github.com/c2s/go-ethereum@v1.9.7/p2p/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package p2p 18 19 import ( 20 "bytes" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/ecdsa" 24 "crypto/elliptic" 25 "crypto/hmac" 26 "crypto/rand" 27 "encoding/binary" 28 "errors" 29 "fmt" 30 "hash" 31 "io" 32 "io/ioutil" 33 mrand "math/rand" 34 "net" 35 "sync" 36 "time" 37 38 "github.com/ethereum/go-ethereum/common/bitutil" 39 "github.com/ethereum/go-ethereum/crypto" 40 "github.com/ethereum/go-ethereum/crypto/ecies" 41 "github.com/ethereum/go-ethereum/metrics" 42 "github.com/ethereum/go-ethereum/rlp" 43 "github.com/golang/snappy" 44 "golang.org/x/crypto/sha3" 45 ) 46 47 const ( 48 maxUint24 = ^uint32(0) >> 8 49 50 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 51 sigLen = crypto.SignatureLength // elliptic S256 52 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 53 shaLen = 32 // hash length (for nonce etc) 54 55 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 56 authRespLen = pubLen + shaLen + 1 57 58 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 59 60 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 61 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 62 63 // total timeout for encryption handshake and protocol 64 // handshake in both directions. 65 handshakeTimeout = 5 * time.Second 66 67 // This is the timeout for sending the disconnect reason. 68 // This is shorter than the usual timeout because we don't want 69 // to wait if the connection is known to be bad anyway. 70 discWriteTimeout = 1 * time.Second 71 ) 72 73 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 74 // the allowed 24 bits (i.e. length >= 16MB). 75 var errPlainMessageTooLarge = errors.New("message length >= 16MB") 76 77 // rlpx is the transport protocol used by actual (non-test) connections. 78 // It wraps the frame encoder with locks and read/write deadlines. 79 type rlpx struct { 80 fd net.Conn 81 82 rmu, wmu sync.Mutex 83 rw *rlpxFrameRW 84 } 85 86 func newRLPX(fd net.Conn) transport { 87 fd.SetDeadline(time.Now().Add(handshakeTimeout)) 88 return &rlpx{fd: fd} 89 } 90 91 func (t *rlpx) ReadMsg() (Msg, error) { 92 t.rmu.Lock() 93 defer t.rmu.Unlock() 94 t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) 95 return t.rw.ReadMsg() 96 } 97 98 func (t *rlpx) WriteMsg(msg Msg) error { 99 t.wmu.Lock() 100 defer t.wmu.Unlock() 101 t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) 102 return t.rw.WriteMsg(msg) 103 } 104 105 func (t *rlpx) close(err error) { 106 t.wmu.Lock() 107 defer t.wmu.Unlock() 108 // Tell the remote end why we're disconnecting if possible. 109 if t.rw != nil { 110 if r, ok := err.(DiscReason); ok && r != DiscNetworkError { 111 // rlpx tries to send DiscReason to disconnected peer 112 // if the connection is net.Pipe (in-memory simulation) 113 // it hangs forever, since net.Pipe does not implement 114 // a write deadline. Because of this only try to send 115 // the disconnect reason message if there is no error. 116 if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil { 117 SendItems(t.rw, discMsg, r) 118 } 119 } 120 } 121 t.fd.Close() 122 } 123 124 func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { 125 // Writing our handshake happens concurrently, we prefer 126 // returning the handshake read error. If the remote side 127 // disconnects us early with a valid reason, we should return it 128 // as the error so it can be tracked elsewhere. 