github.com/c9s/go@v0.0.0-20180120015821-984e81f64e0c/src/runtime/pprof/pprof.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package pprof writes runtime profiling data in the format expected 6 // by the pprof visualization tool. 7 // 8 // Profiling a Go program 9 // 10 // The first step to profiling a Go program is to enable profiling. 11 // Support for profiling benchmarks built with the standard testing 12 // package is built into go test. For example, the following command 13 // runs benchmarks in the current directory and writes the CPU and 14 // memory profiles to cpu.prof and mem.prof: 15 // 16 // go test -cpuprofile cpu.prof -memprofile mem.prof -bench . 17 // 18 // To add equivalent profiling support to a standalone program, add 19 // code like the following to your main function: 20 // 21 // var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`") 22 // var memprofile = flag.String("memprofile", "", "write memory profile to `file`") 23 // 24 // func main() { 25 // flag.Parse() 26 // if *cpuprofile != "" { 27 // f, err := os.Create(*cpuprofile) 28 // if err != nil { 29 // log.Fatal("could not create CPU profile: ", err) 30 // } 31 // if err := pprof.StartCPUProfile(f); err != nil { 32 // log.Fatal("could not start CPU profile: ", err) 33 // } 34 // defer pprof.StopCPUProfile() 35 // } 36 // 37 // // ... rest of the program ... 38 // 39 // if *memprofile != "" { 40 // f, err := os.Create(*memprofile) 41 // if err != nil { 42 // log.Fatal("could not create memory profile: ", err) 43 // } 44 // runtime.GC() // get up-to-date statistics 45 // if err := pprof.WriteHeapProfile(f); err != nil { 46 // log.Fatal("could not write memory profile: ", err) 47 // } 48 // f.Close() 49 // } 50 // } 51 // 52 // There is also a standard HTTP interface to profiling data. Adding 53 // the following line will install handlers under the /debug/pprof/ 54 // URL to download live profiles: 55 // 56 // import _ "net/http/pprof" 57 // 58 // See the net/http/pprof package for more details. 59 // 60 // Profiles can then be visualized with the pprof tool: 61 // 62 // go tool pprof cpu.prof 63 // 64 // There are many commands available from the pprof command line. 65 // Commonly used commands include "top", which prints a summary of the 66 // top program hot-spots, and "web", which opens an interactive graph 67 // of hot-spots and their call graphs. Use "help" for information on 68 // all pprof commands. 69 // 70 // For more information about pprof, see 71 // https://github.com/google/pprof/blob/master/doc/pprof.md. 72 package pprof 73 74 import ( 75 "bufio" 76 "bytes" 77 "fmt" 78 "io" 79 "runtime" 80 "sort" 81 "strings" 82 "sync" 83 "text/tabwriter" 84 "time" 85 "unsafe" 86 ) 87 88 // BUG(rsc): Profiles are only as good as the kernel support used to generate them. 89 // See https://golang.org/issue/13841 for details about known problems. 90 91 // A Profile is a collection of stack traces showing the call sequences 92 // that led to instances of a particular event, such as allocation. 93 // Packages can create and maintain their own profiles; the most common 94 // use is for tracking resources that must be explicitly closed, such as files 95 // or network connections. 96 // 97 // A Profile's methods can be called from multiple goroutines simultaneously. 98 // 99 // Each Profile has a unique name. A few profiles are predefined: 100 // 101 // goroutine - stack traces of all current goroutines 102 // heap - a sampling of all heap allocations 103 // threadcreate - stack traces that led to the creation of new OS threads 104 // block - stack traces that led to blocking on synchronization primitives 105 // mutex - stack traces of holders of contended mutexes 106 // 107 // These predefined profiles maintain themselves and panic on an explicit 108 // Add or Remove method call. 109 // 110 // The heap profile reports statistics as of the most recently completed 111 // garbage collection; it elides more recent allocation to avoid skewing 112 // the profile away from live data and toward garbage. 