github.com/c9s/go@v0.0.0-20180120015821-984e81f64e0c/src/unicode/utf8/utf8.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package utf8 implements functions and constants to support text encoded in 6 // UTF-8. It includes functions to translate between runes and UTF-8 byte sequences. 7 package utf8 8 9 // The conditions RuneError==unicode.ReplacementChar and 10 // MaxRune==unicode.MaxRune are verified in the tests. 11 // Defining them locally avoids this package depending on package unicode. 12 13 // Numbers fundamental to the encoding. 14 const ( 15 RuneError = '\uFFFD' // the "error" Rune or "Unicode replacement character" 16 RuneSelf = 0x80 // characters below Runeself are represented as themselves in a single byte. 17 MaxRune = '\U0010FFFF' // Maximum valid Unicode code point. 18 UTFMax = 4 // maximum number of bytes of a UTF-8 encoded Unicode character. 19 ) 20 21 // Code points in the surrogate range are not valid for UTF-8. 22 const ( 23 surrogateMin = 0xD800 24 surrogateMax = 0xDFFF 25 ) 26 27 const ( 28 t1 = 0x00 // 0000 0000 29 tx = 0x80 // 1000 0000 30 t2 = 0xC0 // 1100 0000 31 t3 = 0xE0 // 1110 0000 32 t4 = 0xF0 // 1111 0000 33 t5 = 0xF8 // 1111 1000 34 35 maskx = 0x3F // 0011 1111 36 mask2 = 0x1F // 0001 1111 37 mask3 = 0x0F // 0000 1111 38 mask4 = 0x07 // 0000 0111 39 40 rune1Max = 1<<7 - 1 41 rune2Max = 1<<11 - 1 42 rune3Max = 1<<16 - 1 43 44 // The default lowest and highest continuation byte. 45 locb = 0x80 // 1000 0000 46 hicb = 0xBF // 1011 1111 47 48 // These names of these constants are chosen to give nice alignment in the 49 // table below. The first nibble is an index into acceptRanges or F for 50 // special one-byte cases. The second nibble is the Rune length or the 51 // Status for the special one-byte case. 52 xx = 0xF1 // invalid: size 1 53 as = 0xF0 // ASCII: size 1 54 s1 = 0x02 // accept 0, size 2 55 s2 = 0x13 // accept 1, size 3 56 s3 = 0x03 // accept 0, size 3 57 s4 = 0x23 // accept 2, size 3 58 s5 = 0x34 // accept 3, size 4 59 s6 = 0x04 // accept 0, size 4 60 s7 = 0x44 // accept 4, size 4 61 ) 62 63 // first is information about the first byte in a UTF-8 sequence. 64 var first = [256]uint8{ 65 // 1 2 3 4 5 6 7 8 9 A B C D E F 66 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x00-0x0F 67 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x10-0x1F 68 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x20-0x2F 69 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x30-0x3F 70 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x40-0x4F 71 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x50-0x5F 72 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x60-0x6F 73 as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x70-0x7F 74 // 1 2 3 4 5 6 7 8 9 A B C D E F 75 xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x80-0x8F 76 xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x90-0x9F 77 xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xA0-0xAF 78 xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xB0-0xBF 79 xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xC0-0xCF 80 s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xD0-0xDF 81 s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, // 0xE0-0xEF 82 s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xF0-0xFF 83 } 84 85 // acceptRange gives the range of valid values for the second byte in a UTF-8 86 // sequence. 87 type acceptRange struct { 88 lo uint8 // lowest value for second byte. 89 hi uint8 // highest value for second byte. 90 } 91 92 var acceptRanges = [...]acceptRange{ 93 0: {locb, hicb}, 94 1: {0xA0, hicb}, 95 2: {locb, 0x9F}, 96 3: {0x90, hicb}, 97 4: {locb, 0x8F}, 98 } 99 100 // FullRune reports whether the bytes in p begin with a full UTF-8 encoding of a rune. 101 // An invalid encoding is considered a full Rune since it will convert as a width-1 error rune. 102 func FullRune(p []byte) bool { 103 n := len(p) 104 if n == 0 { 105 return false 106 } 107 x := first[p[0]] 108 if n >= int(x&7) { 109 return true // ASCII, invalid or valid. 