github.com/c9s/go@v0.0.0-20180120015821-984e81f64e0c/src/runtime/runtime2.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/atomic" 9 "runtime/internal/sys" 10 "unsafe" 11 ) 12 13 // defined constants 14 const ( 15 // G status 16 // 17 // Beyond indicating the general state of a G, the G status 18 // acts like a lock on the goroutine's stack (and hence its 19 // ability to execute user code). 20 // 21 // If you add to this list, add to the list 22 // of "okay during garbage collection" status 23 // in mgcmark.go too. 24 25 // _Gidle means this goroutine was just allocated and has not 26 // yet been initialized. 27 _Gidle = iota // 0 28 29 // _Grunnable means this goroutine is on a run queue. It is 30 // not currently executing user code. The stack is not owned. 31 _Grunnable // 1 32 33 // _Grunning means this goroutine may execute user code. The 34 // stack is owned by this goroutine. It is not on a run queue. 35 // It is assigned an M and a P. 36 _Grunning // 2 37 38 // _Gsyscall means this goroutine is executing a system call. 39 // It is not executing user code. The stack is owned by this 40 // goroutine. It is not on a run queue. It is assigned an M. 41 _Gsyscall // 3 42 43 // _Gwaiting means this goroutine is blocked in the runtime. 44 // It is not executing user code. It is not on a run queue, 45 // but should be recorded somewhere (e.g., a channel wait 46 // queue) so it can be ready()d when necessary. The stack is 47 // not owned *except* that a channel operation may read or 48 // write parts of the stack under the appropriate channel 49 // lock. Otherwise, it is not safe to access the stack after a 50 // goroutine enters _Gwaiting (e.g., it may get moved). 51 _Gwaiting // 4 52 53 // _Gmoribund_unused is currently unused, but hardcoded in gdb 54 // scripts. 55 _Gmoribund_unused // 5 56 57 // _Gdead means this goroutine is currently unused. It may be 58 // just exited, on a free list, or just being initialized. It 59 // is not executing user code. It may or may not have a stack 60 // allocated. The G and its stack (if any) are owned by the M 61 // that is exiting the G or that obtained the G from the free 62 // list. 63 _Gdead // 6 64 65 // _Genqueue_unused is currently unused. 66 _Genqueue_unused // 7 67 68 // _Gcopystack means this goroutine's stack is being moved. It 69 // is not executing user code and is not on a run queue. The 70 // stack is owned by the goroutine that put it in _Gcopystack. 71 _Gcopystack // 8 72 73 // _Gscan combined with one of the above states other than 74 // _Grunning indicates that GC is scanning the stack. The 75 // goroutine is not executing user code and the stack is owned 76 // by the goroutine that set the _Gscan bit. 77 // 78 // _Gscanrunning is different: it is used to briefly block 79 // state transitions while GC signals the G to scan its own 80 // stack. This is otherwise like _Grunning. 81 // 82 // atomicstatus&~Gscan gives the state the goroutine will 83 // return to when the scan completes. 84 _Gscan = 0x1000 85 _Gscanrunnable = _Gscan + _Grunnable // 0x1001 86 _Gscanrunning = _Gscan + _Grunning // 0x1002 87 _Gscansyscall = _Gscan + _Gsyscall // 0x1003 88 _Gscanwaiting = _Gscan + _Gwaiting // 0x1004 89 ) 90 91 const ( 92 // P status 93 _Pidle = iota 94 _Prunning // Only this P is allowed to change from _Prunning. 95 _Psyscall 96 _Pgcstop 97 _Pdead 98 ) 99 100 // Mutual exclusion locks. In the uncontended case, 101 // as fast as spin locks (just a few user-level instructions), 102 // but on the contention path they sleep in the kernel. 103 // A zeroed Mutex is unlocked (no need to initialize each lock). 104 type mutex struct { 105 // Futex-based impl treats it as uint32 key, 106 // while sema-based impl as M* waitm. 107 // Used to be a union, but unions break precise GC. 108 key uintptr 109 } 110 111 // sleep and wakeup on one-time events. 112 // before any calls to notesleep or notewakeup, 113 // must call noteclear to initialize the Note. 114 // then, exactly one thread can call notesleep 115 // and exactly one thread can call notewakeup (once). 