113 // If there has been no garbage collection at all, the heap profile reports 114 // all known allocations. This exception helps mainly in programs running 115 // without garbage collection enabled, usually for debugging purposes. 116 // 117 // The CPU profile is not available as a Profile. It has a special API, 118 // the StartCPUProfile and StopCPUProfile functions, because it streams 119 // output to a writer during profiling. 120 // 121 type Profile struct { 122 name string 123 mu sync.Mutex 124 m map[interface{}][]uintptr 125 count func() int 126 write func(io.Writer, int) error 127 } 128 129 // profiles records all registered profiles. 130 var profiles struct { 131 mu sync.Mutex 132 m map[string]*Profile 133 } 134 135 var goroutineProfile = &Profile{ 136 name: "goroutine", 137 count: countGoroutine, 138 write: writeGoroutine, 139 } 140 141 var threadcreateProfile = &Profile{ 142 name: "threadcreate", 143 count: countThreadCreate, 144 write: writeThreadCreate, 145 } 146 147 var heapProfile = &Profile{ 148 name: "heap", 149 count: countHeap, 150 write: writeHeap, 151 } 152 153 var blockProfile = &Profile{ 154 name: "block", 155 count: countBlock, 156 write: writeBlock, 157 } 158 159 var mutexProfile = &Profile{ 160 name: "mutex", 161 count: countMutex, 162 write: writeMutex, 163 } 164 165 func lockProfiles() { 166 profiles.mu.Lock() 167 if profiles.m == nil { 168 // Initial built-in profiles. 169 profiles.m = map[string]*Profile{ 170 "goroutine": goroutineProfile, 171 "threadcreate": threadcreateProfile, 172 "heap": heapProfile, 173 "block": blockProfile, 174 "mutex": mutexProfile, 175 } 176 } 177 } 178 179 func unlockProfiles() { 180 profiles.mu.Unlock() 181 } 182 183 // NewProfile creates a new profile with the given name. 184 // If a profile with that name already exists, NewProfile panics. 185 // The convention is to use a 'import/path.' prefix to create 186 // separate name spaces for each package. 187 // For compatibility with various tools that read pprof data, 188 // profile names should not contain spaces. 189 func NewProfile(name string) *Profile { 190 lockProfiles() 191 defer unlockProfiles() 192 if name == "" { 193 panic("pprof: NewProfile with empty name") 194 } 195 if profiles.m[name] != nil { 196 panic("pprof: NewProfile name already in use: " + name) 197 } 198 p := &Profile{ 199 name: name, 200 m: map[interface{}][]uintptr{}, 201 } 202 profiles.m[name] = p 203 return p 204 } 205 206 // Lookup returns the profile with the given name, or nil if no such profile exists. 207 func Lookup(name string) *Profile { 208 lockProfiles() 209 defer unlockProfiles() 210 return profiles.m[name] 211 } 212 213 // Profiles returns a slice of all the known profiles, sorted by name. 214 func Profiles() []*Profile { 215 lockProfiles() 216 defer unlockProfiles() 217 218 all := make([]*Profile, 0, len(profiles.m)) 219 for _, p := range profiles.m { 220 all = append(all, p) 221 } 222 223 sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name }) 224 return all 225 } 226 227 // Name returns this profile's name, which can be passed to Lookup to reobtain the profile. 228 func (p *Profile) Name() string { 229 return p.name 230 } 231 232 // Count returns the number of execution stacks currently in the profile. 233 func (p *Profile) Count() int { 234 p.mu.Lock() 235 defer p.mu.Unlock() 236 if p.count != nil { 237 return p.count() 238 } 239 return len(p.m) 240 } 241 242 // Add adds the current execution stack to the profile, associated with value. 243 // Add stores value in an internal map, so value must be suitable for use as 244 // a map key and will not be garbage collected until the corresponding 245 // call to Remove. Add panics if the profile already contains a stack for value. 