github.com/calmw/ethereum@v0.1.1/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/calmw/ethereum/common" 26 "github.com/calmw/ethereum/common/math" 27 "github.com/calmw/ethereum/crypto" 28 "github.com/calmw/ethereum/crypto/blake2b" 29 "github.com/calmw/ethereum/crypto/bls12381" 30 "github.com/calmw/ethereum/crypto/bn256" 31 "github.com/calmw/ethereum/params" 32 "golang.org/x/crypto/ripemd160" 33 ) 34 35 // PrecompiledContract is the basic interface for native Go contracts. The implementation 36 // requires a deterministic gas count based on the input size of the Run method of the 37 // contract. 38 type PrecompiledContract interface { 39 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 40 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 41 } 42 43 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 44 // contracts used in the Frontier and Homestead releases. 45 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 46 common.BytesToAddress([]byte{1}): &ecrecover{}, 47 common.BytesToAddress([]byte{2}): &sha256hash{}, 48 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 49 common.BytesToAddress([]byte{4}): &dataCopy{}, 50 } 51 52 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 53 // contracts used in the Byzantium release. 54 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 55 common.BytesToAddress([]byte{1}): &ecrecover{}, 56 common.BytesToAddress([]byte{2}): &sha256hash{}, 57 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 58 common.BytesToAddress([]byte{4}): &dataCopy{}, 59 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 60 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 61 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 62 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 63 } 64 65 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 66 // contracts used in the Istanbul release. 67 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 68 common.BytesToAddress([]byte{1}): &ecrecover{}, 69 common.BytesToAddress([]byte{2}): &sha256hash{}, 70 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 71 common.BytesToAddress([]byte{4}): &dataCopy{}, 72 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 73 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 74 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 75 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 76 common.BytesToAddress([]byte{9}): &blake2F{}, 77 } 78 79 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 80 // contracts used in the Berlin release. 81 var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ 82 common.BytesToAddress([]byte{1}): &ecrecover{}, 83 common.BytesToAddress([]byte{2}): &sha256hash{}, 84 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 85 common.BytesToAddress([]byte{4}): &dataCopy{}, 86 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true}, 87 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 88 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 89 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 90 common.BytesToAddress([]byte{9}): &blake2F{}, 91 } 92 93 // PrecompiledContractsBLS contains the set of pre-compiled Ethereum 94 // contracts specified in EIP-2537. These are exported for testing purposes. 95 var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{ 96 common.BytesToAddress([]byte{10}): &bls12381G1Add{}, 97 common.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 98 common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 99 common.BytesToAddress([]byte{13}): &bls12381G2Add{}, 100 common.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 101 common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 102 common.BytesToAddress([]byte{16}): &bls12381Pairing{}, 103 common.BytesToAddress([]byte{17}): &bls12381MapG1{}, 104 common.BytesToAddress([]byte{18}): &bls12381MapG2{}, 105 } 106 107 var ( 108 PrecompiledAddressesBerlin []common.Address 109 PrecompiledAddressesIstanbul []common.Address 110 PrecompiledAddressesByzantium []common.Address 111 PrecompiledAddressesHomestead []common.Address 112 ) 113 114 func init() { 115 for k := range PrecompiledContractsHomestead { 116 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 117 } 118 for k := range PrecompiledContractsByzantium { 119 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 120 } 121 for k := range PrecompiledContractsIstanbul { 122 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 123 } 124 for k := range PrecompiledContractsBerlin { 125 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 126 } 127 } 128 129 // ActivePrecompiles returns the precompiles enabled with the current configuration. 