129 werr := make(chan error, 1) 130 go func() { werr <- Send(t.rw, handshakeMsg, our) }() 131 if their, err = readProtocolHandshake(t.rw); err != nil { 132 <-werr // make sure the write terminates too 133 return nil, err 134 } 135 if err := <-werr; err != nil { 136 return nil, fmt.Errorf("write error: %v", err) 137 } 138 // If the protocol version supports Snappy encoding, upgrade immediately 139 t.rw.snappy = their.Version >= snappyProtocolVersion 140 141 return their, nil 142 } 143 144 func readProtocolHandshake(rw MsgReader) (*protoHandshake, error) { 145 msg, err := rw.ReadMsg() 146 if err != nil { 147 return nil, err 148 } 149 if msg.Size > baseProtocolMaxMsgSize { 150 return nil, fmt.Errorf("message too big") 151 } 152 if msg.Code == discMsg { 153 // Disconnect before protocol handshake is valid according to the 154 // spec and we send it ourself if the post-handshake checks fail. 155 // We can't return the reason directly, though, because it is echoed 156 // back otherwise. Wrap it in a string instead. 157 var reason [1]DiscReason 158 rlp.Decode(msg.Payload, &reason) 159 return nil, reason[0] 160 } 161 if msg.Code != handshakeMsg { 162 return nil, fmt.Errorf("expected handshake, got %x", msg.Code) 163 } 164 var hs protoHandshake 165 if err := msg.Decode(&hs); err != nil { 166 return nil, err 167 } 168 if len(hs.ID) != 64 || !bitutil.TestBytes(hs.ID) { 169 return nil, DiscInvalidIdentity 170 } 171 return &hs, nil 172 } 173 174 // doEncHandshake runs the protocol handshake using authenticated 175 // messages. the protocol handshake is the first authenticated message 176 // and also verifies whether the encryption handshake 'worked' and the 177 // remote side actually provided the right public key. 178 func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *ecdsa.PublicKey) (*ecdsa.PublicKey, error) { 179 var ( 180 sec secrets 181 err error 182 ) 183 if dial == nil { 184 sec, err = receiverEncHandshake(t.fd, prv) 185 } else { 186 sec, err = initiatorEncHandshake(t.fd, prv, dial) 187 } 188 if err != nil { 189 return nil, err 190 } 191 t.wmu.Lock() 192 t.rw = newRLPXFrameRW(t.fd, sec) 193 t.wmu.Unlock() 194 return sec.Remote.ExportECDSA(), nil 195 } 196 197 // encHandshake contains the state of the encryption handshake. 198 type encHandshake struct { 199 initiator bool 200 remote *ecies.PublicKey // remote-pubk 201 initNonce, respNonce []byte // nonce 202 randomPrivKey *ecies.PrivateKey // ecdhe-random 203 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 204 } 205 206 // secrets represents the connection secrets 207 // which are negotiated during the encryption handshake. 208 type secrets struct { 209 Remote *ecies.PublicKey 210 AES, MAC []byte 211 EgressMAC, IngressMAC hash.Hash 212 Token []byte 213 } 214 215 // RLPx v4 handshake auth (defined in EIP-8). 216 type authMsgV4 struct { 217 gotPlain bool // whether read packet had plain format. 218 219 Signature [sigLen]byte 220 InitiatorPubkey [pubLen]byte 221 Nonce [shaLen]byte 222 Version uint 223 224 // Ignore additional fields (forward-compatibility) 225 Rest []rlp.RawValue `rlp:"tail"` 226 } 227 228 // RLPx v4 handshake response (defined in EIP-8). 229 type authRespV4 struct { 230 RandomPubkey [pubLen]byte 231 Nonce [shaLen]byte 232 Version uint 233 234 // Ignore additional fields (forward-compatibility) 235 Rest []rlp.RawValue `rlp:"tail"` 236 } 237 238 // secrets is called after the handshake is completed. 239 // It extracts the connection secrets from the handshake values. 