116 // once notewakeup has been called, the notesleep 117 // will return. future notesleep will return immediately. 118 // subsequent noteclear must be called only after 119 // previous notesleep has returned, e.g. it's disallowed 120 // to call noteclear straight after notewakeup. 121 // 122 // notetsleep is like notesleep but wakes up after 123 // a given number of nanoseconds even if the event 124 // has not yet happened. if a goroutine uses notetsleep to 125 // wake up early, it must wait to call noteclear until it 126 // can be sure that no other goroutine is calling 127 // notewakeup. 128 // 129 // notesleep/notetsleep are generally called on g0, 130 // notetsleepg is similar to notetsleep but is called on user g. 131 type note struct { 132 // Futex-based impl treats it as uint32 key, 133 // while sema-based impl as M* waitm. 134 // Used to be a union, but unions break precise GC. 135 key uintptr 136 } 137 138 type funcval struct { 139 fn uintptr 140 // variable-size, fn-specific data here 141 } 142 143 type iface struct { 144 tab *itab 145 data unsafe.Pointer 146 } 147 148 type eface struct { 149 _type *_type 150 data unsafe.Pointer 151 } 152 153 func efaceOf(ep *interface{}) *eface { 154 return (*eface)(unsafe.Pointer(ep)) 155 } 156 157 // The guintptr, muintptr, and puintptr are all used to bypass write barriers. 158 // It is particularly important to avoid write barriers when the current P has 159 // been released, because the GC thinks the world is stopped, and an 160 // unexpected write barrier would not be synchronized with the GC, 161 // which can lead to a half-executed write barrier that has marked the object 162 // but not queued it. If the GC skips the object and completes before the 163 // queuing can occur, it will incorrectly free the object. 164 // 165 // We tried using special assignment functions invoked only when not 166 // holding a running P, but then some updates to a particular memory 167 // word went through write barriers and some did not. This breaks the 168 // write barrier shadow checking mode, and it is also scary: better to have 169 // a word that is completely ignored by the GC than to have one for which 170 // only a few updates are ignored. 171 // 172 // Gs and Ps are always reachable via true pointers in the 173 // allgs and allp lists or (during allocation before they reach those lists) 174 // from stack variables. 175 // 176 // Ms are always reachable via true pointers either from allm or 177 // freem. Unlike Gs and Ps we do free Ms, so it's important that 178 // nothing ever hold an muintptr across a safe point. 179 180 // A guintptr holds a goroutine pointer, but typed as a uintptr 181 // to bypass write barriers. It is used in the Gobuf goroutine state 182 // and in scheduling lists that are manipulated without a P. 183 // 184 // The Gobuf.g goroutine pointer is almost always updated by assembly code. 185 // In one of the few places it is updated by Go code - func save - it must be 186 // treated as a uintptr to avoid a write barrier being emitted at a bad time. 187 // Instead of figuring out how to emit the write barriers missing in the 188 // assembly manipulation, we change the type of the field to uintptr, 189 // so that it does not require write barriers at all. 190 // 191 // Goroutine structs are published in the allg list and never freed. 192 // That will keep the goroutine structs from being collected. 193 // There is never a time that Gobuf.g's contain the only references 194 // to a goroutine: the publishing of the goroutine in allg comes first. 195 // Goroutine pointers are also kept in non-GC-visible places like TLS, 196 // so I can't see them ever moving. If we did want to start moving data 197 // in the GC, we'd need to allocate the goroutine structs from an 198 // alternate arena. Using guintptr doesn't make that problem any worse. 