github.com/calmw/ethereum@v0.1.1/eth/downloader/skeleton.go (about) 1 // Copyright 2022 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package downloader 18 19 import ( 20 "encoding/json" 21 "errors" 22 "fmt" 23 "math/rand" 24 "sort" 25 "time" 26 27 "github.com/calmw/ethereum/common" 28 "github.com/calmw/ethereum/core/rawdb" 29 "github.com/calmw/ethereum/core/types" 30 "github.com/calmw/ethereum/eth/protocols/eth" 31 "github.com/calmw/ethereum/ethdb" 32 "github.com/calmw/ethereum/log" 33 ) 34 35 // scratchHeaders is the number of headers to store in a scratch space to allow 36 // concurrent downloads. A header is about 0.5KB in size, so there is no worry 37 // about using too much memory. The only catch is that we can only validate gaps 38 // after they're linked to the head, so the bigger the scratch space, the larger 39 // potential for invalid headers. 40 // 41 // The current scratch space of 131072 headers is expected to use 64MB RAM. 42 const scratchHeaders = 131072 43 44 // requestHeaders is the number of header to request from a remote peer in a single 45 // network packet. Although the skeleton downloader takes into consideration peer 46 // capacities when picking idlers, the packet size was decided to remain constant 47 // since headers are relatively small and it's easier to work with fixed batches 48 // vs. dynamic interval fillings. 49 const requestHeaders = 512 50 51 // errSyncLinked is an internal helper error to signal that the current sync 52 // cycle linked up to the genesis block, this the skeleton syncer should ping 53 // the backfiller to resume. Since we already have that logic on sync start, 54 // piggy-back on that instead of 2 entrypoints. 55 var errSyncLinked = errors.New("sync linked") 56 57 // errSyncMerged is an internal helper error to signal that the current sync 58 // cycle merged with a previously aborted subchain, thus the skeleton syncer 59 // should abort and restart with the new state. 60 var errSyncMerged = errors.New("sync merged") 61 62 // errSyncReorged is an internal helper error to signal that the head chain of 63 // the current sync cycle was (partially) reorged, thus the skeleton syncer 64 // should abort and restart with the new state. 65 var errSyncReorged = errors.New("sync reorged") 66 67 // errTerminated is returned if the sync mechanism was terminated for this run of 68 // the process. This is usually the case when Geth is shutting down and some events 69 // might still be propagating. 70 var errTerminated = errors.New("terminated") 71 72 // errReorgDenied is returned if an attempt is made to extend the beacon chain 73 // with a new header, but it does not link up to the existing sync. 74 var errReorgDenied = errors.New("non-forced head reorg denied") 75 76 func init() { 77 // Tuning parameters is nice, but the scratch space must be assignable in 78 // full to peers. It's a useless cornercase to support a dangling half-group. 79 if scratchHeaders%requestHeaders != 0 { 80 panic("Please make scratchHeaders divisible by requestHeaders") 81 } 82 } 83 84 // subchain is a contiguous header chain segment that is backed by the database, 85 // but may not be linked to the live chain. The skeleton downloader may produce 86 // a new one of these every time it is restarted until the subchain grows large 87 // enough to connect with a previous subchain. 88 // 89 // The subchains use the exact same database namespace and are not disjoint from 90 // each other. As such, extending one to overlap the other entails reducing the 91 // second one first. This combined buffer model is used to avoid having to move 92 // data on disk when two subchains are joined together. 93 type subchain struct { 94 Head uint64 // Block number of the newest header in the subchain 95 Tail uint64 // Block number of the oldest header in the subchain 96 Next common.Hash // Block hash of the next oldest header in the subchain 97 } 98 99 // skeletonProgress is a database entry to allow suspending and resuming a chain 100 // sync. As the skeleton header chain is downloaded backwards, restarts can and 101 // will produce temporarily disjoint subchains. There is no way to restart a 102 // suspended skeleton sync without prior knowledge of all prior suspension points. 103 type skeletonProgress struct { 104 Subchains []*subchain // Disjoint subchains downloaded until now 105 Finalized *uint64 // Last known finalized block number 106 } 107 108 // headUpdate is a notification that the beacon sync should switch to a new target. 109 // The update might request whether to forcefully change the target, or only try to 110 // extend it and fail if it's not possible. 