240 func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { 241 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 242 if err != nil { 243 return secrets{}, err 244 } 245 246 // derive base secrets from ephemeral key agreement 247 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 248 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 249 s := secrets{ 250 Remote: h.remote, 251 AES: aesSecret, 252 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 253 } 254 255 // setup sha3 instances for the MACs 256 mac1 := sha3.NewLegacyKeccak256() 257 mac1.Write(xor(s.MAC, h.respNonce)) 258 mac1.Write(auth) 259 mac2 := sha3.NewLegacyKeccak256() 260 mac2.Write(xor(s.MAC, h.initNonce)) 261 mac2.Write(authResp) 262 if h.initiator { 263 s.EgressMAC, s.IngressMAC = mac1, mac2 264 } else { 265 s.EgressMAC, s.IngressMAC = mac2, mac1 266 } 267 268 return s, nil 269 } 270 271 // staticSharedSecret returns the static shared secret, the result 272 // of key agreement between the local and remote static node key. 273 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 274 return ecies.ImportECDSA(prv).GenerateShared(h.remote, sskLen, sskLen) 275 } 276 277 // initiatorEncHandshake negotiates a session token on conn. 278 // it should be called on the dialing side of the connection. 279 // 280 // prv is the local client's private key. 281 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remote *ecdsa.PublicKey) (s secrets, err error) { 282 h := &encHandshake{initiator: true, remote: ecies.ImportECDSAPublic(remote)} 283 authMsg, err := h.makeAuthMsg(prv) 284 if err != nil { 285 return s, err 286 } 287 authPacket, err := sealEIP8(authMsg, h) 288 if err != nil { 289 return s, err 290 } 291 if _, err = conn.Write(authPacket); err != nil { 292 return s, err 293 } 294 295 authRespMsg := new(authRespV4) 296 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 297 if err != nil { 298 return s, err 299 } 300 if err := h.handleAuthResp(authRespMsg); err != nil { 301 return s, err 302 } 303 return h.secrets(authPacket, authRespPacket) 304 } 305 306 // makeAuthMsg creates the initiator handshake message. 307 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey) (*authMsgV4, error) { 308 // Generate random initiator nonce. 309 h.initNonce = make([]byte, shaLen) 310 _, err := rand.Read(h.initNonce) 311 if err != nil { 312 return nil, err 313 } 314 // Generate random keypair to for ECDH. 315 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 316 if err != nil { 317 return nil, err 318 } 319 320 // Sign known message: static-shared-secret ^ nonce 321 token, err := h.staticSharedSecret(prv) 322 if err != nil { 323 return nil, err 324 } 325 signed := xor(token, h.initNonce) 326 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 327 if err != nil { 328 return nil, err 329 } 330 331 msg := new(authMsgV4) 332 copy(msg.Signature[:], signature) 333 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 334 copy(msg.Nonce[:], h.initNonce) 335 msg.Version = 4 336 return msg, nil 337 } 338 339 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 340 h.respNonce = msg.Nonce[:] 341 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 342 return err 343 } 344 345 // receiverEncHandshake negotiates a session token on conn. 346 // it should be called on the listening side of the connection. 347 // 348 // prv is the local client's private key. 349 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey) (s secrets, err error) { 350 authMsg := new(authMsgV4) 351 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 352 if err != nil { 353 return s, err 354 } 355 h := new(encHandshake) 356 if err := h.handleAuthMsg(authMsg, prv); err != nil { 357 return s, err 358 } 359 360 authRespMsg, err := h.makeAuthResp() 361 if err != nil { 362 return s, err 363 } 364 var authRespPacket []byte 365 if authMsg.gotPlain { 366 authRespPacket, err = authRespMsg.sealPlain(h) 367 } else { 368 authRespPacket, err = sealEIP8(authRespMsg, h) 369 } 370 if err != nil { 371 return s, err 372 } 373 if _, err = conn.Write(authRespPacket); err != nil { 374 return s, err 375 } 376 return h.secrets(authPacket, authRespPacket) 377 } 378 379 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 380 // Import the remote identity. 