  		maxsleep = scavengelimit / 2
  2968  	}
  2969  
  2970  	lasttrace := int64(0)
  2971  	idle := 0 // how many cycles in succession we had not wokeup somebody
  2972  	delay := uint32(0)
  2973  	for {
  2974  		if idle == 0 { // start with 20us sleep...
  2975  			delay = 20
  2976  		} else if idle > 50 { // start doubling the sleep after 1ms...
  2977  			delay *= 2
  2978  		}
  2979  		if delay > 10*1000 { // up to 10ms
  2980  			delay = 10 * 1000
  2981  		}
  2982  		usleep(delay)
  2983  		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
  2984  			lock(&sched.lock)
  2985  			if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) {
  2986  				atomicstore(&sched.sysmonwait, 1)
  2987  				unlock(&sched.lock)
  2988  				notetsleep(&sched.sysmonnote, maxsleep)
  2989  				lock(&sched.lock)
  2990  				atomicstore(&sched.sysmonwait, 0)
  2991  				noteclear(&sched.sysmonnote)
  2992  				idle = 0
  2993  				delay = 20
  2994  			}
  2995  			unlock(&sched.lock)
  2996  		}
  2997  		// poll network if not polled for more than 10ms
  2998  		lastpoll := int64(atomicload64(&sched.lastpoll))
  2999  		now := nanotime()
  3000  		unixnow := unixnanotime()
  3001  		if lastpoll != 0 && lastpoll+10*1000*1000 < now {
  3002  			cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
  3003  			gp := netpoll(false) // non-blocking - returns list of goroutines
  3004  			if gp != nil {
  3005  				// Need to decrement number of idle locked M's
  3006  				// (pretending that one more is running) before injectglist.
  3007  				// Otherwise it can lead to the following situation:
  3008  				// injectglist grabs all P's but before it starts M's to run the P's,
  3009  				// another M returns from syscall, finishes running its G,
  3010  				// observes that there is no work to do and no other running M's
  3011  				// and reports deadlock.
  3012  				incidlelocked(-1)
  3013  				injectglist(gp)
  3014  				incidlelocked(1)
  3015  			}
  3016  		}
  3017  		// retake P's blocked in syscalls
  3018  		// and preempt long running G's
  3019  		if retake(now) != 0 {
  3020  			idle = 0
  3021  		} else {
  3022  			idle++
  3023  		}
  3024  		// check if we need to force a GC
  3025  		lastgc := int64(atomicload64(&memstats.last_gc))
  3026  		if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 && atomicloaduint(&bggc.working) == 0 {
  3027  			lock(&forcegc.lock)
  3028  			forcegc.idle = 0
  3029  			forcegc.g.schedlink = 0
  3030  			injectglist(forcegc.g)
  3031  			unlock(&forcegc.lock)
  3032  		}
  3033  		// scavenge heap once in a while
  3034  		if lastscavenge+scavengelimit/2 < now {
  3035  			mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
  3036  			lastscavenge = now
  3037  			nscavenge++
  3038  		}
  3039  		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now {
  3040  			lasttrace = now
  3041  			schedtrace(debug.scheddetail > 0)
  3042  		}
  3043  	}
  3044  }
  3045  
  3046  var pdesc [_MaxGomaxprocs]struct {
  3047  	schedtick   uint32
  3048  	schedwhen   int64
  3049  	syscalltick uint32
  3050  	syscallwhen int64
  3051  }
  3052  
  3053  // forcePreemptNS is the time slice given to a G before it is
  3054  // preempted.
