github.com/c0deoo1/golang1.5@v0.0.0-20220525150107-c87c805d4593/src/runtime/softfloat_arm.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Software floating point interpretaton of ARM 7500 FP instructions.
     6  // The interpretation is not bit compatible with the 7500.
     7  // It uses true little-endian doubles, while the 7500 used mixed-endian.
     8  
     9  package runtime
    10  
    11  import "unsafe"
    12  
    13  const (
    14  	_CPSR    = 14
    15  	_FLAGS_N = 1 << 31
    16  	_FLAGS_Z = 1 << 30
    17  	_FLAGS_C = 1 << 29
    18  	_FLAGS_V = 1 << 28
    19  )
    20  
    21  var fptrace = 0
    22  
    23  func fabort() {
    24  	throw("unsupported floating point instruction")
    25  }
    26  
    27  func fputf(reg uint32, val uint32) {
    28  	_g_ := getg()
    29  	_g_.m.freglo[reg] = val
    30  }
    31  
    32  func fputd(reg uint32, val uint64) {
    33  	_g_ := getg()
    34  	_g_.m.freglo[reg] = uint32(val)
    35  	_g_.m.freghi[reg] = uint32(val >> 32)
    36  }
    37  
    38  func fgetd(reg uint32) uint64 {
    39  	_g_ := getg()
    40  	return uint64(_g_.m.freglo[reg]) | uint64(_g_.m.freghi[reg])<<32
    41  }
    42  
    43  func fprintregs() {
    44  	_g_ := getg()
    45  	for i := range _g_.m.freglo {
    46  		print("\tf", i, ":\t", hex(_g_.m.freghi[i]), " ", hex(_g_.m.freglo[i]), "\n")
    47  	}
    48  }
    49  
    50  func fstatus(nan bool, cmp int32) uint32 {
    51  	if nan {
    52  		return _FLAGS_C | _FLAGS_V
    53  	}
    54  	if cmp == 0 {
    55  		return _FLAGS_Z | _FLAGS_C
    56  	}
    57  	if cmp < 0 {
    58  		return _FLAGS_N
    59  	}
    60  	return _FLAGS_C
    61  }
    62  
    63  // conditions array record the required CPSR cond field for the
    64  // first 5 pairs of conditional execution opcodes
    65  // higher 4 bits are must set, lower 4 bits are must clear
    66  var conditions = [10 / 2]uint32{
    67  	0 / 2: _FLAGS_Z>>24 | 0, // 0: EQ (Z set), 1: NE (Z clear)
    68  	2 / 2: _FLAGS_C>>24 | 0, // 2: CS/HS (C set), 3: CC/LO (C clear)
    69  	4 / 2: _FLAGS_N>>24 | 0, // 4: MI (N set), 5: PL (N clear)
    70  	6 / 2: _FLAGS_V>>24 | 0, // 6: VS (V set), 7: VC (V clear)
    71  	8 / 2: _FLAGS_C>>24 |
    72  		_FLAGS_Z>>28,
    73  }
    74  
    75  const _FAULT = 0x80000000 // impossible PC offset
    76  
    77  // returns number of words that the fp instruction
    78  // is occupying, 0 if next instruction isn't float.
    79  func stepflt(pc *uint32, regs *[15]uint32) uint32 {
    80  	var i, opc, regd, regm, regn, cpsr uint32
    81  
    82  	// m is locked in vlop_arm.s, so g.m cannot change during this function call,
    83  	// so caching it in a local variable is safe.
