github.com/c12o16h1/go/src@v0.0.0-20200114212001-5a151c0f00ed/crypto/cipher/gcm.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package cipher 6 7 import ( 8 subtleoverlap "crypto/internal/subtle" 9 "crypto/subtle" 10 "encoding/binary" 11 "errors" 12 ) 13 14 // AEAD is a cipher mode providing authenticated encryption with associated 15 // data. For a description of the methodology, see 16 // https://en.wikipedia.org/wiki/Authenticated_encryption 17 type AEAD interface { 18 // NonceSize returns the size of the nonce that must be passed to Seal 19 // and Open. 20 NonceSize() int 21 22 // Overhead returns the maximum difference between the lengths of a 23 // plaintext and its ciphertext. 24 Overhead() int 25 26 // Seal encrypts and authenticates plaintext, authenticates the 27 // additional data and appends the result to dst, returning the updated 28 // slice. The nonce must be NonceSize() bytes long and unique for all 29 // time, for a given key. 30 // 31 // To reuse plaintext's storage for the encrypted output, use plaintext[:0] 32 // as dst. Otherwise, the remaining capacity of dst must not overlap plaintext. 33 Seal(dst, nonce, plaintext, additionalData []byte) []byte 34 35 // Open decrypts and authenticates ciphertext, authenticates the 36 // additional data and, if successful, appends the resulting plaintext 37 // to dst, returning the updated slice. The nonce must be NonceSize() 38 // bytes long and both it and the additional data must match the 39 // value passed to Seal. 40 // 41 // To reuse ciphertext's storage for the decrypted output, use ciphertext[:0] 42 // as dst. Otherwise, the remaining capacity of dst must not overlap plaintext. 43 // 44 // Even if the function fails, the contents of dst, up to its capacity, 45 // may be overwritten. 46 Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) 47 } 48 49 // gcmAble is an interface implemented by ciphers that have a specific optimized 50 // implementation of GCM, like crypto/aes. NewGCM will check for this interface 51 // and return the specific AEAD if found. 52 type gcmAble interface { 53 NewGCM(nonceSize, tagSize int) (AEAD, error) 54 } 55 56 // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM 57 // standard and make binary.BigEndian suitable for marshaling these values, the 58 // bits are stored in big endian order. For example: 59 // the coefficient of x⁰ can be obtained by v.low >> 63. 60 // the coefficient of x⁶³ can be obtained by v.low & 1. 61 // the coefficient of x⁶⁴ can be obtained by v.high >> 63. 62 // the coefficient of x¹²⁷ can be obtained by v.high & 1. 63 type gcmFieldElement struct { 64 low, high uint64 65 } 66 67 // gcm represents a Galois Counter Mode with a specific key. See 68 // https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 69 type gcm struct { 70 cipher Block 71 nonceSize int 72 tagSize int 73 // productTable contains the first sixteen powers of the key, H. 74 // However, they are in bit reversed order. See NewGCMWithNonceSize. 75 productTable [16]gcmFieldElement 76 } 77 78 // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode 79 // with the standard nonce length. 80 // 81 // In general, the GHASH operation performed by this implementation of GCM is not constant-time. 82 // An exception is when the underlying Block was created by aes.NewCipher 83 // on systems with hardware support for AES. See the crypto/aes package documentation for details. 84 func NewGCM(cipher Block) (AEAD, error) { 85 return newGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, gcmTagSize) 86 } 87 88 // NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois 89 // Counter Mode, which accepts nonces of the given length. 