  3055  const forcePreemptNS = 10 * 1000 * 1000 // 10ms
  3056  
  3057  func retake(now int64) uint32 {
  3058  	n := 0
  3059  	for i := int32(0); i < gomaxprocs; i++ {
  3060  		_p_ := allp[i]
  3061  		if _p_ == nil {
  3062  			continue
  3063  		}
  3064  		pd := &pdesc[i]
  3065  		s := _p_.status
  3066  		if s == _Psyscall {
  3067  			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
  3068  			t := int64(_p_.syscalltick)
  3069  			if int64(pd.syscalltick) != t {
  3070  				pd.syscalltick = uint32(t)
  3071  				pd.syscallwhen = now
  3072  				continue
  3073  			}
  3074  			// On the one hand we don't want to retake Ps if there is no other work to do,
  3075  			// but on the other hand we want to retake them eventually
  3076  			// because they can prevent the sysmon thread from deep sleep.
  3077  			if runqempty(_p_) && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
  3078  				continue
  3079  			}
  3080  			// Need to decrement number of idle locked M's
  3081  			// (pretending that one more is running) before the CAS.
  3082  			// Otherwise the M from which we retake can exit the syscall,
  3083  			// increment nmidle and report deadlock.
  3084  			incidlelocked(-1)
  3085  			if cas(&_p_.status, s, _Pidle) {
  3086  				if trace.enabled {
  3087  					traceGoSysBlock(_p_)
  3088  					traceProcStop(_p_)
  3089  				}
  3090  				n++
  3091  				_p_.syscalltick++
  3092  				handoffp(_p_)
  3093  			}
  3094  			incidlelocked(1)
  3095  		} else if s == _Prunning {
  3096  			// Preempt G if it's running for too long.
  3097  			t := int64(_p_.schedtick)
  3098  			if int64(pd.schedtick) != t {
  3099  				pd.schedtick = uint32(t)
  3100  				pd.schedwhen = now
  3101  				continue
  3102  			}
  3103  			if pd.schedwhen+forcePreemptNS > now {
  3104  				continue
  3105  			}
  3106  			preemptone(_p_)
  3107  		}
  3108  	}
  3109  	return uint32(n)
  3110  }
  3111  
  3112  // Tell all goroutines that they have been preempted and they should stop.
  3113  // This function is purely best-effort.  It can fail to inform a goroutine if a
  3114  // processor just started running it.
  3115  // No locks need to be held.
  3116  // Returns true if preemption request was issued to at least one goroutine.
  3117  func preemptall() bool {
  3118  	res := false
  3119  	for i := int32(0); i < gomaxprocs; i++ {
  3120  		_p_ := allp[i]
  3121  		if _p_ == nil || _p_.status != _Prunning {
  3122  			continue
  3123  		}
  3124  		if preemptone(_p_) {
  3125  			res = true
  3126  		}
  3127  	}
  3128  	return res
  3129  }
  3130  
  3131  // Tell the goroutine running on processor P to stop.
  3132  // This function is purely best-effort.  It can incorrectly fail to inform the
  3133  // goroutine.  It can send inform the wrong goroutine.  Even if it informs the
  3134  // correct goroutine, that goroutine might ignore the request if it is
  3135  // simultaneously executing newstack.
  3136  // No lock needs to be held.
  3137  // Returns true if preemption request was issued.
  3138  // The actual preemption will happen at some point in the future
  3139  // and will be indicated by the gp->status no longer being
  3140  // Grunning
  3141  func preemptone(_p_ *p) bool {
  3142  	mp := _p_.m.ptr()
  3143  	if mp == nil || mp == getg().m {
  3144  		return false
  3145  	}
  3146  	gp := mp.curg
  3147  	if gp == nil || gp == mp.g0 {
  3148  		return false
  3149  	}
  3150  
  3151  	gp.preempt = true
  3152  
  3153  	// Every call in a go routine checks for stack overflow by
  3154  	// comparing the current stack pointer to gp->stackguard0.
  3155  	// Setting gp->stackguard0 to StackPreempt folds
  3156  	// preemption into the normal stack overflow check.