    84  	m := getg().m
    85  	i = *pc
    86  
    87  	if fptrace > 0 {
    88  		print("stepflt ", pc, " ", hex(i), " (cpsr ", hex(regs[_CPSR]>>28), ")\n")
    89  	}
    90  
    91  	opc = i >> 28
    92  	if opc == 14 { // common case first
    93  		goto execute
    94  	}
    95  
    96  	cpsr = regs[_CPSR] >> 28
    97  	switch opc {
    98  	case 0, 1, 2, 3, 4, 5, 6, 7, 8, 9:
    99  		if cpsr&(conditions[opc/2]>>4) == conditions[opc/2]>>4 &&
   100  			cpsr&(conditions[opc/2]&0xf) == 0 {
   101  			if opc&1 != 0 {
   102  				return 1
   103  			}
   104  		} else {
   105  			if opc&1 == 0 {
   106  				return 1
   107  			}
   108  		}
   109  
   110  	case 10, 11: // GE (N == V), LT (N != V)
   111  		if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) {
   112  			if opc&1 != 0 {
   113  				return 1
   114  			}
   115  		} else {
   116  			if opc&1 == 0 {
   117  				return 1
   118  			}
   119  		}
   120  
   121  	case 12, 13: // GT (N == V and Z == 0), LE (N != V or Z == 1)
   122  		if cpsr&(_FLAGS_N>>28) == cpsr&(_FLAGS_V>>28) &&
   123  			cpsr&(_FLAGS_Z>>28) == 0 {
   124  			if opc&1 != 0 {
   125  				return 1
   126  			}
   127  		} else {
   128  			if opc&1 == 0 {
   129  				return 1
   130  			}
   131  		}
   132  
   133  	case 14: // AL
   134  		// ok
   135  
   136  	case 15: // shouldn't happen
   137  		return 0
   138  	}
   139  
   140  	if fptrace > 0 {
   141  		print("conditional ", hex(opc), " (cpsr ", hex(cpsr), ") pass\n")
   142  	}
   143  	i = 0xe<<28 | i&(1<<28-1)
   144  
   145  execute:
   146  	// special cases
   147  	if i&0xfffff000 == 0xe59fb000 {
   148  		// load r11 from pc-relative address.
   149  		// might be part of a floating point move
   150  		// (or might not, but no harm in simulating
   151  		// one instruction too many).
   152  		addr := (*[1]uint32)(add(unsafe.Pointer(pc), uintptr(i&0xfff+8)))
   153  		regs[11] = addr[0]
   154  
   155  		if fptrace > 0 {
   156  			print("*** cpu R[11] = *(", addr, ") ", hex(regs[11]), "\n")
   157  		}
   158  		return 1
   159  	}
   160  	if i == 0xe08bb00d {
   161  		// add sp to r11.
   162  		// might be part of a large stack offset address
   163  		// (or might not, but again no harm done).
   164  		regs[11] += regs[13]
   165  
   166  		if fptrace > 0 {
   167  			print("*** cpu R[11] += R[13] ", hex(regs[11]), "\n")
   168  		}
   169  		return 1
   170  	}
   171  	if i == 0xeef1fa10 {
   172  		regs[_CPSR] = regs[_CPSR]&0x0fffffff | m.fflag
   173  
   174  		if fptrace > 0 {
   175  			print("*** fpsr R[CPSR] = F[CPSR] ", hex(regs[_CPSR]), "\n")
   176  		}
   177  		return 1
   178  	}
   179  	if i&0xff000000 == 0xea000000 {
   180  		// unconditional branch
   181  		// can happen in the middle of floating point
   182  		// if the linker decides it is time to lay down
   183  		// a sequence of instruction stream constants.
   184  		delta := int32(i&0xffffff) << 8 >> 8 // sign extend
   185  
   186  		if fptrace > 0 {
   187  			print("*** cpu PC += ", hex((delta+2)*4), "\n")
   188  		}
   189  		return uint32(delta + 2)
   190  	}
   191  
   192  	// load/store regn is cpureg, regm is 8bit offset
   193  	regd = i >> 12 & 0xf
   194  	regn = i >> 16 & 0xf
   195  	regm = i & 0xff << 2 // PLUS or MINUS ??