246 // 247 // The skip parameter has the same meaning as runtime.Caller's skip 248 // and controls where the stack trace begins. Passing skip=0 begins the 249 // trace in the function calling Add. For example, given this 250 // execution stack: 251 // 252 // Add 253 // called from rpc.NewClient 254 // called from mypkg.Run 255 // called from main.main 256 // 257 // Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient. 258 // Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run. 259 // 260 func (p *Profile) Add(value interface{}, skip int) { 261 if p.name == "" { 262 panic("pprof: use of uninitialized Profile") 263 } 264 if p.write != nil { 265 panic("pprof: Add called on built-in Profile " + p.name) 266 } 267 268 stk := make([]uintptr, 32) 269 n := runtime.Callers(skip+1, stk[:]) 270 stk = stk[:n] 271 if len(stk) == 0 { 272 // The value for skip is too large, and there's no stack trace to record. 273 stk = []uintptr{funcPC(lostProfileEvent)} 274 } 275 276 p.mu.Lock() 277 defer p.mu.Unlock() 278 if p.m[value] != nil { 279 panic("pprof: Profile.Add of duplicate value") 280 } 281 p.m[value] = stk 282 } 283 284 // Remove removes the execution stack associated with value from the profile. 285 // It is a no-op if the value is not in the profile. 286 func (p *Profile) Remove(value interface{}) { 287 p.mu.Lock() 288 defer p.mu.Unlock() 289 delete(p.m, value) 290 } 291 292 // WriteTo writes a pprof-formatted snapshot of the profile to w. 293 // If a write to w returns an error, WriteTo returns that error. 294 // Otherwise, WriteTo returns nil. 295 // 296 // The debug parameter enables additional output. 297 // Passing debug=0 prints only the hexadecimal addresses that pprof needs. 298 // Passing debug=1 adds comments translating addresses to function names 299 // and line numbers, so that a programmer can read the profile without tools. 300 // 301 // The predefined profiles may assign meaning to other debug values; 302 // for example, when printing the "goroutine" profile, debug=2 means to 303 // print the goroutine stacks in the same form that a Go program uses 304 // when dying due to an unrecovered panic. 305 func (p *Profile) WriteTo(w io.Writer, debug int) error { 306 if p.name == "" { 307 panic("pprof: use of zero Profile") 308 } 309 if p.write != nil { 310 return p.write(w, debug) 311 } 312 313 // Obtain consistent snapshot under lock; then process without lock. 314 p.mu.Lock() 315 all := make([][]uintptr, 0, len(p.m)) 316 for _, stk := range p.m { 317 all = append(all, stk) 318 } 319 p.mu.Unlock() 320 321 // Map order is non-deterministic; make output deterministic. 322 sort.Slice(all, func(i, j int) bool { 323 t, u := all[i], all[j] 324 for k := 0; k < len(t) && k < len(u); k++ { 325 if t[k] != u[k] { 326 return t[k] < u[k] 327 } 328 } 329 return len(t) < len(u) 330 }) 331 332 return printCountProfile(w, debug, p.name, stackProfile(all)) 333 } 334 335 type stackProfile [][]uintptr 336 337 func (x stackProfile) Len() int { return len(x) } 338 func (x stackProfile) Stack(i int) []uintptr { return x[i] } 339 340 // A countProfile is a set of stack traces to be printed as counts 341 // grouped by stack trace. There are multiple implementations: 342 // all that matters is that we can find out how many traces there are 343 // and obtain each trace in turn. 344 type countProfile interface { 345 Len() int 346 Stack(i int) []uintptr 347 } 348 349 // printCountCycleProfile outputs block profile records (for block or mutex profiles) 350 // as the pprof-proto format output. Translations from cycle count to time duration 351 // are done because The proto expects count and time (nanoseconds) instead of count 352 // and the number of cycles for block, contention profiles. 353 func printCountCycleProfile(w io.Writer, countName, cycleName string, records []runtime.BlockProfileRecord) error { 354 // Output profile in protobuf form. 355 b := newProfileBuilder(w) 356 b.pbValueType(tagProfile_PeriodType, countName, "count") 357 b.pb.int64Opt(tagProfile_Period, 1) 358 b.pbValueType(tagProfile_SampleType, countName, "count") 359 b.pbValueType(tagProfile_SampleType, cycleName, "nanoseconds") 360 361 cpuGHz := float64(runtime_cyclesPerSecond()) / 1e9 362 363 values := []int64{0, 0} 364 var locs []uint64 365 for _, r := range records { 366 values[0] = int64(r.Count) 367 values[1] = int64(float64(r.Cycles) / cpuGHz) // to nanoseconds 368 locs = locs[:0] 369 for _, addr := range r.Stack() { 370 // For count profiles, all stack addresses are 371 // return PCs, which is what locForPC expects. 