  3157  	gp.stackguard0 = stackPreempt
  3158  	return true
  3159  }
  3160  
  3161  var starttime int64
  3162  
  3163  func schedtrace(detailed bool) {
  3164  	now := nanotime()
  3165  	if starttime == 0 {
  3166  		starttime = now
  3167  	}
  3168  
  3169  	lock(&sched.lock)
  3170  	print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
  3171  	if detailed {
  3172  		print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
  3173  	}
  3174  	// We must be careful while reading data from P's, M's and G's.
  3175  	// Even if we hold schedlock, most data can be changed concurrently.
  3176  	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
  3177  	for i := int32(0); i < gomaxprocs; i++ {
  3178  		_p_ := allp[i]
  3179  		if _p_ == nil {
  3180  			continue
  3181  		}
  3182  		mp := _p_.m.ptr()
  3183  		h := atomicload(&_p_.runqhead)
  3184  		t := atomicload(&_p_.runqtail)
  3185  		if detailed {
  3186  			id := int32(-1)
  3187  			if mp != nil {
  3188  				id = mp.id
  3189  			}
  3190  			print("  P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
  3191  		} else {
  3192  			// In non-detailed mode format lengths of per-P run queues as:
  3193  			// [len1 len2 len3 len4]
  3194  			print(" ")
  3195  			if i == 0 {
  3196  				print("[")
  3197  			}
  3198  			print(t - h)
  3199  			if i == gomaxprocs-1 {
  3200  				print("]\n")
  3201  			}
  3202  		}
  3203  	}
  3204  
  3205  	if !detailed {
  3206  		unlock(&sched.lock)
  3207  		return
  3208  	}
  3209  
  3210  	for mp := allm; mp != nil; mp = mp.alllink {
  3211  		_p_ := mp.p.ptr()
  3212  		gp := mp.curg
  3213  		lockedg := mp.lockedg
  3214  		id1 := int32(-1)
  3215  		if _p_ != nil {
  3216  			id1 = _p_.id
  3217  		}
  3218  		id2 := int64(-1)
  3219  		if gp != nil {
  3220  			id2 = gp.goid
  3221  		}
  3222  		id3 := int64(-1)
  3223  		if lockedg != nil {
  3224  			id3 = lockedg.goid
  3225  		}
  3226  		print("  M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
  3227  	}
  3228  
  3229  	lock(&allglock)
  3230  	for gi := 0; gi < len(allgs); gi++ {
  3231  		gp := allgs[gi]
  3232  		mp := gp.m
  3233  		lockedm := gp.lockedm
  3234  		id1 := int32(-1)
  3235  		if mp != nil {
  3236  			id1 = mp.id
  3237  		}
  3238  		id2 := int32(-1)
  3239  		if lockedm != nil {
  3240  			id2 = lockedm.id
  3241  		}
  3242  		print("  G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
  3243  	}
  3244  	unlock(&allglock)
  3245  	unlock(&sched.lock)
  3246  }
  3247  
  3248  // Put mp on midle list.
  3249  // Sched must be locked.
  3250  // May run during STW, so write barriers are not allowed.
  3251  //go:nowritebarrier
  3252  func mput(mp *m) {
  3253  	mp.schedlink = sched.midle
  3254  	sched.midle.set(mp)
  3255  	sched.nmidle++
  3256  	checkdead()
  3257  }
  3258  
  3259  // Try to get an m from midle list.
  3260  // Sched must be locked.
  3261  // May run during STW, so write barriers are not allowed.
  3262  //go:nowritebarrier
  3263  func mget() *m {
  3264  	mp := sched.midle.ptr()
  3265  	if mp != nil {
  3266  		sched.midle = mp.schedlink
  3267  		sched.nmidle--
  3268  	}
  3269  	return mp
  3270  }
  3271  
  3272  // Put gp on the global runnable queue.
  3273  // Sched must be locked.
  3274  // May run during STW, so write barriers are not allowed.