130 func ActivePrecompiles(rules params.Rules) []common.Address { 131 switch { 132 case rules.IsBerlin: 133 return PrecompiledAddressesBerlin 134 case rules.IsIstanbul: 135 return PrecompiledAddressesIstanbul 136 case rules.IsByzantium: 137 return PrecompiledAddressesByzantium 138 default: 139 return PrecompiledAddressesHomestead 140 } 141 } 142 143 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 144 // It returns 145 // - the returned bytes, 146 // - the _remaining_ gas, 147 // - any error that occurred 148 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 149 gasCost := p.RequiredGas(input) 150 if suppliedGas < gasCost { 151 return nil, 0, ErrOutOfGas 152 } 153 suppliedGas -= gasCost 154 output, err := p.Run(input) 155 return output, suppliedGas, err 156 } 157 158 // ECRECOVER implemented as a native contract. 159 type ecrecover struct{} 160 161 func (c *ecrecover) RequiredGas(input []byte) uint64 { 162 return params.EcrecoverGas 163 } 164 165 func (c *ecrecover) Run(input []byte) ([]byte, error) { 166 const ecRecoverInputLength = 128 167 168 input = common.RightPadBytes(input, ecRecoverInputLength) 169 // "input" is (hash, v, r, s), each 32 bytes 170 // but for ecrecover we want (r, s, v) 171 172 r := new(big.Int).SetBytes(input[64:96]) 173 s := new(big.Int).SetBytes(input[96:128]) 174 v := input[63] - 27 175 176 // tighter sig s values input homestead only apply to tx sigs 177 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 178 return nil, nil 179 } 180 // We must make sure not to modify the 'input', so placing the 'v' along with 181 // the signature needs to be done on a new allocation 182 sig := make([]byte, 65) 183 copy(sig, input[64:128]) 184 sig[64] = v 185 // v needs to be at the end for libsecp256k1 186 pubKey, err := crypto.Ecrecover(input[:32], sig) 187 // make sure the public key is a valid one 188 if err != nil { 189 return nil, nil 190 } 191 192 // the first byte of pubkey is bitcoin heritage 193 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 194 } 195 196 // SHA256 implemented as a native contract. 197 type sha256hash struct{} 198 199 // RequiredGas returns the gas required to execute the pre-compiled contract. 200 // 201 // This method does not require any overflow checking as the input size gas costs 202 // required for anything significant is so high it's impossible to pay for. 203 func (c *sha256hash) RequiredGas(input []byte) uint64 { 204 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 205 } 206 func (c *sha256hash) Run(input []byte) ([]byte, error) { 207 h := sha256.Sum256(input) 208 return h[:], nil 209 } 210 211 // RIPEMD160 implemented as a native contract. 212 type ripemd160hash struct{} 213 214 // RequiredGas returns the gas required to execute the pre-compiled contract. 215 // 216 // This method does not require any overflow checking as the input size gas costs 217 // required for anything significant is so high it's impossible to pay for. 218 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 219 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 220 } 221 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 222 ripemd := ripemd160.New() 223 ripemd.Write(input) 224 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 225 } 226 227 // data copy implemented as a native contract. 228 type dataCopy struct{} 229 230 // RequiredGas returns the gas required to execute the pre-compiled contract. 231 // 232 // This method does not require any overflow checking as the input size gas costs 233 // required for anything significant is so high it's impossible to pay for. 234 func (c *dataCopy) RequiredGas(input []byte) uint64 { 235 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 236 } 237 func (c *dataCopy) Run(in []byte) ([]byte, error) { 238 return common.CopyBytes(in), nil 239 } 240 241 // bigModExp implements a native big integer exponential modular operation. 242 type bigModExp struct { 243 eip2565 bool 244 } 245 246 var ( 247 big0 = big.NewInt(0) 248 big1 = big.NewInt(1) 249 big3 = big.NewInt(3) 250 big4 = big.NewInt(4) 251 big7 = big.NewInt(7) 252 big8 = big.NewInt(8) 253 big16 = big.NewInt(16) 254 big20 = big.NewInt(20) 255 big32 = big.NewInt(32) 256 big64 = big.NewInt(64) 257 big96 = big.NewInt(96) 258 big480 = big.NewInt(480) 259 big1024 = big.NewInt(1024) 260 big3072 = big.NewInt(3072) 261 big199680 = big.NewInt(199680) 262 ) 263 264 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 265 // 266 // def mult_complexity(x): 267 // if x <= 64: return x ** 2 268 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 269 // else: return x ** 2 // 16 + 480 * x - 199680 270 // 271 // where is x is max(length_of_MODULUS, length_of_BASE) 272 func modexpMultComplexity(x *big.Int) *big.Int { 273 switch { 274 case x.Cmp(big64) <= 0: 275 x.Mul(x, x) // x ** 2 276 case x.Cmp(big1024) <= 0: 277 // (x ** 2 // 4 ) + ( 96 * x - 3072) 278 x = new(big.Int).Add( 279 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 280 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 281 ) 282 default: 283 // (x ** 2 // 16) + (480 * x - 199680) 284 x = new(big.Int).Add( 285 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 286 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 287 ) 288 } 289 return x 290 } 291 292 // RequiredGas returns the gas required to execute the pre-compiled contract. 