   196  
   197  	switch i & 0xfff00f00 {
   198  	case 0xed900a00: // single load
   199  		uaddr := uintptr(regs[regn] + regm)
   200  		if uaddr < 4096 {
   201  			if fptrace > 0 {
   202  				print("*** load @", hex(uaddr), " => fault\n")
   203  			}
   204  			return _FAULT
   205  		}
   206  		addr := (*[1]uint32)(unsafe.Pointer(uaddr))
   207  		m.freglo[regd] = addr[0]
   208  
   209  		if fptrace > 0 {
   210  			print("*** load F[", regd, "] = ", hex(m.freglo[regd]), "\n")
   211  		}
   212  		return 1
   213  
   214  	case 0xed900b00: // double load
   215  		uaddr := uintptr(regs[regn] + regm)
   216  		if uaddr < 4096 {
   217  			if fptrace > 0 {
   218  				print("*** double load @", hex(uaddr), " => fault\n")
   219  			}
   220  			return _FAULT
   221  		}
   222  		addr := (*[2]uint32)(unsafe.Pointer(uaddr))
   223  		m.freglo[regd] = addr[0]
   224  		m.freghi[regd] = addr[1]
   225  
   226  		if fptrace > 0 {
   227  			print("*** load D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   228  		}
   229  		return 1
   230  
   231  	case 0xed800a00: // single store
   232  		uaddr := uintptr(regs[regn] + regm)
   233  		if uaddr < 4096 {
   234  			if fptrace > 0 {
   235  				print("*** store @", hex(uaddr), " => fault\n")
   236  			}
   237  			return _FAULT
   238  		}
   239  		addr := (*[1]uint32)(unsafe.Pointer(uaddr))
   240  		addr[0] = m.freglo[regd]
   241  
   242  		if fptrace > 0 {
   243  			print("*** *(", addr, ") = ", hex(addr[0]), "\n")
   244  		}
   245  		return 1
   246  
   247  	case 0xed800b00: // double store
   248  		uaddr := uintptr(regs[regn] + regm)
   249  		if uaddr < 4096 {
   250  			if fptrace > 0 {
   251  				print("*** double store @", hex(uaddr), " => fault\n")
   252  			}
   253  			return _FAULT
   254  		}
   255  		addr := (*[2]uint32)(unsafe.Pointer(uaddr))
   256  		addr[0] = m.freglo[regd]
   257  		addr[1] = m.freghi[regd]
   258  
   259  		if fptrace > 0 {
   260  			print("*** *(", addr, ") = ", hex(addr[1]), "-", hex(addr[0]), "\n")
   261  		}
   262  		return 1
   263  	}
   264  
   265  	// regd, regm, regn are 4bit variables
   266  	regm = i >> 0 & 0xf
   267  	switch i & 0xfff00ff0 {
   268  	case 0xf3000110: // veor
   269  		m.freglo[regd] = m.freglo[regm] ^ m.freglo[regn]
   270  		m.freghi[regd] = m.freghi[regm] ^ m.freghi[regn]
   271  
   272  		if fptrace > 0 {
   273  			print("*** veor D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   274  		}
   275  		return 1
   276  
   277  	case 0xeeb00b00: // D[regd] = const(regn,regm)
   278  		regn = regn<<4 | regm
   279  		regm = 0x40000000
   280  		if regn&0x80 != 0 {
   281  			regm |= 0x80000000
   282  		}
   283  		if regn&0x40 != 0 {
   284  			regm ^= 0x7fc00000
   285  		}
   286  		regm |= regn & 0x3f << 16
   287  		m.freglo[regd] = 0
   288  		m.freghi[regd] = regm
   289  
   290  		if fptrace > 0 {
   291  			print("*** immed D[", regd, "] = ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   292  		}
   293  		return 1
   294  
   295  	case 0xeeb00a00: // F[regd] = const(regn,regm)
   296  		regn = regn<<4 | regm
   297  		regm = 0x40000000
   298  		if regn&0x80 != 0 {
   299  			regm |= 0x80000000
   300  		}
   301  		if regn&0x40 != 0 {
   302  			regm ^= 0x7e000000
   303  		}
   304  		regm |= regn & 0x3f << 19
   305  		m.freglo[regd] = regm
   306  
   307  		if fptrace > 0 {