  3275  //go:nowritebarrier
  3276  func globrunqput(gp *g) {
  3277  	gp.schedlink = 0
  3278  	if sched.runqtail != 0 {
  3279  		sched.runqtail.ptr().schedlink.set(gp)
  3280  	} else {
  3281  		sched.runqhead.set(gp)
  3282  	}
  3283  	sched.runqtail.set(gp)
  3284  	sched.runqsize++
  3285  }
  3286  
  3287  // Put gp at the head of the global runnable queue.
  3288  // Sched must be locked.
  3289  // May run during STW, so write barriers are not allowed.
  3290  //go:nowritebarrier
  3291  func globrunqputhead(gp *g) {
  3292  	gp.schedlink = sched.runqhead
  3293  	sched.runqhead.set(gp)
  3294  	if sched.runqtail == 0 {
  3295  		sched.runqtail.set(gp)
  3296  	}
  3297  	sched.runqsize++
  3298  }
  3299  
  3300  // Put a batch of runnable goroutines on the global runnable queue.
  3301  // Sched must be locked.
  3302  func globrunqputbatch(ghead *g, gtail *g, n int32) {
  3303  	gtail.schedlink = 0
  3304  	if sched.runqtail != 0 {
  3305  		sched.runqtail.ptr().schedlink.set(ghead)
  3306  	} else {
  3307  		sched.runqhead.set(ghead)
  3308  	}
  3309  	sched.runqtail.set(gtail)
  3310  	sched.runqsize += n
  3311  }
  3312  
  3313  // Try get a batch of G's from the global runnable queue.
  3314  // Sched must be locked.
  3315  func globrunqget(_p_ *p, max int32) *g {
  3316  	if sched.runqsize == 0 {
  3317  		return nil
  3318  	}
  3319  
  3320  	n := sched.runqsize/gomaxprocs + 1
  3321  	if n > sched.runqsize {
  3322  		n = sched.runqsize
  3323  	}
  3324  	if max > 0 && n > max {
  3325  		n = max
  3326  	}
  3327  	if n > int32(len(_p_.runq))/2 {
  3328  		n = int32(len(_p_.runq)) / 2
  3329  	}
  3330  
  3331  	sched.runqsize -= n
  3332  	if sched.runqsize == 0 {
  3333  		sched.runqtail = 0
  3334  	}
  3335  
  3336  	gp := sched.runqhead.ptr()
  3337  	sched.runqhead = gp.schedlink
  3338  	n--
  3339  	for ; n > 0; n-- {
  3340  		gp1 := sched.runqhead.ptr()
  3341  		sched.runqhead = gp1.schedlink
  3342  		runqput(_p_, gp1, false)
  3343  	}
  3344  	return gp
  3345  }
  3346  
  3347  // Put p to on _Pidle list.
  3348  // Sched must be locked.
  3349  // May run during STW, so write barriers are not allowed.
  3350  //go:nowritebarrier
  3351  func pidleput(_p_ *p) {
  3352  	if !runqempty(_p_) {
  3353  		throw("pidleput: P has non-empty run queue")
  3354  	}
  3355  	_p_.link = sched.pidle
  3356  	sched.pidle.set(_p_)
  3357  	xadd(&sched.npidle, 1) // TODO: fast atomic
  3358  }
  3359  
  3360  // Try get a p from _Pidle list.
  3361  // Sched must be locked.
  3362  // May run during STW, so write barriers are not allowed.
  3363  //go:nowritebarrier
  3364  func pidleget() *p {
  3365  	_p_ := sched.pidle.ptr()
  3366  	if _p_ != nil {
  3367  		sched.pidle = _p_.link
  3368  		xadd(&sched.npidle, -1) // TODO: fast atomic
  3369  	}
  3370  	return _p_
  3371  }
  3372  
  3373  // runqempty returns true if _p_ has no Gs on its local run queue.
  3374  // Note that this test is generally racy.
  3375  func runqempty(_p_ *p) bool {
  3376  	return _p_.runqhead == _p_.runqtail && _p_.runnext == 0
  3377  }
  3378  
  3379  // To shake out latent assumptions about scheduling order,
  3380  // we introduce some randomness into scheduling decisions
  3381  // when running with the race detector.