381 rpub, err := importPublicKey(msg.InitiatorPubkey[:]) 382 if err != nil { 383 return err 384 } 385 h.initNonce = msg.Nonce[:] 386 h.remote = rpub 387 388 // Generate random keypair for ECDH. 389 // If a private key is already set, use it instead of generating one (for testing). 390 if h.randomPrivKey == nil { 391 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 392 if err != nil { 393 return err 394 } 395 } 396 397 // Check the signature. 398 token, err := h.staticSharedSecret(prv) 399 if err != nil { 400 return err 401 } 402 signedMsg := xor(token, h.initNonce) 403 remoteRandomPub, err := crypto.Ecrecover(signedMsg, msg.Signature[:]) 404 if err != nil { 405 return err 406 } 407 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 408 return nil 409 } 410 411 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 412 // Generate random nonce. 413 h.respNonce = make([]byte, shaLen) 414 if _, err = rand.Read(h.respNonce); err != nil { 415 return nil, err 416 } 417 418 msg = new(authRespV4) 419 copy(msg.Nonce[:], h.respNonce) 420 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 421 msg.Version = 4 422 return msg, nil 423 } 424 425 func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) { 426 buf := make([]byte, authMsgLen) 427 n := copy(buf, msg.Signature[:]) 428 n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey))) 429 n += copy(buf[n:], msg.InitiatorPubkey[:]) 430 n += copy(buf[n:], msg.Nonce[:]) 431 buf[n] = 0 // token-flag 432 return ecies.Encrypt(rand.Reader, h.remote, buf, nil, nil) 433 } 434 435 func (msg *authMsgV4) decodePlain(input []byte) { 436 n := copy(msg.Signature[:], input) 437 n += shaLen // skip sha3(initiator-ephemeral-pubk) 438 n += copy(msg.InitiatorPubkey[:], input[n:]) 439 copy(msg.Nonce[:], input[n:]) 440 msg.Version = 4 441 msg.gotPlain = true 442 } 443 444 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 445 buf := make([]byte, authRespLen) 446 n := copy(buf, msg.RandomPubkey[:]) 447 copy(buf[n:], msg.Nonce[:]) 448 return ecies.Encrypt(rand.Reader, hs.remote, buf, nil, nil) 449 } 450 451 func (msg *authRespV4) decodePlain(input []byte) { 452 n := copy(msg.RandomPubkey[:], input) 453 copy(msg.Nonce[:], input[n:]) 454 msg.Version = 4 455 } 456 457 var padSpace = make([]byte, 300) 458 459 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 460 buf := new(bytes.Buffer) 461 if err := rlp.Encode(buf, msg); err != nil { 462 return nil, err 463 } 464 // pad with random amount of data. the amount needs to be at least 100 bytes to make 465 // the message distinguishable from pre-EIP-8 handshakes. 466 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 467 buf.Write(pad) 468 prefix := make([]byte, 2) 469 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 470 471 enc, err := ecies.Encrypt(rand.Reader, h.remote, buf.Bytes(), nil, prefix) 472 return append(prefix, enc...), err 473 } 474 475 type plainDecoder interface { 476 decodePlain([]byte) 477 } 478 479 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 480 buf := make([]byte, plainSize) 481 if _, err := io.ReadFull(r, buf); err != nil { 482 return buf, err 483 } 484 // Attempt decoding pre-EIP-8 "plain" format. 