293 func (c *bigModExp) RequiredGas(input []byte) uint64 { 294 var ( 295 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 296 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 297 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 298 ) 299 if len(input) > 96 { 300 input = input[96:] 301 } else { 302 input = input[:0] 303 } 304 // Retrieve the head 32 bytes of exp for the adjusted exponent length 305 var expHead *big.Int 306 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 307 expHead = new(big.Int) 308 } else { 309 if expLen.Cmp(big32) > 0 { 310 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 311 } else { 312 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 313 } 314 } 315 // Calculate the adjusted exponent length 316 var msb int 317 if bitlen := expHead.BitLen(); bitlen > 0 { 318 msb = bitlen - 1 319 } 320 adjExpLen := new(big.Int) 321 if expLen.Cmp(big32) > 0 { 322 adjExpLen.Sub(expLen, big32) 323 adjExpLen.Mul(big8, adjExpLen) 324 } 325 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 326 // Calculate the gas cost of the operation 327 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 328 if c.eip2565 { 329 // EIP-2565 has three changes 330 // 1. Different multComplexity (inlined here) 331 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 332 // 333 // def mult_complexity(x): 334 // ceiling(x/8)^2 335 // 336 //where is x is max(length_of_MODULUS, length_of_BASE) 337 gas = gas.Add(gas, big7) 338 gas = gas.Div(gas, big8) 339 gas.Mul(gas, gas) 340 341 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 342 // 2. Different divisor (`GQUADDIVISOR`) (3) 343 gas.Div(gas, big3) 344 if gas.BitLen() > 64 { 345 return math.MaxUint64 346 } 347 // 3. Minimum price of 200 gas 348 if gas.Uint64() < 200 { 349 return 200 350 } 351 return gas.Uint64() 352 } 353 gas = modexpMultComplexity(gas) 354 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 355 gas.Div(gas, big20) 356 357 if gas.BitLen() > 64 { 358 return math.MaxUint64 359 } 360 return gas.Uint64() 361 } 362 363 func (c *bigModExp) Run(input []byte) ([]byte, error) { 364 var ( 365 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 366 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 367 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 368 ) 369 if len(input) > 96 { 370 input = input[96:] 371 } else { 372 input = input[:0] 373 } 374 // Handle a special case when both the base and mod length is zero 375 if baseLen == 0 && modLen == 0 { 376 return []byte{}, nil 377 } 378 // Retrieve the operands and execute the exponentiation 379 var ( 380 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 381 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 382 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 383 v []byte 384 ) 385 switch { 386 case mod.BitLen() == 0: 387 // Modulo 0 is undefined, return zero 388 return common.LeftPadBytes([]byte{}, int(modLen)), nil 389 case base.BitLen() == 1: // a bit length of 1 means it's 1 (or -1). 390 //If base == 1, then we can just return base % mod (if mod >= 1, which it is) 391 v = base.Mod(base, mod).Bytes() 392 default: 393 v = base.Exp(base, exp, mod).Bytes() 394 } 395 return common.LeftPadBytes(v, int(modLen)), nil 396 } 397 398 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 399 // returning it, or an error if the point is invalid. 400 func newCurvePoint(blob []byte) (*bn256.G1, error) { 401 p := new(bn256.G1) 402 if _, err := p.Unmarshal(blob); err != nil { 403 return nil, err 404 } 405 return p, nil 406 } 407 408 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 409 // returning it, or an error if the point is invalid. 410 func newTwistPoint(blob []byte) (*bn256.G2, error) { 411 p := new(bn256.G2) 412 if _, err := p.Unmarshal(blob); err != nil { 413 return nil, err 414 } 415 return p, nil 416 } 417 418 // runBn256Add implements the Bn256Add precompile, referenced by both 419 // Byzantium and Istanbul operations. 