  3382  // The need for this was made obvious by changing the
  3383  // (deterministic) scheduling order in Go 1.5 and breaking
  3384  // many poorly-written tests.
  3385  // With the randomness here, as long as the tests pass
  3386  // consistently with -race, they shouldn't have latent scheduling
  3387  // assumptions.
  3388  const randomizeScheduler = raceenabled
  3389  
  3390  // runqput tries to put g on the local runnable queue.
  3391  // If next if false, runqput adds g to the tail of the runnable queue.
  3392  // If next is true, runqput puts g in the _p_.runnext slot.
  3393  // If the run queue is full, runnext puts g on the global queue.
  3394  // Executed only by the owner P.
  3395  func runqput(_p_ *p, gp *g, next bool) {
  3396  	if randomizeScheduler && next && fastrand1()%2 == 0 {
  3397  		next = false
  3398  	}
  3399  
  3400  	if next {
  3401  	retryNext:
  3402  		oldnext := _p_.runnext
  3403  		if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
  3404  			goto retryNext
  3405  		}
  3406  		if oldnext == 0 {
  3407  			return
  3408  		}
  3409  		// Kick the old runnext out to the regular run queue.
  3410  		gp = oldnext.ptr()
  3411  	}
  3412  
  3413  retry:
  3414  	h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
  3415  	t := _p_.runqtail
  3416  	if t-h < uint32(len(_p_.runq)) {
  3417  		_p_.runq[t%uint32(len(_p_.runq))] = gp
  3418  		atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
  3419  		return
  3420  	}
  3421  	if runqputslow(_p_, gp, h, t) {
  3422  		return
  3423  	}
  3424  	// the queue is not full, now the put above must suceed
  3425  	goto retry
  3426  }
  3427  
  3428  // Put g and a batch of work from local runnable queue on global queue.
  3429  // Executed only by the owner P.
  3430  func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
  3431  	var batch [len(_p_.runq)/2 + 1]*g
  3432  
  3433  	// First, grab a batch from local queue.
  3434  	n := t - h
  3435  	n = n / 2
  3436  	if n != uint32(len(_p_.runq)/2) {
  3437  		throw("runqputslow: queue is not full")
  3438  	}
  3439  	for i := uint32(0); i < n; i++ {
  3440  		batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
  3441  	}
  3442  	if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
  3443  		return false
  3444  	}
  3445  	batch[n] = gp
  3446  
  3447  	if randomizeScheduler {
  3448  		for i := uint32(1); i <= n; i++ {
  3449  			j := fastrand1() % (i + 1)
  3450  			batch[i], batch[j] = batch[j], batch[i]
  3451  		}
  3452  	}
  3453  
  3454  	// Link the goroutines.
  3455  	for i := uint32(0); i < n; i++ {
  3456  		batch[i].schedlink.set(batch[i+1])
  3457  	}
  3458  
  3459  	// Now put the batch on global queue.
  3460  	lock(&sched.lock)
  3461  	globrunqputbatch(batch[0], batch[n], int32(n+1))
  3462  	unlock(&sched.lock)
  3463  	return true
  3464  }
  3465  
  3466  // Get g from local runnable queue.
  3467  // If inheritTime is true, gp should inherit the remaining time in the
  3468  // current time slice. Otherwise, it should start a new time slice.
  3469  // Executed only by the owner P.
  3470  func runqget(_p_ *p) (gp *g, inheritTime bool) {
  3471  	// If there's a runnext, it's the next G to run.