199 type guintptr uintptr 200 201 //go:nosplit 202 func (gp guintptr) ptr() *g { return (*g)(unsafe.Pointer(gp)) } 203 204 //go:nosplit 205 func (gp *guintptr) set(g *g) { *gp = guintptr(unsafe.Pointer(g)) } 206 207 //go:nosplit 208 func (gp *guintptr) cas(old, new guintptr) bool { 209 return atomic.Casuintptr((*uintptr)(unsafe.Pointer(gp)), uintptr(old), uintptr(new)) 210 } 211 212 // setGNoWB performs *gp = new without a write barrier. 213 // For times when it's impractical to use a guintptr. 214 //go:nosplit 215 //go:nowritebarrier 216 func setGNoWB(gp **g, new *g) { 217 (*guintptr)(unsafe.Pointer(gp)).set(new) 218 } 219 220 type puintptr uintptr 221 222 //go:nosplit 223 func (pp puintptr) ptr() *p { return (*p)(unsafe.Pointer(pp)) } 224 225 //go:nosplit 226 func (pp *puintptr) set(p *p) { *pp = puintptr(unsafe.Pointer(p)) } 227 228 // muintptr is a *m that is not tracked by the garbage collector. 229 // 230 // Because we do free Ms, there are some additional constrains on 231 // muintptrs: 232 // 233 // 1. Never hold an muintptr locally across a safe point. 234 // 235 // 2. Any muintptr in the heap must be owned by the M itself so it can 236 // ensure it is not in use when the last true *m is released. 237 type muintptr uintptr 238 239 //go:nosplit 240 func (mp muintptr) ptr() *m { return (*m)(unsafe.Pointer(mp)) } 241 242 //go:nosplit 243 func (mp *muintptr) set(m *m) { *mp = muintptr(unsafe.Pointer(m)) } 244 245 // setMNoWB performs *mp = new without a write barrier. 246 // For times when it's impractical to use an muintptr. 247 //go:nosplit 248 //go:nowritebarrier 249 func setMNoWB(mp **m, new *m) { 250 (*muintptr)(unsafe.Pointer(mp)).set(new) 251 } 252 253 type gobuf struct { 254 // The offsets of sp, pc, and g are known to (hard-coded in) libmach. 255 // 256 // ctxt is unusual with respect to GC: it may be a 257 // heap-allocated funcval, so GC needs to track it, but it 258 // needs to be set and cleared from assembly, where it's 259 // difficult to have write barriers. However, ctxt is really a 260 // saved, live register, and we only ever exchange it between 261 // the real register and the gobuf. Hence, we treat it as a 262 // root during stack scanning, which means assembly that saves 263 // and restores it doesn't need write barriers. It's still 264 // typed as a pointer so that any other writes from Go get 265 // write barriers. 266 sp uintptr 267 pc uintptr 268 g guintptr 269 ctxt unsafe.Pointer 270 ret sys.Uintreg 271 lr uintptr 272 bp uintptr // for GOEXPERIMENT=framepointer 273 } 274 275 // sudog represents a g in a wait list, such as for sending/receiving 276 // on a channel. 277 // 278 // sudog is necessary because the g ↔ synchronization object relation 279 // is many-to-many. A g can be on many wait lists, so there may be 280 // many sudogs for one g; and many gs may be waiting on the same 281 // synchronization object, so there may be many sudogs for one object. 282 // 283 // sudogs are allocated from a special pool. Use acquireSudog and 284 // releaseSudog to allocate and free them. 285 type sudog struct { 286 // The following fields are protected by the hchan.lock of the 287 // channel this sudog is blocking on. shrinkstack depends on 288 // this for sudogs involved in channel ops. 289 290 g *g 291 292 // isSelect indicates g is participating in a select, so 293 // g.selectDone must be CAS'd to win the wake-up race. 294 isSelect bool 295 next *sudog 296 prev *sudog 297 elem unsafe.Pointer // data element (may point to stack) 298 299 // The following fields are never accessed concurrently. 300 // For channels, waitlink is only accessed by g. 301 // For semaphores, all fields (including the ones above) 302 // are only accessed when holding a semaRoot lock. 303 304 acquiretime int64 305 releasetime int64 306 ticket uint32 307 parent *sudog // semaRoot binary tree 308 waitlink *sudog // g.waiting list or semaRoot 309 waittail *sudog // semaRoot 310 c *hchan // channel 311 } 312 313 type libcall struct { 314 fn uintptr 315 n uintptr // number of parameters 316 args uintptr // parameters 317 r1 uintptr // return values 318 r2 uintptr 319 err uintptr // error number 320 } 321 322 // describes how to handle callback 323 type wincallbackcontext struct { 324 gobody unsafe.Pointer // go function to call 325 argsize uintptr // callback arguments size (in bytes) 326 restorestack uintptr // adjust stack on return by (in bytes) (386 only) 327 cleanstack bool 328 } 329 330 // Stack describes a Go execution stack. 