110 } 111 // Must be short or invalid. 112 accept := acceptRanges[x>>4] 113 if n > 1 && (p[1] < accept.lo || accept.hi < p[1]) { 114 return true 115 } else if n > 2 && (p[2] < locb || hicb < p[2]) { 116 return true 117 } 118 return false 119 } 120 121 // FullRuneInString is like FullRune but its input is a string. 122 func FullRuneInString(s string) bool { 123 n := len(s) 124 if n == 0 { 125 return false 126 } 127 x := first[s[0]] 128 if n >= int(x&7) { 129 return true // ASCII, invalid, or valid. 130 } 131 // Must be short or invalid. 132 accept := acceptRanges[x>>4] 133 if n > 1 && (s[1] < accept.lo || accept.hi < s[1]) { 134 return true 135 } else if n > 2 && (s[2] < locb || hicb < s[2]) { 136 return true 137 } 138 return false 139 } 140 141 // DecodeRune unpacks the first UTF-8 encoding in p and returns the rune and 142 // its width in bytes. If p is empty it returns (RuneError, 0). Otherwise, if 143 // the encoding is invalid, it returns (RuneError, 1). Both are impossible 144 // results for correct, non-empty UTF-8. 145 // 146 // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is 147 // out of range, or is not the shortest possible UTF-8 encoding for the 148 // value. No other validation is performed. 149 func DecodeRune(p []byte) (r rune, size int) { 150 n := len(p) 151 if n < 1 { 152 return RuneError, 0 153 } 154 p0 := p[0] 155 x := first[p0] 156 if x >= as { 157 // The following code simulates an additional check for x == xx and 158 // handling the ASCII and invalid cases accordingly. This mask-and-or 159 // approach prevents an additional branch. 160 mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF. 161 return rune(p[0])&^mask | RuneError&mask, 1 162 } 163 sz := x & 7 164 accept := acceptRanges[x>>4] 165 if n < int(sz) { 166 return RuneError, 1 167 } 168 b1 := p[1] 169 if b1 < accept.lo || accept.hi < b1 { 170 return RuneError, 1 171 } 172 if sz == 2 { 173 return rune(p0&mask2)<<6 | rune(b1&maskx), 2 174 } 175 b2 := p[2] 176 if b2 < locb || hicb < b2 { 177 return RuneError, 1 178 } 179 if sz == 3 { 180 return rune(p0&mask3)<<12 | rune(b1&maskx)<<6 | rune(b2&maskx), 3 181 } 182 b3 := p[3] 183 if b3 < locb || hicb < b3 { 184 return RuneError, 1 185 } 186 return rune(p0&mask4)<<18 | rune(b1&maskx)<<12 | rune(b2&maskx)<<6 | rune(b3&maskx), 4 187 } 188 189 // DecodeRuneInString is like DecodeRune but its input is a string. If s is 190 // empty it returns (RuneError, 0). Otherwise, if the encoding is invalid, it 191 // returns (RuneError, 1). Both are impossible results for correct, non-empty 192 // UTF-8. 193 // 194 // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is 195 // out of range, or is not the shortest possible UTF-8 encoding for the 196 // value. No other validation is performed. 197 func DecodeRuneInString(s string) (r rune, size int) { 198 n := len(s) 199 if n < 1 { 200 return RuneError, 0 201 } 202 s0 := s[0] 203 x := first[s0] 204 if x >= as { 205 // The following code simulates an additional check for x == xx and 206 // handling the ASCII and invalid cases accordingly. This mask-and-or 207 // approach prevents an additional branch. 