372 l := b.locForPC(addr) 373 if l == 0 { // runtime.goexit 374 continue 375 } 376 locs = append(locs, l) 377 } 378 b.pbSample(values, locs, nil) 379 } 380 b.build() 381 return nil 382 } 383 384 // printCountProfile prints a countProfile at the specified debug level. 385 // The profile will be in compressed proto format unless debug is nonzero. 386 func printCountProfile(w io.Writer, debug int, name string, p countProfile) error { 387 // Build count of each stack. 388 var buf bytes.Buffer 389 key := func(stk []uintptr) string { 390 buf.Reset() 391 fmt.Fprintf(&buf, "@") 392 for _, pc := range stk { 393 fmt.Fprintf(&buf, " %#x", pc) 394 } 395 return buf.String() 396 } 397 count := map[string]int{} 398 index := map[string]int{} 399 var keys []string 400 n := p.Len() 401 for i := 0; i < n; i++ { 402 k := key(p.Stack(i)) 403 if count[k] == 0 { 404 index[k] = i 405 keys = append(keys, k) 406 } 407 count[k]++ 408 } 409 410 sort.Sort(&keysByCount{keys, count}) 411 412 if debug > 0 { 413 // Print debug profile in legacy format 414 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 415 fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len()) 416 for _, k := range keys { 417 fmt.Fprintf(tw, "%d %s\n", count[k], k) 418 printStackRecord(tw, p.Stack(index[k]), false) 419 } 420 return tw.Flush() 421 } 422 423 // Output profile in protobuf form. 424 b := newProfileBuilder(w) 425 b.pbValueType(tagProfile_PeriodType, name, "count") 426 b.pb.int64Opt(tagProfile_Period, 1) 427 b.pbValueType(tagProfile_SampleType, name, "count") 428 429 values := []int64{0} 430 var locs []uint64 431 for _, k := range keys { 432 values[0] = int64(count[k]) 433 locs = locs[:0] 434 for _, addr := range p.Stack(index[k]) { 435 // For count profiles, all stack addresses are 436 // return PCs, which is what locForPC expects. 437 l := b.locForPC(addr) 438 if l == 0 { // runtime.goexit 439 continue 440 } 441 locs = append(locs, l) 442 } 443 b.pbSample(values, locs, nil) 444 } 445 b.build() 446 return nil 447 } 448 449 // keysByCount sorts keys with higher counts first, breaking ties by key string order. 450 type keysByCount struct { 451 keys []string 452 count map[string]int 453 } 454 455 func (x *keysByCount) Len() int { return len(x.keys) } 456 func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] } 457 func (x *keysByCount) Less(i, j int) bool { 458 ki, kj := x.keys[i], x.keys[j] 459 ci, cj := x.count[ki], x.count[kj] 460 if ci != cj { 461 return ci > cj 462 } 463 return ki < kj 464 } 465 466 // printStackRecord prints the function + source line information 467 // for a single stack trace. 468 func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) { 469 show := allFrames 470 frames := runtime.CallersFrames(stk) 471 for { 472 frame, more := frames.Next() 473 name := frame.Function 474 if name == "" { 475 show = true 476 fmt.Fprintf(w, "#\t%#x\n", frame.PC) 477 } else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) { 478 // Hide runtime.goexit and any runtime functions at the beginning. 479 // This is useful mainly for allocation traces. 480 show = true 481 fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line) 482 } 483 if !more { 484 break 485 } 486 } 487 if !show { 488 // We didn't print anything; do it again, 489 // and this time include runtime functions. 490 printStackRecord(w, stk, true) 491 return 492 } 493 fmt.Fprintf(w, "\n") 494 } 495 496 // Interface to system profiles. 497 498 // WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0). 499 // It is preserved for backwards compatibility. 500 func WriteHeapProfile(w io.Writer) error { 501 return writeHeap(w, 0) 502 } 503 504 // countHeap returns the number of records in the heap profile. 