420 func runBn256Add(input []byte) ([]byte, error) { 421 x, err := newCurvePoint(getData(input, 0, 64)) 422 if err != nil { 423 return nil, err 424 } 425 y, err := newCurvePoint(getData(input, 64, 64)) 426 if err != nil { 427 return nil, err 428 } 429 res := new(bn256.G1) 430 res.Add(x, y) 431 return res.Marshal(), nil 432 } 433 434 // bn256Add implements a native elliptic curve point addition conforming to 435 // Istanbul consensus rules. 436 type bn256AddIstanbul struct{} 437 438 // RequiredGas returns the gas required to execute the pre-compiled contract. 439 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 440 return params.Bn256AddGasIstanbul 441 } 442 443 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 444 return runBn256Add(input) 445 } 446 447 // bn256AddByzantium implements a native elliptic curve point addition 448 // conforming to Byzantium consensus rules. 449 type bn256AddByzantium struct{} 450 451 // RequiredGas returns the gas required to execute the pre-compiled contract. 452 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 453 return params.Bn256AddGasByzantium 454 } 455 456 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 457 return runBn256Add(input) 458 } 459 460 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 461 // both Byzantium and Istanbul operations. 462 func runBn256ScalarMul(input []byte) ([]byte, error) { 463 p, err := newCurvePoint(getData(input, 0, 64)) 464 if err != nil { 465 return nil, err 466 } 467 res := new(bn256.G1) 468 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 469 return res.Marshal(), nil 470 } 471 472 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 473 // multiplication conforming to Istanbul consensus rules. 474 type bn256ScalarMulIstanbul struct{} 475 476 // RequiredGas returns the gas required to execute the pre-compiled contract. 477 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 478 return params.Bn256ScalarMulGasIstanbul 479 } 480 481 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 482 return runBn256ScalarMul(input) 483 } 484 485 // bn256ScalarMulByzantium implements a native elliptic curve scalar 486 // multiplication conforming to Byzantium consensus rules. 487 type bn256ScalarMulByzantium struct{} 488 489 // RequiredGas returns the gas required to execute the pre-compiled contract. 490 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 491 return params.Bn256ScalarMulGasByzantium 492 } 493 494 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 495 return runBn256ScalarMul(input) 496 } 497 498 var ( 499 // true32Byte is returned if the bn256 pairing check succeeds. 500 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 501 502 // false32Byte is returned if the bn256 pairing check fails. 503 false32Byte = make([]byte, 32) 504 505 // errBadPairingInput is returned if the bn256 pairing input is invalid. 506 errBadPairingInput = errors.New("bad elliptic curve pairing size") 507 ) 508 509 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 510 // Byzantium and Istanbul operations. 511 func runBn256Pairing(input []byte) ([]byte, error) { 512 // Handle some corner cases cheaply 513 if len(input)%192 > 0 { 514 return nil, errBadPairingInput 515 } 516 // Convert the input into a set of coordinates 517 var ( 518 cs []*bn256.G1 519 ts []*bn256.G2 520 ) 521 for i := 0; i < len(input); i += 192 { 522 c, err := newCurvePoint(input[i : i+64]) 523 if err != nil { 524 return nil, err 525 } 526 t, err := newTwistPoint(input[i+64 : i+192]) 527 if err != nil { 528 return nil, err 529 } 530 cs = append(cs, c) 531 ts = append(ts, t) 532 } 533 // Execute the pairing checks and return the results 534 if bn256.PairingCheck(cs, ts) { 535 return true32Byte, nil 536 } 537 return false32Byte, nil 538 } 539 540 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 541 // conforming to Istanbul consensus rules. 542 type bn256PairingIstanbul struct{} 543 544 // RequiredGas returns the gas required to execute the pre-compiled contract. 545 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 546 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 547 } 548 549 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 550 return runBn256Pairing(input) 551 } 552 553 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 554 // conforming to Byzantium consensus rules. 555 type bn256PairingByzantium struct{} 556 557 // RequiredGas returns the gas required to execute the pre-compiled contract. 558 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 559 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 560 } 561 562 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 563 return runBn256Pairing(input) 564 } 565 566 type blake2F struct{} 567 568 func (c *blake2F) RequiredGas(input []byte) uint64 { 569 // If the input is malformed, we can't calculate the gas, return 0 and let the 570 // actual call choke and fault. 