208 mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF. 209 return rune(s[0])&^mask | RuneError&mask, 1 210 } 211 sz := x & 7 212 accept := acceptRanges[x>>4] 213 if n < int(sz) { 214 return RuneError, 1 215 } 216 s1 := s[1] 217 if s1 < accept.lo || accept.hi < s1 { 218 return RuneError, 1 219 } 220 if sz == 2 { 221 return rune(s0&mask2)<<6 | rune(s1&maskx), 2 222 } 223 s2 := s[2] 224 if s2 < locb || hicb < s2 { 225 return RuneError, 1 226 } 227 if sz == 3 { 228 return rune(s0&mask3)<<12 | rune(s1&maskx)<<6 | rune(s2&maskx), 3 229 } 230 s3 := s[3] 231 if s3 < locb || hicb < s3 { 232 return RuneError, 1 233 } 234 return rune(s0&mask4)<<18 | rune(s1&maskx)<<12 | rune(s2&maskx)<<6 | rune(s3&maskx), 4 235 } 236 237 // DecodeLastRune unpacks the last UTF-8 encoding in p and returns the rune and 238 // its width in bytes. If p is empty it returns (RuneError, 0). Otherwise, if 239 // the encoding is invalid, it returns (RuneError, 1). Both are impossible 240 // results for correct, non-empty UTF-8. 241 // 242 // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is 243 // out of range, or is not the shortest possible UTF-8 encoding for the 244 // value. No other validation is performed. 245 func DecodeLastRune(p []byte) (r rune, size int) { 246 end := len(p) 247 if end == 0 { 248 return RuneError, 0 249 } 250 start := end - 1 251 r = rune(p[start]) 252 if r < RuneSelf { 253 return r, 1 254 } 255 // guard against O(n^2) behavior when traversing 256 // backwards through strings with long sequences of 257 // invalid UTF-8. 258 lim := end - UTFMax 259 if lim < 0 { 260 lim = 0 261 } 262 for start--; start >= lim; start-- { 263 if RuneStart(p[start]) { 264 break 265 } 266 } 267 if start < 0 { 268 start = 0 269 } 270 r, size = DecodeRune(p[start:end]) 271 if start+size != end { 272 return RuneError, 1 273 } 274 return r, size 275 } 276 277 // DecodeLastRuneInString is like DecodeLastRune but its input is a string. If 278 // s is empty it returns (RuneError, 0). Otherwise, if the encoding is invalid, 279 // it returns (RuneError, 1). Both are impossible results for correct, 280 // non-empty UTF-8. 281 // 282 // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is 283 // out of range, or is not the shortest possible UTF-8 encoding for the 284 // value. No other validation is performed. 285 func DecodeLastRuneInString(s string) (r rune, size int) { 286 end := len(s) 287 if end == 0 { 288 return RuneError, 0 289 } 290 start := end - 1 291 r = rune(s[start]) 292 if r < RuneSelf { 293 return r, 1 294 } 295 // guard against O(n^2) behavior when traversing 296 // backwards through strings with long sequences of 297 // invalid UTF-8. 298 lim := end - UTFMax 299 if lim < 0 { 300 lim = 0 301 } 302 for start--; start >= lim; start-- { 303 if RuneStart(s[start]) { 304 break 305 } 306 } 307 if start < 0 { 308 start = 0 309 } 310 r, size = DecodeRuneInString(s[start:end]) 311 if start+size != end { 312 return RuneError, 1 313 } 314 return r, size 315 } 316 317 // RuneLen returns the number of bytes required to encode the rune. 318 // It returns -1 if the rune is not a valid value to encode in UTF-8. 319 func RuneLen(r rune) int { 320 switch { 321 case r < 0: 322 return -1 323 case r <= rune1Max: 324 return 1 325 case r <= rune2Max: 326 return 2 327 case surrogateMin <= r && r <= surrogateMax: 328 return -1 329 case r <= rune3Max: 330 return 3 331 case r <= MaxRune: 332 return 4 333 } 334 return -1 335 } 336 337 // EncodeRune writes into p (which must be large enough) the UTF-8 encoding of the rune. 338 // It returns the number of bytes written. 339 func EncodeRune(p []byte, r rune) int { 340 // Negative values are erroneous. Making it unsigned addresses the problem. 