505 func countHeap() int { 506 n, _ := runtime.MemProfile(nil, true) 507 return n 508 } 509 510 // writeHeap writes the current runtime heap profile to w. 511 func writeHeap(w io.Writer, debug int) error { 512 var memStats *runtime.MemStats 513 if debug != 0 { 514 // Read mem stats first, so that our other allocations 515 // do not appear in the statistics. 516 memStats = new(runtime.MemStats) 517 runtime.ReadMemStats(memStats) 518 } 519 520 // Find out how many records there are (MemProfile(nil, true)), 521 // allocate that many records, and get the data. 522 // There's a race—more records might be added between 523 // the two calls—so allocate a few extra records for safety 524 // and also try again if we're very unlucky. 525 // The loop should only execute one iteration in the common case. 526 var p []runtime.MemProfileRecord 527 n, ok := runtime.MemProfile(nil, true) 528 for { 529 // Allocate room for a slightly bigger profile, 530 // in case a few more entries have been added 531 // since the call to MemProfile. 532 p = make([]runtime.MemProfileRecord, n+50) 533 n, ok = runtime.MemProfile(p, true) 534 if ok { 535 p = p[0:n] 536 break 537 } 538 // Profile grew; try again. 539 } 540 541 if debug == 0 { 542 return writeHeapProto(w, p, int64(runtime.MemProfileRate)) 543 } 544 545 sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() }) 546 547 b := bufio.NewWriter(w) 548 tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0) 549 w = tw 550 551 var total runtime.MemProfileRecord 552 for i := range p { 553 r := &p[i] 554 total.AllocBytes += r.AllocBytes 555 total.AllocObjects += r.AllocObjects 556 total.FreeBytes += r.FreeBytes 557 total.FreeObjects += r.FreeObjects 558 } 559 560 // Technically the rate is MemProfileRate not 2*MemProfileRate, 561 // but early versions of the C++ heap profiler reported 2*MemProfileRate, 562 // so that's what pprof has come to expect. 563 fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n", 564 total.InUseObjects(), total.InUseBytes(), 565 total.AllocObjects, total.AllocBytes, 566 2*runtime.MemProfileRate) 567 568 for i := range p { 569 r := &p[i] 570 fmt.Fprintf(w, "%d: %d [%d: %d] @", 571 r.InUseObjects(), r.InUseBytes(), 572 r.AllocObjects, r.AllocBytes) 573 for _, pc := range r.Stack() { 574 fmt.Fprintf(w, " %#x", pc) 575 } 576 fmt.Fprintf(w, "\n") 577 printStackRecord(w, r.Stack(), false) 578 } 579 580 // Print memstats information too. 581 // Pprof will ignore, but useful for people 582 s := memStats 583 fmt.Fprintf(w, "\n# runtime.MemStats\n") 584 fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc) 585 fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc) 586 fmt.Fprintf(w, "# Sys = %d\n", s.Sys) 587 fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups) 588 fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs) 589 fmt.Fprintf(w, "# Frees = %d\n", s.Frees) 590 591 fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc) 592 fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys) 593 fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle) 594 fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse) 595 fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased) 596 fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects) 597 598 fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys) 599 fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys) 600 fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys) 601 fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys) 602 fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys) 603 fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys) 604 605 fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC) 606 fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC) 607 fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs) 608 fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd) 609 fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC) 610 fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC) 611 fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction) 612 fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC) 613 614 tw.Flush() 615 return b.Flush() 616 } 617 618 // countThreadCreate returns the size of the current ThreadCreateProfile. 