  3472  	for {
  3473  		next := _p_.runnext
  3474  		if next == 0 {
  3475  			break
  3476  		}
  3477  		if _p_.runnext.cas(next, 0) {
  3478  			return next.ptr(), true
  3479  		}
  3480  	}
  3481  
  3482  	for {
  3483  		h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
  3484  		t := _p_.runqtail
  3485  		if t == h {
  3486  			return nil, false
  3487  		}
  3488  		gp := _p_.runq[h%uint32(len(_p_.runq))]
  3489  		if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
  3490  			return gp, false
  3491  		}
  3492  	}
  3493  }
  3494  
  3495  // Grabs a batch of goroutines from _p_'s runnable queue into batch.
  3496  // Batch is a ring buffer starting at batchHead.
  3497  // Returns number of grabbed goroutines.
  3498  // Can be executed by any P.
  3499  func runqgrab(_p_ *p, batch *[256]*g, batchHead uint32, stealRunNextG bool) uint32 {
  3500  	for {
  3501  		h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
  3502  		t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer
  3503  		n := t - h
  3504  		n = n - n/2
  3505  		if n == 0 {
  3506  			if stealRunNextG {
  3507  				// Try to steal from _p_.runnext.
  3508  				if next := _p_.runnext; next != 0 {
  3509  					// Sleep to ensure that _p_ isn't about to run the g we
  3510  					// are about to steal.
  3511  					// The important use case here is when the g running on _p_
  3512  					// ready()s another g and then almost immediately blocks.
  3513  					// Instead of stealing runnext in this window, back off
  3514  					// to give _p_ a chance to schedule runnext. This will avoid
  3515  					// thrashing gs between different Ps.
  3516  					usleep(100)
  3517  					if !_p_.runnext.cas(next, 0) {
  3518  						continue
  3519  					}
  3520  					batch[batchHead%uint32(len(batch))] = next.ptr()
  3521  					return 1
  3522  				}
  3523  			}
  3524  			return 0
  3525  		}
  3526  		if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
  3527  			continue
  3528  		}
  3529  		for i := uint32(0); i < n; i++ {
  3530  			g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
  3531  			batch[(batchHead+i)%uint32(len(batch))] = g
  3532  		}
  3533  		if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
  3534  			return n
  3535  		}
  3536  	}
  3537  }
  3538  
  3539  // Steal half of elements from local runnable queue of p2
  3540  // and put onto local runnable queue of p.
  3541  // Returns one of the stolen elements (or nil if failed).
  3542  func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
  3543  	t := _p_.runqtail
  3544  	n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
  3545  	if n == 0 {
  3546  		return nil
  3547  	}
  3548  	n--
  3549  	gp := _p_.runq[(t+n)%uint32(len(_p_.runq))]
  3550  	if n == 0 {
  3551  		return gp
  3552  	}
  3553  	h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
  3554  	if t-h+n >= uint32(len(_p_.runq)) {
  3555  		throw("runqsteal: runq overflow")
  3556  	}
  3557  	atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
  3558  	return gp
  3559  }
  3560  
  3561  func testSchedLocalQueue() {
  3562  	_p_ := new(p)
  3563  	gs := make([]g, len(_p_.runq))
  3564  	for i := 0; i < len(_p_.runq); i++ {
  3565  		if g, _ := runqget(_p_); g != nil {
  3566  			throw("runq is not empty initially")
  3567  		}
  3568  		for j := 0; j < i; j++ {
  3569  			runqput(_p_, &gs[i], false)
  3570  		}
  3571  		for j := 0; j < i; j++ {
  3572  			if g, _ := runqget(_p_); g != &gs[i] {
  3573  				print("bad element at iter ", i, "/", j, "\n")
  3574  				throw("bad element")
  3575  			}
  3576  		}
  3577  		if g, _ := runqget(_p_); g != nil {