341 switch i := uint32(r); { 342 case i <= rune1Max: 343 p[0] = byte(r) 344 return 1 345 case i <= rune2Max: 346 _ = p[1] // eliminate bounds checks 347 p[0] = t2 | byte(r>>6) 348 p[1] = tx | byte(r)&maskx 349 return 2 350 case i > MaxRune, surrogateMin <= i && i <= surrogateMax: 351 r = RuneError 352 fallthrough 353 case i <= rune3Max: 354 _ = p[2] // eliminate bounds checks 355 p[0] = t3 | byte(r>>12) 356 p[1] = tx | byte(r>>6)&maskx 357 p[2] = tx | byte(r)&maskx 358 return 3 359 default: 360 _ = p[3] // eliminate bounds checks 361 p[0] = t4 | byte(r>>18) 362 p[1] = tx | byte(r>>12)&maskx 363 p[2] = tx | byte(r>>6)&maskx 364 p[3] = tx | byte(r)&maskx 365 return 4 366 } 367 } 368 369 // RuneCount returns the number of runes in p. Erroneous and short 370 // encodings are treated as single runes of width 1 byte. 371 func RuneCount(p []byte) int { 372 np := len(p) 373 var n int 374 for i := 0; i < np; { 375 n++ 376 c := p[i] 377 if c < RuneSelf { 378 // ASCII fast path 379 i++ 380 continue 381 } 382 x := first[c] 383 if x == xx { 384 i++ // invalid. 385 continue 386 } 387 size := int(x & 7) 388 if i+size > np { 389 i++ // Short or invalid. 390 continue 391 } 392 accept := acceptRanges[x>>4] 393 if c := p[i+1]; c < accept.lo || accept.hi < c { 394 size = 1 395 } else if size == 2 { 396 } else if c := p[i+2]; c < locb || hicb < c { 397 size = 1 398 } else if size == 3 { 399 } else if c := p[i+3]; c < locb || hicb < c { 400 size = 1 401 } 402 i += size 403 } 404 return n 405 } 406 407 // RuneCountInString is like RuneCount but its input is a string. 408 func RuneCountInString(s string) (n int) { 409 ns := len(s) 410 for i := 0; i < ns; n++ { 411 c := s[i] 412 if c < RuneSelf { 413 // ASCII fast path 414 i++ 415 continue 416 } 417 x := first[c] 418 if x == xx { 419 i++ // invalid. 420 continue 421 } 422 size := int(x & 7) 423 if i+size > ns { 424 i++ // Short or invalid. 425 continue 426 } 427 accept := acceptRanges[x>>4] 428 if c := s[i+1]; c < accept.lo || accept.hi < c { 429 size = 1 430 } else if size == 2 { 431 } else if c := s[i+2]; c < locb || hicb < c { 432 size = 1 433 } else if size == 3 { 434 } else if c := s[i+3]; c < locb || hicb < c { 435 size = 1 436 } 437 i += size 438 } 439 return n 440 } 441 442 // RuneStart reports whether the byte could be the first byte of an encoded, 443 // possibly invalid rune. Second and subsequent bytes always have the top two 444 // bits set to 10. 445 func RuneStart(b byte) bool { return b&0xC0 != 0x80 } 446 447 // Valid reports whether p consists entirely of valid UTF-8-encoded runes. 448 func Valid(p []byte) bool { 449 n := len(p) 450 for i := 0; i < n; { 451 pi := p[i] 452 if pi < RuneSelf { 453 i++ 454 continue 455 } 456 x := first[pi] 457 if x == xx { 458 return false // Illegal starter byte. 459 } 460 size := int(x & 7) 461 if i+size > n { 462 return false // Short or invalid. 463 } 464 accept := acceptRanges[x>>4] 465 if c := p[i+1]; c < accept.lo || accept.hi < c { 466 return false 467 } else if size == 2 { 468 } else if c := p[i+2]; c < locb || hicb < c { 469 return false 470 } else if size == 3 { 471 } else if c := p[i+3]; c < locb || hicb < c { 472 return false 473 } 474 i += size 475 } 476 return true 477 } 478 479 // ValidString reports whether s consists entirely of valid UTF-8-encoded runes. 480 func ValidString(s string) bool { 481 n := len(s) 482 for i := 0; i < n; { 483 si := s[i] 484 if si < RuneSelf { 485 i++ 486 continue 487 } 488 x := first[si] 489 if x == xx { 490 return false // Illegal starter byte. 491 } 492 size := int(x & 7) 493 if i+size > n { 494 return false // Short or invalid. 495 } 496 accept := acceptRanges[x>>4] 497 if c := s[i+1]; c < accept.lo || accept.hi < c { 498 return false 499 } else if size == 2 { 500 } else if c := s[i+2]; c < locb || hicb < c { 501 return false 502 } else if size == 3 { 503 } else if c := s[i+3]; c < locb || hicb < c { 504 return false 505 } 506 i += size 507 } 508 return true 509 } 510 511 // ValidRune reports whether r can be legally encoded as UTF-8. 512 // Code points that are out of range or a surrogate half are illegal. 513 func ValidRune(r rune) bool { 514 switch { 515 case 0 <= r && r < surrogateMin: 516 return true 517 case surrogateMax < r && r <= MaxRune: 518 return true 519 } 520 return false 521 }