571 if len(input) != blake2FInputLength { 572 return 0 573 } 574 return uint64(binary.BigEndian.Uint32(input[0:4])) 575 } 576 577 const ( 578 blake2FInputLength = 213 579 blake2FFinalBlockBytes = byte(1) 580 blake2FNonFinalBlockBytes = byte(0) 581 ) 582 583 var ( 584 errBlake2FInvalidInputLength = errors.New("invalid input length") 585 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 586 ) 587 588 func (c *blake2F) Run(input []byte) ([]byte, error) { 589 // Make sure the input is valid (correct length and final flag) 590 if len(input) != blake2FInputLength { 591 return nil, errBlake2FInvalidInputLength 592 } 593 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 594 return nil, errBlake2FInvalidFinalFlag 595 } 596 // Parse the input into the Blake2b call parameters 597 var ( 598 rounds = binary.BigEndian.Uint32(input[0:4]) 599 final = input[212] == blake2FFinalBlockBytes 600 601 h [8]uint64 602 m [16]uint64 603 t [2]uint64 604 ) 605 for i := 0; i < 8; i++ { 606 offset := 4 + i*8 607 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 608 } 609 for i := 0; i < 16; i++ { 610 offset := 68 + i*8 611 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 612 } 613 t[0] = binary.LittleEndian.Uint64(input[196:204]) 614 t[1] = binary.LittleEndian.Uint64(input[204:212]) 615 616 // Execute the compression function, extract and return the result 617 blake2b.F(&h, m, t, final, rounds) 618 619 output := make([]byte, 64) 620 for i := 0; i < 8; i++ { 621 offset := i * 8 622 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 623 } 624 return output, nil 625 } 626 627 var ( 628 errBLS12381InvalidInputLength = errors.New("invalid input length") 629 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 630 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 631 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 632 ) 633 634 // bls12381G1Add implements EIP-2537 G1Add precompile. 635 type bls12381G1Add struct{} 636 637 // RequiredGas returns the gas required to execute the pre-compiled contract. 638 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 639 return params.Bls12381G1AddGas 640 } 641 642 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 643 // Implements EIP-2537 G1Add precompile. 644 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 645 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 646 if len(input) != 256 { 647 return nil, errBLS12381InvalidInputLength 648 } 649 var err error 650 var p0, p1 *bls12381.PointG1 651 652 // Initialize G1 653 g := bls12381.NewG1() 654 655 // Decode G1 point p_0 656 if p0, err = g.DecodePoint(input[:128]); err != nil { 657 return nil, err 658 } 659 // Decode G1 point p_1 660 if p1, err = g.DecodePoint(input[128:]); err != nil { 661 return nil, err 662 } 663 664 // Compute r = p_0 + p_1 665 r := g.New() 666 g.Add(r, p0, p1) 667 668 // Encode the G1 point result into 128 bytes 669 return g.EncodePoint(r), nil 670 } 671 672 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 673 type bls12381G1Mul struct{} 674 675 // RequiredGas returns the gas required to execute the pre-compiled contract. 676 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 677 return params.Bls12381G1MulGas 678 } 679 680 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 681 // Implements EIP-2537 G1Mul precompile. 682 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 683 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 684 if len(input) != 160 { 685 return nil, errBLS12381InvalidInputLength 686 } 687 var err error 688 var p0 *bls12381.PointG1 689 690 // Initialize G1 691 g := bls12381.NewG1() 692 693 // Decode G1 point 694 if p0, err = g.DecodePoint(input[:128]); err != nil { 695 return nil, err 696 } 697 // Decode scalar value 698 e := new(big.Int).SetBytes(input[128:]) 699 700 // Compute r = e * p_0 701 r := g.New() 702 g.MulScalar(r, p0, e) 703 704 // Encode the G1 point into 128 bytes 705 return g.EncodePoint(r), nil 706 } 707 708 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 709 type bls12381G1MultiExp struct{} 710 711 // RequiredGas returns the gas required to execute the pre-compiled contract. 712 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 713 // Calculate G1 point, scalar value pair length 714 k := len(input) / 160 715 if k == 0 { 716 // Return 0 gas for small input length 717 return 0 718 } 719 // Lookup discount value for G1 point, scalar value pair length 720 var discount uint64 721 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 722 discount = params.Bls12381MultiExpDiscountTable[k-1] 723 } else { 724 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 725 } 726 // Calculate gas and return the result 727 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 728 } 729 730 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 731 // Implements EIP-2537 G1MultiExp precompile. 