331 // The bounds of the stack are exactly [lo, hi), 332 // with no implicit data structures on either side. 333 type stack struct { 334 lo uintptr 335 hi uintptr 336 } 337 338 type g struct { 339 // Stack parameters. 340 // stack describes the actual stack memory: [stack.lo, stack.hi). 341 // stackguard0 is the stack pointer compared in the Go stack growth prologue. 342 // It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption. 343 // stackguard1 is the stack pointer compared in the C stack growth prologue. 344 // It is stack.lo+StackGuard on g0 and gsignal stacks. 345 // It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash). 346 stack stack // offset known to runtime/cgo 347 stackguard0 uintptr // offset known to liblink 348 stackguard1 uintptr // offset known to liblink 349 350 _panic *_panic // innermost panic - offset known to liblink 351 _defer *_defer // innermost defer 352 m *m // current m; offset known to arm liblink 353 sched gobuf 354 syscallsp uintptr // if status==Gsyscall, syscallsp = sched.sp to use during gc 355 syscallpc uintptr // if status==Gsyscall, syscallpc = sched.pc to use during gc 356 stktopsp uintptr // expected sp at top of stack, to check in traceback 357 param unsafe.Pointer // passed parameter on wakeup 358 atomicstatus uint32 359 stackLock uint32 // sigprof/scang lock; TODO: fold in to atomicstatus 360 goid int64 361 waitsince int64 // approx time when the g become blocked 362 waitreason string // if status==Gwaiting 363 schedlink guintptr 364 preempt bool // preemption signal, duplicates stackguard0 = stackpreempt 365 paniconfault bool // panic (instead of crash) on unexpected fault address 366 preemptscan bool // preempted g does scan for gc 367 gcscandone bool // g has scanned stack; protected by _Gscan bit in status 368 gcscanvalid bool // false at start of gc cycle, true if G has not run since last scan; TODO: remove? 369 throwsplit bool // must not split stack 370 raceignore int8 // ignore race detection events 371 sysblocktraced bool // StartTrace has emitted EvGoInSyscall about this goroutine 372 sysexitticks int64 // cputicks when syscall has returned (for tracing) 373 traceseq uint64 // trace event sequencer 374 tracelastp puintptr // last P emitted an event for this goroutine 375 lockedm muintptr 376 sig uint32 377 writebuf []byte 378 sigcode0 uintptr 379 sigcode1 uintptr 380 sigpc uintptr 381 gopc uintptr // pc of go statement that created this goroutine 382 startpc uintptr // pc of goroutine function 383 racectx uintptr 384 waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr); in lock order 385 cgoCtxt []uintptr // cgo traceback context 386 labels unsafe.Pointer // profiler labels 387 timer *timer // cached timer for time.Sleep 388 selectDone uint32 // are we participating in a select and did someone win the race? 389 390 // Per-G GC state 391 392 // gcAssistBytes is this G's GC assist credit in terms of 393 // bytes allocated. If this is positive, then the G has credit 394 // to allocate gcAssistBytes bytes without assisting. If this 395 // is negative, then the G must correct this by performing 396 // scan work. We track this in bytes to make it fast to update 397 // and check for debt in the malloc hot path. The assist ratio 398 // determines how this corresponds to scan work debt. 399 gcAssistBytes int64 400 } 401 402 type m struct { 403 g0 *g // goroutine with scheduling stack 404 morebuf gobuf // gobuf arg to morestack 405 divmod uint32 // div/mod denominator for arm - known to liblink 406 407 // Fields not known to debuggers. 