   308  			print("*** immed D[", regd, "] = ", hex(m.freglo[regd]), "\n")
   309  		}
   310  		return 1
   311  
   312  	case 0xee300b00: // D[regd] = D[regn]+D[regm]
   313  		fputd(regd, fadd64(fgetd(regn), fgetd(regm)))
   314  
   315  		if fptrace > 0 {
   316  			print("*** add D[", regd, "] = D[", regn, "]+D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   317  		}
   318  		return 1
   319  
   320  	case 0xee300a00: // F[regd] = F[regn]+F[regm]
   321  		m.freglo[regd] = f64to32(fadd64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   322  
   323  		if fptrace > 0 {
   324  			print("*** add F[", regd, "] = F[", regn, "]+F[", regm, "] ", hex(m.freglo[regd]), "\n")
   325  		}
   326  		return 1
   327  
   328  	case 0xee300b40: // D[regd] = D[regn]-D[regm]
   329  		fputd(regd, fsub64(fgetd(regn), fgetd(regm)))
   330  
   331  		if fptrace > 0 {
   332  			print("*** sub D[", regd, "] = D[", regn, "]-D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   333  		}
   334  		return 1
   335  
   336  	case 0xee300a40: // F[regd] = F[regn]-F[regm]
   337  		m.freglo[regd] = f64to32(fsub64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   338  
   339  		if fptrace > 0 {
   340  			print("*** sub F[", regd, "] = F[", regn, "]-F[", regm, "] ", hex(m.freglo[regd]), "\n")
   341  		}
   342  		return 1
   343  
   344  	case 0xee200b00: // D[regd] = D[regn]*D[regm]
   345  		fputd(regd, fmul64(fgetd(regn), fgetd(regm)))
   346  
   347  		if fptrace > 0 {
   348  			print("*** mul D[", regd, "] = D[", regn, "]*D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   349  		}
   350  		return 1
   351  
   352  	case 0xee200a00: // F[regd] = F[regn]*F[regm]
   353  		m.freglo[regd] = f64to32(fmul64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   354  
   355  		if fptrace > 0 {
   356  			print("*** mul F[", regd, "] = F[", regn, "]*F[", regm, "] ", hex(m.freglo[regd]), "\n")
   357  		}
   358  		return 1
   359  
   360  	case 0xee800b00: // D[regd] = D[regn]/D[regm]
   361  		fputd(regd, fdiv64(fgetd(regn), fgetd(regm)))
   362  
   363  		if fptrace > 0 {
   364  			print("*** div D[", regd, "] = D[", regn, "]/D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   365  		}
   366  		return 1
   367  
   368  	case 0xee800a00: // F[regd] = F[regn]/F[regm]
   369  		m.freglo[regd] = f64to32(fdiv64(f32to64(m.freglo[regn]), f32to64(m.freglo[regm])))
   370  
   371  		if fptrace > 0 {
   372  			print("*** div F[", regd, "] = F[", regn, "]/F[", regm, "] ", hex(m.freglo[regd]), "\n")
   373  		}
   374  		return 1
   375  
   376  	case 0xee000b10: // S[regn] = R[regd] (MOVW) (regm ignored)
   377  		m.freglo[regn] = regs[regd]
   378  
   379  		if fptrace > 0 {
   380  			print("*** cpy S[", regn, "] = R[", regd, "] ", hex(m.freglo[regn]), "\n")
   381  		}
   382  		return 1
   383  
   384  	case 0xee100b10: // R[regd] = S[regn] (MOVW) (regm ignored)
   385  		regs[regd] = m.freglo[regn]
   386  
   387  		if fptrace > 0 {
   388  			print("*** cpy R[", regd, "] = S[", regn, "] ", hex(regs[regd]), "\n")
   389  		}
   390  		return 1
   391  	}
   392  
   393  	// regd, regm are 4bit variables
   394  	switch i & 0xffff0ff0 {
   395  	case 0xeeb00a40: // F[regd] = F[regm] (MOVF)
   396  		m.freglo[regd] = m.freglo[regm]
   397  
   398  		if fptrace > 0 {
   399  			print("*** F[", regd, "] = F[", regm, "] ", hex(m.freglo[regd]), "\n")