732 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 733 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 734 k := len(input) / 160 735 if len(input) == 0 || len(input)%160 != 0 { 736 return nil, errBLS12381InvalidInputLength 737 } 738 var err error 739 points := make([]*bls12381.PointG1, k) 740 scalars := make([]*big.Int, k) 741 742 // Initialize G1 743 g := bls12381.NewG1() 744 745 // Decode point scalar pairs 746 for i := 0; i < k; i++ { 747 off := 160 * i 748 t0, t1, t2 := off, off+128, off+160 749 // Decode G1 point 750 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 751 return nil, err 752 } 753 // Decode scalar value 754 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 755 } 756 757 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 758 r := g.New() 759 g.MultiExp(r, points, scalars) 760 761 // Encode the G1 point to 128 bytes 762 return g.EncodePoint(r), nil 763 } 764 765 // bls12381G2Add implements EIP-2537 G2Add precompile. 766 type bls12381G2Add struct{} 767 768 // RequiredGas returns the gas required to execute the pre-compiled contract. 769 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 770 return params.Bls12381G2AddGas 771 } 772 773 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 774 // Implements EIP-2537 G2Add precompile. 775 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 776 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 777 if len(input) != 512 { 778 return nil, errBLS12381InvalidInputLength 779 } 780 var err error 781 var p0, p1 *bls12381.PointG2 782 783 // Initialize G2 784 g := bls12381.NewG2() 785 r := g.New() 786 787 // Decode G2 point p_0 788 if p0, err = g.DecodePoint(input[:256]); err != nil { 789 return nil, err 790 } 791 // Decode G2 point p_1 792 if p1, err = g.DecodePoint(input[256:]); err != nil { 793 return nil, err 794 } 795 796 // Compute r = p_0 + p_1 797 g.Add(r, p0, p1) 798 799 // Encode the G2 point into 256 bytes 800 return g.EncodePoint(r), nil 801 } 802 803 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 804 type bls12381G2Mul struct{} 805 806 // RequiredGas returns the gas required to execute the pre-compiled contract. 807 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 808 return params.Bls12381G2MulGas 809 } 810 811 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 812 // Implements EIP-2537 G2MUL precompile logic. 813 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 814 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 815 if len(input) != 288 { 816 return nil, errBLS12381InvalidInputLength 817 } 818 var err error 819 var p0 *bls12381.PointG2 820 821 // Initialize G2 822 g := bls12381.NewG2() 823 824 // Decode G2 point 825 if p0, err = g.DecodePoint(input[:256]); err != nil { 826 return nil, err 827 } 828 // Decode scalar value 829 e := new(big.Int).SetBytes(input[256:]) 830 831 // Compute r = e * p_0 832 r := g.New() 833 g.MulScalar(r, p0, e) 834 835 // Encode the G2 point into 256 bytes 836 return g.EncodePoint(r), nil 837 } 838 839 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 840 type bls12381G2MultiExp struct{} 841 842 // RequiredGas returns the gas required to execute the pre-compiled contract. 843 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 844 // Calculate G2 point, scalar value pair length 845 k := len(input) / 288 846 if k == 0 { 847 // Return 0 gas for small input length 848 return 0 849 } 850 // Lookup discount value for G2 point, scalar value pair length 851 var discount uint64 852 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 853 discount = params.Bls12381MultiExpDiscountTable[k-1] 854 } else { 855 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 856 } 857 // Calculate gas and return the result 858 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 859 } 860 861 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 862 // Implements EIP-2537 G2MultiExp precompile logic 863 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 864 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 865 k := len(input) / 288 866 if len(input) == 0 || len(input)%288 != 0 { 867 return nil, errBLS12381InvalidInputLength 868 } 869 var err error 870 points := make([]*bls12381.PointG2, k) 871 scalars := make([]*big.Int, k) 872 873 // Initialize G2 874 g := bls12381.NewG2() 875 876 // Decode point scalar pairs 877 for i := 0; i < k; i++ { 878 off := 288 * i 879 t0, t1, t2 := off, off+256, off+288 880 // Decode G1 point 881 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 882 return nil, err 883 } 884 // Decode scalar value 885 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 886 } 887 888 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 889 r := g.New() 890 g.MultiExp(r, points, scalars) 891 892 // Encode the G2 point to 256 bytes. 