485 key := ecies.ImportECDSA(prv) 486 if dec, err := key.Decrypt(buf, nil, nil); err == nil { 487 msg.decodePlain(dec) 488 return buf, nil 489 } 490 // Could be EIP-8 format, try that. 491 prefix := buf[:2] 492 size := binary.BigEndian.Uint16(prefix) 493 if size < uint16(plainSize) { 494 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 495 } 496 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 497 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 498 return buf, err 499 } 500 dec, err := key.Decrypt(buf[2:], nil, prefix) 501 if err != nil { 502 return buf, err 503 } 504 // Can't use rlp.DecodeBytes here because it rejects 505 // trailing data (forward-compatibility). 506 s := rlp.NewStream(bytes.NewReader(dec), 0) 507 return buf, s.Decode(msg) 508 } 509 510 // importPublicKey unmarshals 512 bit public keys. 511 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 512 var pubKey65 []byte 513 switch len(pubKey) { 514 case 64: 515 // add 'uncompressed key' flag 516 pubKey65 = append([]byte{0x04}, pubKey...) 517 case 65: 518 pubKey65 = pubKey 519 default: 520 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 521 } 522 // TODO: fewer pointless conversions 523 pub, err := crypto.UnmarshalPubkey(pubKey65) 524 if err != nil { 525 return nil, err 526 } 527 return ecies.ImportECDSAPublic(pub), nil 528 } 529 530 func exportPubkey(pub *ecies.PublicKey) []byte { 531 if pub == nil { 532 panic("nil pubkey") 533 } 534 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 535 } 536 537 func xor(one, other []byte) (xor []byte) { 538 xor = make([]byte, len(one)) 539 for i := 0; i < len(one); i++ { 540 xor[i] = one[i] ^ other[i] 541 } 542 return xor 543 } 544 545 var ( 546 // this is used in place of actual frame header data. 547 // TODO: replace this when Msg contains the protocol type code. 548 zeroHeader = []byte{0xC2, 0x80, 0x80} 549 // sixteen zero bytes 550 zero16 = make([]byte, 16) 551 ) 552 553 // rlpxFrameRW implements a simplified version of RLPx framing. 554 // chunked messages are not supported and all headers are equal to 555 // zeroHeader. 556 // 557 // rlpxFrameRW is not safe for concurrent use from multiple goroutines. 558 type rlpxFrameRW struct { 559 conn io.ReadWriter 560 enc cipher.Stream 561 dec cipher.Stream 562 563 macCipher cipher.Block 564 egressMAC hash.Hash 565 ingressMAC hash.Hash 566 567 snappy bool 568 } 569 570 func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { 571 macc, err := aes.NewCipher(s.MAC) 572 if err != nil { 573 panic("invalid MAC secret: " + err.Error()) 574 } 575 encc, err := aes.NewCipher(s.AES) 576 if err != nil { 577 panic("invalid AES secret: " + err.Error()) 578 } 579 // we use an all-zeroes IV for AES because the key used 580 // for encryption is ephemeral. 581 iv := make([]byte, encc.BlockSize()) 582 return &rlpxFrameRW{ 583 conn: conn, 584 enc: cipher.NewCTR(encc, iv), 585 dec: cipher.NewCTR(encc, iv), 586 macCipher: macc, 587 egressMAC: s.EgressMAC, 588 ingressMAC: s.IngressMAC, 589 } 590 } 591 592 func (rw *rlpxFrameRW) WriteMsg(msg Msg) error { 593 ptype, _ := rlp.EncodeToBytes(msg.Code) 594 595 // if snappy is enabled, compress message now 596 if rw.snappy { 597 if msg.Size > maxUint24 { 598 return errPlainMessageTooLarge 599 } 600 payload, _ := ioutil.ReadAll(msg.Payload) 601 payload = snappy.Encode(nil, payload) 602 603 msg.Payload = bytes.NewReader(payload) 604 msg.Size = uint32(len(payload)) 605 } 606 msg.meterSize = msg.Size 607 if metrics.Enabled && msg.meterCap.Name != "" { // don't meter non-subprotocol messages 608 metrics.GetOrRegisterMeter(fmt.Sprintf("%s/%s/%d/%#02x", MetricsOutboundTraffic, msg.meterCap.Name, msg.meterCap.Version, msg.meterCode), nil).Mark(int64(msg.meterSize)) 609 } 610 // write header 611 headbuf := make([]byte, 32) 612 fsize := uint32(len(ptype)) + msg.Size 613 if fsize > maxUint24 { 614 return errors.New("message size overflows uint24") 615 } 616 putInt24(fsize, headbuf) // TODO: check