90 // 91 // Only use this function if you require compatibility with an existing 92 // cryptosystem that uses non-standard nonce lengths. All other users should use 93 // NewGCM, which is faster and more resistant to misuse. 94 func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) { 95 return newGCMWithNonceAndTagSize(cipher, size, gcmTagSize) 96 } 97 98 // NewGCMWithTagSize returns the given 128-bit, block cipher wrapped in Galois 99 // Counter Mode, which generates tags with the given length. 100 // 101 // Tag sizes between 12 and 16 bytes are allowed. 102 // 103 // Only use this function if you require compatibility with an existing 104 // cryptosystem that uses non-standard tag lengths. All other users should use 105 // NewGCM, which is more resistant to misuse. 106 func NewGCMWithTagSize(cipher Block, tagSize int) (AEAD, error) { 107 return newGCMWithNonceAndTagSize(cipher, gcmStandardNonceSize, tagSize) 108 } 109 110 func newGCMWithNonceAndTagSize(cipher Block, nonceSize, tagSize int) (AEAD, error) { 111 if tagSize < gcmMinimumTagSize || tagSize > gcmBlockSize { 112 return nil, errors.New("cipher: incorrect tag size given to GCM") 113 } 114 115 if cipher, ok := cipher.(gcmAble); ok { 116 return cipher.NewGCM(nonceSize, tagSize) 117 } 118 119 if cipher.BlockSize() != gcmBlockSize { 120 return nil, errors.New("cipher: NewGCM requires 128-bit block cipher") 121 } 122 123 var key [gcmBlockSize]byte 124 cipher.Encrypt(key[:], key[:]) 125 126 g := &gcm{cipher: cipher, nonceSize: nonceSize, tagSize: tagSize} 127 128 // We precompute 16 multiples of |key|. However, when we do lookups 129 // into this table we'll be using bits from a field element and 130 // therefore the bits will be in the reverse order. So normally one 131 // would expect, say, 4*key to be in index 4 of the table but due to 132 // this bit ordering it will actually be in index 0010 (base 2) = 2. 133 x := gcmFieldElement{ 134 binary.BigEndian.Uint64(key[:8]), 135 binary.BigEndian.Uint64(key[8:]), 136 } 137 g.productTable[reverseBits(1)] = x 138 139 for i := 2; i < 16; i += 2 { 140 g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)]) 141 g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x) 142 } 143 144 return g, nil 145 } 146 147 const ( 148 gcmBlockSize = 16 149 gcmTagSize = 16 150 gcmMinimumTagSize = 12 // NIST SP 800-38D recommends tags with 12 or more bytes. 151 gcmStandardNonceSize = 12 152 ) 153 154 func (g *gcm) NonceSize() int { 155 return g.nonceSize 156 } 157 158 func (g *gcm) Overhead() int { 159 return g.tagSize 160 } 161 162 func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte { 163 if len(nonce) != g.nonceSize { 164 panic("crypto/cipher: incorrect nonce length given to GCM") 165 } 166 if uint64(len(plaintext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize()) { 167 panic("crypto/cipher: message too large for GCM") 168 } 169 170 ret, out := sliceForAppend(dst, len(plaintext)+g.tagSize) 171 if subtleoverlap.InexactOverlap(out, plaintext) { 172 panic("crypto/cipher: invalid buffer overlap") 173 } 174 175 var counter, tagMask [gcmBlockSize]byte 176 g.deriveCounter(&counter, nonce) 177 178 g.cipher.Encrypt(tagMask[:], counter[:]) 179 gcmInc32(&counter) 180 181 g.counterCrypt(out, plaintext, &counter) 182 183 var tag [gcmTagSize]byte 184 g.auth(tag[:], out[:len(plaintext)], data, &tagMask) 185 copy(out[len(plaintext):], tag[:]) 186 187 return ret 188 } 189 190 var errOpen = errors.New("cipher: message authentication failed") 191 192 func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { 193 if len(nonce) != g.nonceSize { 194 panic("crypto/cipher: incorrect nonce length given to GCM") 195 } 196 // Sanity check to prevent the authentication from always succeeding if an implementation 197 // leaves tagSize uninitialized, for example. 