893 return g.EncodePoint(r), nil 894 } 895 896 // bls12381Pairing implements EIP-2537 Pairing precompile. 897 type bls12381Pairing struct{} 898 899 // RequiredGas returns the gas required to execute the pre-compiled contract. 900 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 901 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 902 } 903 904 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 905 // Implements EIP-2537 Pairing precompile logic. 906 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 907 // > - `128` bytes of G1 point encoding 908 // > - `256` bytes of G2 point encoding 909 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 910 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 911 k := len(input) / 384 912 if len(input) == 0 || len(input)%384 != 0 { 913 return nil, errBLS12381InvalidInputLength 914 } 915 916 // Initialize BLS12-381 pairing engine 917 e := bls12381.NewPairingEngine() 918 g1, g2 := e.G1, e.G2 919 920 // Decode pairs 921 for i := 0; i < k; i++ { 922 off := 384 * i 923 t0, t1, t2 := off, off+128, off+384 924 925 // Decode G1 point 926 p1, err := g1.DecodePoint(input[t0:t1]) 927 if err != nil { 928 return nil, err 929 } 930 // Decode G2 point 931 p2, err := g2.DecodePoint(input[t1:t2]) 932 if err != nil { 933 return nil, err 934 } 935 936 // 'point is on curve' check already done, 937 // Here we need to apply subgroup checks. 938 if !g1.InCorrectSubgroup(p1) { 939 return nil, errBLS12381G1PointSubgroup 940 } 941 if !g2.InCorrectSubgroup(p2) { 942 return nil, errBLS12381G2PointSubgroup 943 } 944 945 // Update pairing engine with G1 and G2 points 946 e.AddPair(p1, p2) 947 } 948 // Prepare 32 byte output 949 out := make([]byte, 32) 950 951 // Compute pairing and set the result 952 if e.Check() { 953 out[31] = 1 954 } 955 return out, nil 956 } 957 958 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 959 // Removes top 16 bytes of 64 byte input. 960 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 961 if len(in) != 64 { 962 return nil, errors.New("invalid field element length") 963 } 964 // check top bytes 965 for i := 0; i < 16; i++ { 966 if in[i] != byte(0x00) { 967 return nil, errBLS12381InvalidFieldElementTopBytes 968 } 969 } 970 out := make([]byte, 48) 971 copy(out[:], in[16:]) 972 return out, nil 973 } 974 975 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 976 type bls12381MapG1 struct{} 977 978 // RequiredGas returns the gas required to execute the pre-compiled contract. 979 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 980 return params.Bls12381MapG1Gas 981 } 982 983 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 984 // Implements EIP-2537 Map_To_G1 precompile. 985 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 986 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 987 if len(input) != 64 { 988 return nil, errBLS12381InvalidInputLength 989 } 990 991 // Decode input field element 992 fe, err := decodeBLS12381FieldElement(input) 993 if err != nil { 994 return nil, err 995 } 996 997 // Initialize G1 998 g := bls12381.NewG1() 999 1000 // Compute mapping 1001 r, err := g.MapToCurve(fe) 1002 if err != nil { 1003 return nil, err 1004 } 1005 1006 // Encode the G1 point to 128 bytes 1007 return g.EncodePoint(r), nil 1008 } 1009 1010 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1011 type bls12381MapG2 struct{} 1012 1013 // RequiredGas returns the gas required to execute the pre-compiled contract. 1014 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1015 return params.Bls12381MapG2Gas 1016 } 1017 1018 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1019 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1020 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 1021 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1022 if len(input) != 128 { 1023 return nil, errBLS12381InvalidInputLength 1024 } 1025 1026 // Decode input field element 1027 fe := make([]byte, 96) 1028 c0, err := decodeBLS12381FieldElement(input[:64]) 1029 if err != nil { 1030 return nil, err 1031 } 1032 copy(fe[48:], c0) 1033 c1, err := decodeBLS12381FieldElement(input[64:]) 1034 if err != nil { 1035 return nil, err 1036 } 1037 copy(fe[:48], c1) 1038 1039 // Initialize G2 1040 g := bls12381.NewG2() 1041 1042 // Compute mapping 1043 r, err := g.MapToCurve(fe) 1044 if err != nil { 1045 return nil, err 1046 } 1047 1048 // Encode the G2 point to 256 bytes 1049 return g.EncodePoint(r), nil 1050 }