619 func countThreadCreate() int { 620 n, _ := runtime.ThreadCreateProfile(nil) 621 return n 622 } 623 624 // writeThreadCreate writes the current runtime ThreadCreateProfile to w. 625 func writeThreadCreate(w io.Writer, debug int) error { 626 return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile) 627 } 628 629 // countGoroutine returns the number of goroutines. 630 func countGoroutine() int { 631 return runtime.NumGoroutine() 632 } 633 634 // writeGoroutine writes the current runtime GoroutineProfile to w. 635 func writeGoroutine(w io.Writer, debug int) error { 636 if debug >= 2 { 637 return writeGoroutineStacks(w) 638 } 639 return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile) 640 } 641 642 func writeGoroutineStacks(w io.Writer) error { 643 // We don't know how big the buffer needs to be to collect 644 // all the goroutines. Start with 1 MB and try a few times, doubling each time. 645 // Give up and use a truncated trace if 64 MB is not enough. 646 buf := make([]byte, 1<<20) 647 for i := 0; ; i++ { 648 n := runtime.Stack(buf, true) 649 if n < len(buf) { 650 buf = buf[:n] 651 break 652 } 653 if len(buf) >= 64<<20 { 654 // Filled 64 MB - stop there. 655 break 656 } 657 buf = make([]byte, 2*len(buf)) 658 } 659 _, err := w.Write(buf) 660 return err 661 } 662 663 func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error { 664 // Find out how many records there are (fetch(nil)), 665 // allocate that many records, and get the data. 666 // There's a race—more records might be added between 667 // the two calls—so allocate a few extra records for safety 668 // and also try again if we're very unlucky. 669 // The loop should only execute one iteration in the common case. 670 var p []runtime.StackRecord 671 n, ok := fetch(nil) 672 for { 673 // Allocate room for a slightly bigger profile, 674 // in case a few more entries have been added 675 // since the call to ThreadProfile. 676 p = make([]runtime.StackRecord, n+10) 677 n, ok = fetch(p) 678 if ok { 679 p = p[0:n] 680 break 681 } 682 // Profile grew; try again. 683 } 684 685 return printCountProfile(w, debug, name, runtimeProfile(p)) 686 } 687 688 type runtimeProfile []runtime.StackRecord 689 690 func (p runtimeProfile) Len() int { return len(p) } 691 func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() } 692 693 var cpu struct { 694 sync.Mutex 695 profiling bool 696 done chan bool 697 } 698 699 // StartCPUProfile enables CPU profiling for the current process. 700 // While profiling, the profile will be buffered and written to w. 701 // StartCPUProfile returns an error if profiling is already enabled. 702 // 703 // On Unix-like systems, StartCPUProfile does not work by default for 704 // Go code built with -buildmode=c-archive or -buildmode=c-shared. 705 // StartCPUProfile relies on the SIGPROF signal, but that signal will 706 // be delivered to the main program's SIGPROF signal handler (if any) 707 // not to the one used by Go. To make it work, call os/signal.Notify 708 // for syscall.SIGPROF, but note that doing so may break any profiling 709 // being done by the main program. 710 func StartCPUProfile(w io.Writer) error { 711 // The runtime routines allow a variable profiling rate, 712 // but in practice operating systems cannot trigger signals 713 // at more than about 500 Hz, and our processing of the 714 // signal is not cheap (mostly getting the stack trace). 715 // 100 Hz is a reasonable choice: it is frequent enough to 716 // produce useful data, rare enough not to bog down the 717 // system, and a nice round number to make it easy to 718 // convert sample counts to seconds. Instead of requiring 719 // each client to specify the frequency, we hard code it. 720 const hz = 100 721 722 cpu.Lock() 723 defer cpu.Unlock() 724 if cpu.done == nil { 725 cpu.done = make(chan bool) 726 } 727 // Double-check. 