198 if g.tagSize < gcmMinimumTagSize { 199 panic("crypto/cipher: incorrect GCM tag size") 200 } 201 202 if len(ciphertext) < g.tagSize { 203 return nil, errOpen 204 } 205 if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize())+uint64(g.tagSize) { 206 return nil, errOpen 207 } 208 209 tag := ciphertext[len(ciphertext)-g.tagSize:] 210 ciphertext = ciphertext[:len(ciphertext)-g.tagSize] 211 212 var counter, tagMask [gcmBlockSize]byte 213 g.deriveCounter(&counter, nonce) 214 215 g.cipher.Encrypt(tagMask[:], counter[:]) 216 gcmInc32(&counter) 217 218 var expectedTag [gcmTagSize]byte 219 g.auth(expectedTag[:], ciphertext, data, &tagMask) 220 221 ret, out := sliceForAppend(dst, len(ciphertext)) 222 if subtleoverlap.InexactOverlap(out, ciphertext) { 223 panic("crypto/cipher: invalid buffer overlap") 224 } 225 226 if subtle.ConstantTimeCompare(expectedTag[:g.tagSize], tag) != 1 { 227 // The AESNI code decrypts and authenticates concurrently, and 228 // so overwrites dst in the event of a tag mismatch. That 229 // behavior is mimicked here in order to be consistent across 230 // platforms. 231 for i := range out { 232 out[i] = 0 233 } 234 return nil, errOpen 235 } 236 237 g.counterCrypt(out, ciphertext, &counter) 238 239 return ret, nil 240 } 241 242 // reverseBits reverses the order of the bits of 4-bit number in i. 243 func reverseBits(i int) int { 244 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3) 245 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5) 246 return i 247 } 248 249 // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum. 250 func gcmAdd(x, y *gcmFieldElement) gcmFieldElement { 251 // Addition in a characteristic 2 field is just XOR. 252 return gcmFieldElement{x.low ^ y.low, x.high ^ y.high} 253 } 254 255 // gcmDouble returns the result of doubling an element of GF(2¹²⁸). 256 func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) { 257 msbSet := x.high&1 == 1 258 259 // Because of the bit-ordering, doubling is actually a right shift. 260 double.high = x.high >> 1 261 double.high |= x.low << 63 262 double.low = x.low >> 1 263 264 // If the most-significant bit was set before shifting then it, 265 // conceptually, becomes a term of x^128. This is greater than the 266 // irreducible polynomial so the result has to be reduced. The 267 // irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to 268 // eliminate the term at x^128 which also means subtracting the other 269 // four terms. In characteristic 2 fields, subtraction == addition == 270 // XOR. 271 if msbSet { 272 double.low ^= 0xe100000000000000 273 } 274 275 return 276 } 277 278 var gcmReductionTable = []uint16{ 279 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, 280 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, 281 } 282 283 // mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize. 284 func (g *gcm) mul(y *gcmFieldElement) { 285 var z gcmFieldElement 286 287 for i := 0; i < 2; i++ { 288 word := y.high 289 if i == 1 { 290 word = y.low 291 } 292 293 // Multiplication works by multiplying z by 16 and adding in 294 // one of the precomputed multiples of H. 295 for j := 0; j < 64; j += 4 { 296 msw := z.high & 0xf 297 z.high >>= 4 298 z.high |= z.low << 60 299 z.low >>= 4 300 z.low ^= uint64(gcmReductionTable[msw]) << 48 301 302 // the values in |table| are ordered for 303 // little-endian bit positions. See the comment 304 // in NewGCMWithNonceSize. 