overflow 617 copy(headbuf[3:], zeroHeader) 618 rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 619 620 // write header MAC 621 copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) 622 if _, err := rw.conn.Write(headbuf); err != nil { 623 return err 624 } 625 626 // write encrypted frame, updating the egress MAC hash with 627 // the data written to conn. 628 tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} 629 if _, err := tee.Write(ptype); err != nil { 630 return err 631 } 632 if _, err := io.Copy(tee, msg.Payload); err != nil { 633 return err 634 } 635 if padding := fsize % 16; padding > 0 { 636 if _, err := tee.Write(zero16[:16-padding]); err != nil { 637 return err 638 } 639 } 640 641 // write frame MAC. egress MAC hash is up to date because 642 // frame content was written to it as well. 643 fmacseed := rw.egressMAC.Sum(nil) 644 mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) 645 _, err := rw.conn.Write(mac) 646 return err 647 } 648 649 func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) { 650 // read the header 651 headbuf := make([]byte, 32) 652 if _, err := io.ReadFull(rw.conn, headbuf); err != nil { 653 return msg, err 654 } 655 // verify header mac 656 shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) 657 if !hmac.Equal(shouldMAC, headbuf[16:]) { 658 return msg, errors.New("bad header MAC") 659 } 660 rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 661 fsize := readInt24(headbuf) 662 // ignore protocol type for now 663 664 // read the frame content 665 var rsize = fsize // frame size rounded up to 16 byte boundary 666 if padding := fsize % 16; padding > 0 { 667 rsize += 16 - padding 668 } 669 framebuf := make([]byte, rsize) 670 if _, err := io.ReadFull(rw.conn, framebuf); err != nil { 671 return msg, err 672 } 673 674 // read and validate frame MAC. we can re-use headbuf for that. 675 rw.ingressMAC.Write(framebuf) 676 fmacseed := rw.ingressMAC.Sum(nil) 677 if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { 678 return msg, err 679 } 680 shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) 681 if !hmac.Equal(shouldMAC, headbuf[:16]) { 682 return msg, errors.New("bad frame MAC") 683 } 684 685 // decrypt frame content 686 rw.dec.XORKeyStream(framebuf, framebuf) 687 688 // decode message code 689 content := bytes.NewReader(framebuf[:fsize]) 690 if err := rlp.Decode(content, &msg.Code); err != nil { 691 return msg, err 692 } 693 msg.Size = uint32(content.Len()) 694 msg.meterSize = msg.Size 695 msg.Payload = content 696 697 // if snappy is enabled, verify and decompress message 698 if rw.snappy { 699 payload, err := ioutil.ReadAll(msg.Payload) 700 if err != nil { 701 return msg, err 702 } 703 size, err := snappy.DecodedLen(payload) 704 if err != nil { 705 return msg, err 706 } 707 if size > int(maxUint24) { 708 return msg, errPlainMessageTooLarge 709 } 710 payload, err = snappy.Decode(nil, payload) 711 if err != nil { 712 return msg, err 713 } 714 msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload) 715 } 716 return msg, nil 717 } 718 719 // updateMAC reseeds the given hash with encrypted seed. 720 // it returns the first 16 bytes of the hash sum after seeding. 721 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 722 aesbuf := make([]byte, aes.BlockSize) 723 block.Encrypt(aesbuf, mac.Sum(nil)) 724 for i := range aesbuf { 725 aesbuf[i] ^= seed[i] 726 } 727 mac.Write(aesbuf) 728 return mac.Sum(nil)[:16] 729 } 730 731 func readInt24(b []byte) uint32 { 732 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 733 } 734 735 func putInt24(v uint32, b []byte) { 736 b[0] = byte(v >> 16) 737 b[1] = byte(v >> 8) 738 b[2] = byte(v) 739 }