408 procid uint64 // for debuggers, but offset not hard-coded 409 gsignal *g // signal-handling g 410 goSigStack gsignalStack // Go-allocated signal handling stack 411 sigmask sigset // storage for saved signal mask 412 tls [6]uintptr // thread-local storage (for x86 extern register) 413 mstartfn func() 414 curg *g // current running goroutine 415 caughtsig guintptr // goroutine running during fatal signal 416 p puintptr // attached p for executing go code (nil if not executing go code) 417 nextp puintptr 418 id int64 419 mallocing int32 420 throwing int32 421 preemptoff string // if != "", keep curg running on this m 422 locks int32 423 softfloat int32 424 dying int32 425 profilehz int32 426 helpgc int32 427 spinning bool // m is out of work and is actively looking for work 428 blocked bool // m is blocked on a note 429 inwb bool // m is executing a write barrier 430 newSigstack bool // minit on C thread called sigaltstack 431 printlock int8 432 incgo bool // m is executing a cgo call 433 freeWait uint32 // if == 0, safe to free g0 and delete m (atomic) 434 fastrand [2]uint32 435 needextram bool 436 traceback uint8 437 ncgocall uint64 // number of cgo calls in total 438 ncgo int32 // number of cgo calls currently in progress 439 cgoCallersUse uint32 // if non-zero, cgoCallers in use temporarily 440 cgoCallers *cgoCallers // cgo traceback if crashing in cgo call 441 park note 442 alllink *m // on allm 443 schedlink muintptr 444 mcache *mcache 445 lockedg guintptr 446 createstack [32]uintptr // stack that created this thread. 447 freglo [16]uint32 // d[i] lsb and f[i] 448 freghi [16]uint32 // d[i] msb and f[i+16] 449 fflag uint32 // floating point compare flags 450 lockedExt uint32 // tracking for external LockOSThread 451 lockedInt uint32 // tracking for internal lockOSThread 452 nextwaitm muintptr // next m waiting for lock 453 waitunlockf unsafe.Pointer // todo go func(*g, unsafe.pointer) bool 454 waitlock unsafe.Pointer 455 waittraceev byte 456 waittraceskip int 457 startingtrace bool 458 syscalltick uint32 459 thread uintptr // thread handle 460 freelink *m // on sched.freem 461 462 // these are here because they are too large to be on the stack 463 // of low-level NOSPLIT functions. 464 libcall libcall 465 libcallpc uintptr // for cpu profiler 466 libcallsp uintptr 467 libcallg guintptr 468 syscall libcall // stores syscall parameters on windows 469 470 mOS 471 } 472 473 type p struct { 474 lock mutex 475 476 id int32 477 status uint32 // one of pidle/prunning/... 478 link puintptr 479 schedtick uint32 // incremented on every scheduler call 480 syscalltick uint32 // incremented on every system call 481 sysmontick sysmontick // last tick observed by sysmon 482 m muintptr // back-link to associated m (nil if idle) 483 mcache *mcache 484 racectx uintptr 485 486 deferpool [5][]*_defer // pool of available defer structs of different sizes (see panic.go) 487 deferpoolbuf [5][32]*_defer 488 489 // Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen. 490 goidcache uint64 491 goidcacheend uint64 492 493 // Queue of runnable goroutines. Accessed without lock. 494 runqhead uint32 495 runqtail uint32 496 runq [256]guintptr 497 // runnext, if non-nil, is a runnable G that was ready'd by 498 // the current G and should be run next instead of what's in 499 // runq if there's time remaining in the running G's time 500 // slice. It will inherit the time left in the current time 501 // slice. If a set of goroutines is locked in a 502 // communicate-and-wait pattern, this schedules that set as a 503 // unit and eliminates the (potentially large) scheduling 504 // latency that otherwise arises from adding the ready'd 505 // goroutines to the end of the run queue. 506 runnext guintptr 507 508 // Available G's (status == Gdead) 509 gfree *g 510 gfreecnt int32 511 512 sudogcache []*sudog 513 sudogbuf [128]*sudog 514 515 tracebuf traceBufPtr 516 517 // traceSweep indicates the sweep events should be traced. 518 // This is used to defer the sweep start event until a span 519 // has actually been swept. 