305 t := &g.productTable[word&0xf] 306 307 z.low ^= t.low 308 z.high ^= t.high 309 word >>= 4 310 } 311 } 312 313 *y = z 314 } 315 316 // updateBlocks extends y with more polynomial terms from blocks, based on 317 // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks. 318 func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) { 319 for len(blocks) > 0 { 320 y.low ^= binary.BigEndian.Uint64(blocks) 321 y.high ^= binary.BigEndian.Uint64(blocks[8:]) 322 g.mul(y) 323 blocks = blocks[gcmBlockSize:] 324 } 325 } 326 327 // update extends y with more polynomial terms from data. If data is not a 328 // multiple of gcmBlockSize bytes long then the remainder is zero padded. 329 func (g *gcm) update(y *gcmFieldElement, data []byte) { 330 fullBlocks := (len(data) >> 4) << 4 331 g.updateBlocks(y, data[:fullBlocks]) 332 333 if len(data) != fullBlocks { 334 var partialBlock [gcmBlockSize]byte 335 copy(partialBlock[:], data[fullBlocks:]) 336 g.updateBlocks(y, partialBlock[:]) 337 } 338 } 339 340 // gcmInc32 treats the final four bytes of counterBlock as a big-endian value 341 // and increments it. 342 func gcmInc32(counterBlock *[16]byte) { 343 ctr := counterBlock[len(counterBlock)-4:] 344 binary.BigEndian.PutUint32(ctr, binary.BigEndian.Uint32(ctr)+1) 345 } 346 347 // sliceForAppend takes a slice and a requested number of bytes. It returns a 348 // slice with the contents of the given slice followed by that many bytes and a 349 // second slice that aliases into it and contains only the extra bytes. If the 350 // original slice has sufficient capacity then no allocation is performed. 351 func sliceForAppend(in []byte, n int) (head, tail []byte) { 352 if total := len(in) + n; cap(in) >= total { 353 head = in[:total] 354 } else { 355 head = make([]byte, total) 356 copy(head, in) 357 } 358 tail = head[len(in):] 359 return 360 } 361 362 // counterCrypt crypts in to out using g.cipher in counter mode. 363 func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { 364 var mask [gcmBlockSize]byte 365 366 for len(in) >= gcmBlockSize { 367 g.cipher.Encrypt(mask[:], counter[:]) 368 gcmInc32(counter) 369 370 xorWords(out, in, mask[:]) 371 out = out[gcmBlockSize:] 372 in = in[gcmBlockSize:] 373 } 374 375 if len(in) > 0 { 376 g.cipher.Encrypt(mask[:], counter[:]) 377 gcmInc32(counter) 378 xorBytes(out, in, mask[:]) 379 } 380 } 381 382 // deriveCounter computes the initial GCM counter state from the given nonce. 383 // See NIST SP 800-38D, section 7.1. This assumes that counter is filled with 384 // zeros on entry. 385 func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) { 386 // GCM has two modes of operation with respect to the initial counter 387 // state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path" 388 // for nonces of other lengths. For a 96-bit nonce, the nonce, along 389 // with a four-byte big-endian counter starting at one, is used 390 // directly as the starting counter. For other nonce sizes, the counter 391 // is computed by passing it through the GHASH function. 392 if len(nonce) == gcmStandardNonceSize { 393 copy(counter[:], nonce) 394 counter[gcmBlockSize-1] = 1 395 } else { 396 var y gcmFieldElement 397 g.update(&y, nonce) 398 y.high ^= uint64(len(nonce)) * 8 399 g.mul(&y) 400 binary.BigEndian.PutUint64(counter[:8], y.low) 401 binary.BigEndian.PutUint64(counter[8:], y.high) 402 } 403 } 404 405 // auth calculates GHASH(ciphertext, additionalData), masks the result with 406 // tagMask and writes the result to out. 407 func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { 408 var y gcmFieldElement 409 g.update(&y, additionalData) 410 g.update(&y, ciphertext) 411 412 y.low ^= uint64(len(additionalData)) * 8 413 y.high ^= uint64(len(ciphertext)) * 8 414 415 g.mul(&y) 416 417 binary.BigEndian.PutUint64(out, y.low) 418 binary.BigEndian.PutUint64(out[8:], y.high) 419 420 xorWords(out, out, tagMask[:]) 421 }