  3578  			throw("runq is not empty afterwards")
  3579  		}
  3580  	}
  3581  }
  3582  
  3583  func testSchedLocalQueueSteal() {
  3584  	p1 := new(p)
  3585  	p2 := new(p)
  3586  	gs := make([]g, len(p1.runq))
  3587  	for i := 0; i < len(p1.runq); i++ {
  3588  		for j := 0; j < i; j++ {
  3589  			gs[j].sig = 0
  3590  			runqput(p1, &gs[j], false)
  3591  		}
  3592  		gp := runqsteal(p2, p1, true)
  3593  		s := 0
  3594  		if gp != nil {
  3595  			s++
  3596  			gp.sig++
  3597  		}
  3598  		for {
  3599  			gp, _ = runqget(p2)
  3600  			if gp == nil {
  3601  				break
  3602  			}
  3603  			s++
  3604  			gp.sig++
  3605  		}
  3606  		for {
  3607  			gp, _ = runqget(p1)
  3608  			if gp == nil {
  3609  				break
  3610  			}
  3611  			gp.sig++
  3612  		}
  3613  		for j := 0; j < i; j++ {
  3614  			if gs[j].sig != 1 {
  3615  				print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
  3616  				throw("bad element")
  3617  			}
  3618  		}
  3619  		if s != i/2 && s != i/2+1 {
  3620  			print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
  3621  			throw("bad steal")
  3622  		}
  3623  	}
  3624  }
  3625  
  3626  func setMaxThreads(in int) (out int) {
  3627  	lock(&sched.lock)
  3628  	out = int(sched.maxmcount)
  3629  	sched.maxmcount = int32(in)
  3630  	checkmcount()
  3631  	unlock(&sched.lock)
  3632  	return
  3633  }
  3634  
  3635  func haveexperiment(name string) bool {
  3636  	x := goexperiment
  3637  	for x != "" {
  3638  		xname := ""
  3639  		i := index(x, ",")
  3640  		if i < 0 {
  3641  			xname, x = x, ""
  3642  		} else {
  3643  			xname, x = x[:i], x[i+1:]
  3644  		}
  3645  		if xname == name {
  3646  			return true
  3647  		}
  3648  	}
  3649  	return false
  3650  }
  3651  
  3652  //go:nosplit
  3653  func procPin() int {
  3654  	_g_ := getg()
  3655  	mp := _g_.m
  3656  
  3657  	mp.locks++
  3658  	return int(mp.p.ptr().id)
  3659  }
  3660  
  3661  //go:nosplit
  3662  func procUnpin() {
  3663  	_g_ := getg()
  3664  	_g_.m.locks--
  3665  }
  3666  
  3667  //go:linkname sync_runtime_procPin sync.runtime_procPin
  3668  //go:nosplit
  3669  func sync_runtime_procPin() int {
  3670  	return procPin()
  3671  }
  3672  
  3673  //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
  3674  //go:nosplit
  3675  func sync_runtime_procUnpin() {
  3676  	procUnpin()
  3677  }
  3678  
  3679  //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
  3680  //go:nosplit
  3681  func sync_atomic_runtime_procPin() int {
  3682  	return procPin()
  3683  }
  3684  
  3685  //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
  3686  //go:nosplit
  3687  func sync_atomic_runtime_procUnpin() {
  3688  	procUnpin()
  3689  }
  3690  
  3691  // Active spinning for sync.Mutex.
  3692  //go:linkname sync_runtime_canSpin sync.runtime_canSpin
  3693  //go:nosplit
  3694  func sync_runtime_canSpin(i int) bool {
  3695  	// sync.Mutex is cooperative, so we are conservative with spinning.
  3696  	// Spin only few times and only if running on a multicore machine and
  3697  	// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
  3698  	// As opposed to runtime mutex we don't do passive spinning here,
  3699  	// because there can be work on global runq on on other Ps.
  3700  	if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
  3701  		return false
  3702  	}
  3703  	if p := getg().m.p.ptr(); !runqempty(p) {
  3704  		return false
  3705  	}
  3706  	return true
  3707  }
  3708  
  3709  //go:linkname sync_runtime_doSpin sync.runtime_doSpin
  3710  //go:nosplit
  3711  func sync_runtime_doSpin() {
  3712  	procyield(active_spin_cnt)
  3713  }