520 traceSweep bool 521 // traceSwept and traceReclaimed track the number of bytes 522 // swept and reclaimed by sweeping in the current sweep loop. 523 traceSwept, traceReclaimed uintptr 524 525 palloc persistentAlloc // per-P to avoid mutex 526 527 // Per-P GC state 528 gcAssistTime int64 // Nanoseconds in assistAlloc 529 gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker 530 gcBgMarkWorker guintptr 531 gcMarkWorkerMode gcMarkWorkerMode 532 533 // gcMarkWorkerStartTime is the nanotime() at which this mark 534 // worker started. 535 gcMarkWorkerStartTime int64 536 537 // gcw is this P's GC work buffer cache. The work buffer is 538 // filled by write barriers, drained by mutator assists, and 539 // disposed on certain GC state transitions. 540 gcw gcWork 541 542 // wbBuf is this P's GC write barrier buffer. 543 // 544 // TODO: Consider caching this in the running G. 545 wbBuf wbBuf 546 547 runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point 548 549 pad [sys.CacheLineSize]byte 550 } 551 552 type schedt struct { 553 // accessed atomically. keep at top to ensure alignment on 32-bit systems. 554 goidgen uint64 555 lastpoll uint64 556 557 lock mutex 558 559 // When increasing nmidle, nmidlelocked, nmsys, or nmfreed, be 560 // sure to call checkdead(). 561 562 midle muintptr // idle m's waiting for work 563 nmidle int32 // number of idle m's waiting for work 564 nmidlelocked int32 // number of locked m's waiting for work 565 mnext int64 // number of m's that have been created and next M ID 566 maxmcount int32 // maximum number of m's allowed (or die) 567 nmsys int32 // number of system m's not counted for deadlock 568 nmfreed int64 // cumulative number of freed m's 569 570 ngsys uint32 // number of system goroutines; updated atomically 571 572 pidle puintptr // idle p's 573 npidle uint32 574 nmspinning uint32 // See "Worker thread parking/unparking" comment in proc.go. 575 576 // Global runnable queue. 577 runqhead guintptr 578 runqtail guintptr 579 runqsize int32 580 581 // Global cache of dead G's. 582 gflock mutex 583 gfreeStack *g 584 gfreeNoStack *g 585 ngfree int32 586 587 // Central cache of sudog structs. 588 sudoglock mutex 589 sudogcache *sudog 590 591 // Central pool of available defer structs of different sizes. 592 deferlock mutex 593 deferpool [5]*_defer 594 595 // freem is the list of m's waiting to be freed when their 596 // m.exited is set. Linked through m.freelink. 597 freem *m 598 599 gcwaiting uint32 // gc is waiting to run 600 stopwait int32 601 stopnote note 602 sysmonwait uint32 603 sysmonnote note 604 605 // safepointFn should be called on each P at the next GC 606 // safepoint if p.runSafePointFn is set. 607 safePointFn func(*p) 608 safePointWait int32 609 safePointNote note 610 611 profilehz int32 // cpu profiling rate 612 613 procresizetime int64 // nanotime() of last change to gomaxprocs 614 totaltime int64 // ∫gomaxprocs dt up to procresizetime 615 } 616 617 // Values for the flags field of a sigTabT. 618 const ( 619 _SigNotify = 1 << iota // let signal.Notify have signal, even if from kernel 620 _SigKill // if signal.Notify doesn't take it, exit quietly 621 _SigThrow // if signal.Notify doesn't take it, exit loudly 622 _SigPanic // if the signal is from the kernel, panic 623 _SigDefault // if the signal isn't explicitly requested, don't monitor it 624 _SigGoExit // cause all runtime procs to exit (only used on Plan 9). 625 _SigSetStack // add SA_ONSTACK to libc handler 626 _SigUnblock // always unblock; see blockableSig 627 _SigIgn // _SIG_DFL action is to ignore the signal 628 ) 629 630 // Layout of in-memory per-function information prepared by linker 631 // See https://golang.org/s/go12symtab. 632 // Keep in sync with linker (../cmd/link/internal/ld/pcln.go:/pclntab) 633 // and with package debug/gosym and with symtab.go in package runtime. 634 type _func struct { 635 entry uintptr // start pc 636 nameoff int32 // function name 637 638 args int32 // in/out args size 639 _ int32 // previously legacy frame size; kept for layout compatibility 640 641 pcsp int32 642 pcfile int32 643 pcln int32 644 npcdata int32 645 nfuncdata int32 646 } 647 648 // layout of Itab known to compilers 649 // allocated in non-garbage-collected memory 650 // Needs to be in sync with 651 // ../cmd/compile/internal/gc/reflect.go:/^func.dumptypestructs. 