   400  		}
   401  		return 1
   402  
   403  	case 0xeeb00b40: // D[regd] = D[regm] (MOVD)
   404  		m.freglo[regd] = m.freglo[regm]
   405  		m.freghi[regd] = m.freghi[regm]
   406  
   407  		if fptrace > 0 {
   408  			print("*** D[", regd, "] = D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   409  		}
   410  		return 1
   411  
   412  	case 0xeeb10bc0: // D[regd] = sqrt D[regm]
   413  		fputd(regd, sqrt(fgetd(regm)))
   414  
   415  		if fptrace > 0 {
   416  			print("*** D[", regd, "] = sqrt D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   417  		}
   418  		return 1
   419  
   420  	case 0xeeb00bc0: // D[regd] = abs D[regm]
   421  		m.freglo[regd] = m.freglo[regm]
   422  		m.freghi[regd] = m.freghi[regm] & (1<<31 - 1)
   423  
   424  		if fptrace > 0 {
   425  			print("*** D[", regd, "] = abs D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   426  		}
   427  		return 1
   428  
   429  	case 0xeeb00ac0: // F[regd] = abs F[regm]
   430  		m.freglo[regd] = m.freglo[regm] & (1<<31 - 1)
   431  
   432  		if fptrace > 0 {
   433  			print("*** F[", regd, "] = abs F[", regm, "] ", hex(m.freglo[regd]), "\n")
   434  		}
   435  		return 1
   436  
   437  	case 0xeeb40bc0: // D[regd] :: D[regm] (CMPD)
   438  		cmp, nan := fcmp64(fgetd(regd), fgetd(regm))
   439  		m.fflag = fstatus(nan, cmp)
   440  
   441  		if fptrace > 0 {
   442  			print("*** cmp D[", regd, "]::D[", regm, "] ", hex(m.fflag), "\n")
   443  		}
   444  		return 1
   445  
   446  	case 0xeeb40ac0: // F[regd] :: F[regm] (CMPF)
   447  		cmp, nan := fcmp64(f32to64(m.freglo[regd]), f32to64(m.freglo[regm]))
   448  		m.fflag = fstatus(nan, cmp)
   449  
   450  		if fptrace > 0 {
   451  			print("*** cmp F[", regd, "]::F[", regm, "] ", hex(m.fflag), "\n")
   452  		}
   453  		return 1
   454  
   455  	case 0xeeb70ac0: // D[regd] = F[regm] (MOVFD)
   456  		fputd(regd, f32to64(m.freglo[regm]))
   457  
   458  		if fptrace > 0 {
   459  			print("*** f2d D[", regd, "]=F[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   460  		}
   461  		return 1
   462  
   463  	case 0xeeb70bc0: // F[regd] = D[regm] (MOVDF)
   464  		m.freglo[regd] = f64to32(fgetd(regm))
   465  
   466  		if fptrace > 0 {
   467  			print("*** d2f F[", regd, "]=D[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   468  		}
   469  		return 1
   470  
   471  	case 0xeebd0ac0: // S[regd] = F[regm] (MOVFW)
   472  		sval, ok := f64toint(f32to64(m.freglo[regm]))
   473  		if !ok || int64(int32(sval)) != sval {
   474  			sval = 0
   475  		}
   476  		m.freglo[regd] = uint32(sval)
   477  		if fptrace > 0 {
   478  			print("*** fix S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n")
   479  		}
   480  		return 1
   481  
   482  	case 0xeebc0ac0: // S[regd] = F[regm] (MOVFW.U)
   483  		sval, ok := f64toint(f32to64(m.freglo[regm]))
   484  		if !ok || int64(uint32(sval)) != sval {
   485  			sval = 0
   486  		}
   487  		m.freglo[regd] = uint32(sval)
   488  
   489  		if fptrace > 0 {
   490  			print("*** fix unsigned S[", regd, "]=F[", regm, "] ", hex(m.freglo[regd]), "\n")
   491  		}
   492  		return 1
   493  
   494  	case 0xeebd0bc0: // S[regd] = D[regm] (MOVDW)
   495  		sval, ok := f64toint(fgetd(regm))
   496  		if !ok || int64(int32(sval)) != sval {
   497  			sval = 0
   498  		}
   499  		m.freglo[regd] = uint32(sval)