728 if cpu.profiling { 729 return fmt.Errorf("cpu profiling already in use") 730 } 731 cpu.profiling = true 732 runtime.SetCPUProfileRate(hz) 733 go profileWriter(w) 734 return nil 735 } 736 737 // readProfile, provided by the runtime, returns the next chunk of 738 // binary CPU profiling stack trace data, blocking until data is available. 739 // If profiling is turned off and all the profile data accumulated while it was 740 // on has been returned, readProfile returns eof=true. 741 // The caller must save the returned data and tags before calling readProfile again. 742 func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool) 743 744 func profileWriter(w io.Writer) { 745 b := newProfileBuilder(w) 746 var err error 747 for { 748 time.Sleep(100 * time.Millisecond) 749 data, tags, eof := readProfile() 750 if e := b.addCPUData(data, tags); e != nil && err == nil { 751 err = e 752 } 753 if eof { 754 break 755 } 756 } 757 if err != nil { 758 // The runtime should never produce an invalid or truncated profile. 759 // It drops records that can't fit into its log buffers. 760 panic("runtime/pprof: converting profile: " + err.Error()) 761 } 762 b.build() 763 cpu.done <- true 764 } 765 766 // StopCPUProfile stops the current CPU profile, if any. 767 // StopCPUProfile only returns after all the writes for the 768 // profile have completed. 769 func StopCPUProfile() { 770 cpu.Lock() 771 defer cpu.Unlock() 772 773 if !cpu.profiling { 774 return 775 } 776 cpu.profiling = false 777 runtime.SetCPUProfileRate(0) 778 <-cpu.done 779 } 780 781 // countBlock returns the number of records in the blocking profile. 782 func countBlock() int { 783 n, _ := runtime.BlockProfile(nil) 784 return n 785 } 786 787 // countMutex returns the number of records in the mutex profile. 788 func countMutex() int { 789 n, _ := runtime.MutexProfile(nil) 790 return n 791 } 792 793 // writeBlock writes the current blocking profile to w. 794 func writeBlock(w io.Writer, debug int) error { 795 var p []runtime.BlockProfileRecord 796 n, ok := runtime.BlockProfile(nil) 797 for { 798 p = make([]runtime.BlockProfileRecord, n+50) 799 n, ok = runtime.BlockProfile(p) 800 if ok { 801 p = p[:n] 802 break 803 } 804 } 805 806 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 807 808 if debug <= 0 { 809 return printCountCycleProfile(w, "contentions", "delay", p) 810 } 811 812 b := bufio.NewWriter(w) 813 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 814 w = tw 815 816 fmt.Fprintf(w, "--- contention:\n") 817 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 818 for i := range p { 819 r := &p[i] 820 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 821 for _, pc := range r.Stack() { 822 fmt.Fprintf(w, " %#x", pc) 823 } 824 fmt.Fprint(w, "\n") 825 if debug > 0 { 826 printStackRecord(w, r.Stack(), true) 827 } 828 } 829 830 if tw != nil { 831 tw.Flush() 832 } 833 return b.Flush() 834 } 835 836 // writeMutex writes the current mutex profile to w. 837 func writeMutex(w io.Writer, debug int) error { 838 // TODO(pjw): too much common code with writeBlock. FIX! 839 var p []runtime.BlockProfileRecord 840 n, ok := runtime.MutexProfile(nil) 841 for { 842 p = make([]runtime.BlockProfileRecord, n+50) 843 n, ok = runtime.MutexProfile(p) 844 if ok { 845 p = p[:n] 846 break 847 } 848 } 849 850 sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles }) 851 852 if debug <= 0 { 853 return printCountCycleProfile(w, "contentions", "delay", p) 854 } 855 856 b := bufio.NewWriter(w) 857 tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0) 858 w = tw 859 860 fmt.Fprintf(w, "--- mutex:\n") 861 fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond()) 862 fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1)) 863 for i := range p { 864 r := &p[i] 865 fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count) 866 for _, pc := range r.Stack() { 867 fmt.Fprintf(w, " %#x", pc) 868 } 869 fmt.Fprint(w, "\n") 870 if debug > 0 { 871 printStackRecord(w, r.Stack(), true) 872 } 873 } 874 875 if tw != nil { 876 tw.Flush() 877 } 878 return b.Flush() 879 } 880 881 func runtime_cyclesPerSecond() int64