652 type itab struct { 653 inter *interfacetype 654 _type *_type 655 hash uint32 // copy of _type.hash. Used for type switches. 656 _ [4]byte 657 fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter. 658 } 659 660 // Lock-free stack node. 661 // // Also known to export_test.go. 662 type lfnode struct { 663 next uint64 664 pushcnt uintptr 665 } 666 667 type forcegcstate struct { 668 lock mutex 669 g *g 670 idle uint32 671 } 672 673 // startup_random_data holds random bytes initialized at startup. These come from 674 // the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.go or os_linux_386.go). 675 var startupRandomData []byte 676 677 // extendRandom extends the random numbers in r[:n] to the whole slice r. 678 // Treats n<0 as n==0. 679 func extendRandom(r []byte, n int) { 680 if n < 0 { 681 n = 0 682 } 683 for n < len(r) { 684 // Extend random bits using hash function & time seed 685 w := n 686 if w > 16 { 687 w = 16 688 } 689 h := memhash(unsafe.Pointer(&r[n-w]), uintptr(nanotime()), uintptr(w)) 690 for i := 0; i < sys.PtrSize && n < len(r); i++ { 691 r[n] = byte(h) 692 n++ 693 h >>= 8 694 } 695 } 696 } 697 698 // A _defer holds an entry on the list of deferred calls. 699 // If you add a field here, add code to clear it in freedefer. 700 type _defer struct { 701 siz int32 702 started bool 703 sp uintptr // sp at time of defer 704 pc uintptr 705 fn *funcval 706 _panic *_panic // panic that is running defer 707 link *_defer 708 } 709 710 // panics 711 type _panic struct { 712 argp unsafe.Pointer // pointer to arguments of deferred call run during panic; cannot move - known to liblink 713 arg interface{} // argument to panic 714 link *_panic // link to earlier panic 715 recovered bool // whether this panic is over 716 aborted bool // the panic was aborted 717 } 718 719 // stack traces 720 type stkframe struct { 721 fn funcInfo // function being run 722 pc uintptr // program counter within fn 723 continpc uintptr // program counter where execution can continue, or 0 if not 724 lr uintptr // program counter at caller aka link register 725 sp uintptr // stack pointer at pc 726 fp uintptr // stack pointer at caller aka frame pointer 727 varp uintptr // top of local variables 728 argp uintptr // pointer to function arguments 729 arglen uintptr // number of bytes at argp 730 argmap *bitvector // force use of this argmap 731 } 732 733 const ( 734 _TraceRuntimeFrames = 1 << iota // include frames for internal runtime functions. 735 _TraceTrap // the initial PC, SP are from a trap, not a return PC from a call 736 _TraceJumpStack // if traceback is on a systemstack, resume trace at g that called into it 737 ) 738 739 // The maximum number of frames we print for a traceback 740 const _TracebackMaxFrames = 100 741 742 var ( 743 allglen uintptr 744 allm *m 745 allp []*p // len(allp) == gomaxprocs; may change at safe points, otherwise immutable 746 allpLock mutex // Protects P-less reads of allp and all writes 747 gomaxprocs int32 748 ncpu int32 749 forcegc forcegcstate 750 sched schedt 751 newprocs int32 752 753 // Information about what cpu features are available. 754 // Set on startup in asm_{386,amd64,amd64p32}.s. 755 // Packages outside the runtime should not use these 756 // as they are not an external api. 757 processorVersionInfo uint32 758 isIntel bool 759 lfenceBeforeRdtsc bool 760 support_aes bool 761 support_avx bool 762 support_avx2 bool 763 support_bmi1 bool 764 support_bmi2 bool 765 support_erms bool 766 support_osxsave bool 767 support_popcnt bool 768 support_sse2 bool 769 support_sse41 bool 770 support_sse42 bool 771 support_ssse3 bool 772 773 goarm uint8 // set by cmd/link on arm systems 774 framepointer_enabled bool // set by cmd/link 775 ) 776 777 // Set by the linker so the runtime can determine the buildmode. 778 var ( 779 islibrary bool // -buildmode=c-shared 780 isarchive bool // -buildmode=c-archive 781 )