   500  
   501  		if fptrace > 0 {
   502  			print("*** fix S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n")
   503  		}
   504  		return 1
   505  
   506  	case 0xeebc0bc0: // S[regd] = D[regm] (MOVDW.U)
   507  		sval, ok := f64toint(fgetd(regm))
   508  		if !ok || int64(uint32(sval)) != sval {
   509  			sval = 0
   510  		}
   511  		m.freglo[regd] = uint32(sval)
   512  
   513  		if fptrace > 0 {
   514  			print("*** fix unsigned S[", regd, "]=D[", regm, "] ", hex(m.freglo[regd]), "\n")
   515  		}
   516  		return 1
   517  
   518  	case 0xeeb80ac0: // D[regd] = S[regm] (MOVWF)
   519  		cmp := int32(m.freglo[regm])
   520  		if cmp < 0 {
   521  			fputf(regd, f64to32(fintto64(int64(-cmp))))
   522  			m.freglo[regd] ^= 0x80000000
   523  		} else {
   524  			fputf(regd, f64to32(fintto64(int64(cmp))))
   525  		}
   526  
   527  		if fptrace > 0 {
   528  			print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   529  		}
   530  		return 1
   531  
   532  	case 0xeeb80a40: // D[regd] = S[regm] (MOVWF.U)
   533  		fputf(regd, f64to32(fintto64(int64(m.freglo[regm]))))
   534  
   535  		if fptrace > 0 {
   536  			print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   537  		}
   538  		return 1
   539  
   540  	case 0xeeb80bc0: // D[regd] = S[regm] (MOVWD)
   541  		cmp := int32(m.freglo[regm])
   542  		if cmp < 0 {
   543  			fputd(regd, fintto64(int64(-cmp)))
   544  			m.freghi[regd] ^= 0x80000000
   545  		} else {
   546  			fputd(regd, fintto64(int64(cmp)))
   547  		}
   548  
   549  		if fptrace > 0 {
   550  			print("*** float D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   551  		}
   552  		return 1
   553  
   554  	case 0xeeb80b40: // D[regd] = S[regm] (MOVWD.U)
   555  		fputd(regd, fintto64(int64(m.freglo[regm])))
   556  
   557  		if fptrace > 0 {
   558  			print("*** float unsigned D[", regd, "]=S[", regm, "] ", hex(m.freghi[regd]), "-", hex(m.freglo[regd]), "\n")
   559  		}
   560  		return 1
   561  	}
   562  
   563  	if i&0xff000000 == 0xee000000 || i&0xff000000 == 0xed000000 {
   564  		print("stepflt ", pc, " ", hex(i), "\n")
   565  		fabort()
   566  	}
   567  	return 0
   568  }
   569  
   570  //go:nosplit
   571  func _sfloat2(pc uint32, regs [15]uint32) (newpc uint32) {
   572  	systemstack(func() {
   573  		newpc = sfloat2(pc, &regs)
   574  	})
   575  	return
   576  }
   577  
   578  func _sfloatpanic()
   579  
   580  func sfloat2(pc uint32, regs *[15]uint32) uint32 {
   581  	first := true
   582  	for {
   583  		skip := stepflt((*uint32)(unsafe.Pointer(uintptr(pc))), regs)
   584  		if skip == 0 {
   585  			break
   586  		}
   587  		first = false
   588  		if skip == _FAULT {
   589  			// Encountered bad address in store/load.
   590  			// Record signal information and return to assembly
   591  			// trampoline that fakes the call.
   592  			const SIGSEGV = 11
   593  			curg := getg().m.curg
   594  			curg.sig = SIGSEGV
   595  			curg.sigcode0 = 0
   596  			curg.sigcode1 = 0
   597  			curg.sigpc = uintptr(pc)
   598  			pc = uint32(funcPC(_sfloatpanic))
   599  			break
   600  		}
   601  		pc += 4 * uint32(skip)
   602  	}
   603  	if first {
   604  		print("sfloat2 ", pc, " ", hex(*(*uint32)(unsafe.Pointer(uintptr(pc)))), "\n")
   605  		fabort() // not ok to fail first instruction
   606  	}
   607  	return pc
   608  }