111 type headUpdate struct { 112 header *types.Header // Header to update the sync target to 113 final *types.Header // Finalized header to use as thresholds 114 force bool // Whether to force the update or only extend if possible 115 errc chan error // Channel to signal acceptance of the new head 116 } 117 118 // headerRequest tracks a pending header request to ensure responses are to 119 // actual requests and to validate any security constraints. 120 // 121 // Concurrency note: header requests and responses are handled concurrently from 122 // the main runloop to allow Keccak256 hash verifications on the peer's thread and 123 // to drop on invalid response. The request struct must contain all the data to 124 // construct the response without accessing runloop internals (i.e. subchains). 125 // That is only included to allow the runloop to match a response to the task being 126 // synced without having yet another set of maps. 127 type headerRequest struct { 128 peer string // Peer to which this request is assigned 129 id uint64 // Request ID of this request 130 131 deliver chan *headerResponse // Channel to deliver successful response on 132 revert chan *headerRequest // Channel to deliver request failure on 133 cancel chan struct{} // Channel to track sync cancellation 134 stale chan struct{} // Channel to signal the request was dropped 135 136 head uint64 // Head number of the requested batch of headers 137 } 138 139 // headerResponse is an already verified remote response to a header request. 140 type headerResponse struct { 141 peer *peerConnection // Peer from which this response originates 142 reqid uint64 // Request ID that this response fulfils 143 headers []*types.Header // Chain of headers 144 } 145 146 // backfiller is a callback interface through which the skeleton sync can tell 147 // the downloader that it should suspend or resume backfilling on specific head 148 // events (e.g. suspend on forks or gaps, resume on successful linkups). 149 type backfiller interface { 150 // suspend requests the backfiller to abort any running full or snap sync 151 // based on the skeleton chain as it might be invalid. The backfiller should 152 // gracefully handle multiple consecutive suspends without a resume, even 153 // on initial startup. 154 // 155 // The method should return the last block header that has been successfully 156 // backfilled, or nil if the backfiller was not resumed. 157 suspend() *types.Header 158 159 // resume requests the backfiller to start running fill or snap sync based on 160 // the skeleton chain as it has successfully been linked. Appending new heads 161 // to the end of the chain will not result in suspend/resume cycles. 162 // leaking too much sync logic out to the filler. 163 resume() 164 } 165 166 // skeleton represents a header chain synchronized after the merge where blocks 167 // aren't validated any more via PoW in a forward fashion, rather are dictated 168 // and extended at the head via the beacon chain and backfilled on the original 169 // Ethereum block sync protocol. 170 // 171 // Since the skeleton is grown backwards from head to genesis, it is handled as 172 // a separate entity, not mixed in with the logical sequential transition of the 173 // blocks. Once the skeleton is connected to an existing, validated chain, the 174 // headers will be moved into the main downloader for filling and execution. 175 // 176 // Opposed to the original Ethereum block synchronization which is trustless (and 177 // uses a master peer to minimize the attack surface), post-merge block sync starts 178 // from a trusted head. As such, there is no need for a master peer any more and 179 // headers can be requested fully concurrently (though some batches might be 180 // discarded if they don't link up correctly). 181 // 182 // Although a skeleton is part of a sync cycle, it is not recreated, rather stays 183 // alive throughout the lifetime of the downloader. This allows it to be extended 184 // concurrently with the sync cycle, since extensions arrive from an API surface, 185 // not from within (vs. legacy Ethereum sync). 186 // 187 // Since the skeleton tracks the entire header chain until it is consumed by the 188 // forward block filling, it needs 0.5KB/block storage. At current mainnet sizes 189 // this is only possible with a disk backend. Since the skeleton is separate from 190 // the node's header chain, storing the headers ephemerally until sync finishes 191 // is wasted disk IO, but it's a price we're going to pay to keep things simple 192 // for now. 193 type skeleton struct { 194 db ethdb.Database // Database backing the skeleton 195 filler backfiller // Chain syncer suspended/resumed by head events 196 197 peers *peerSet // Set of peers we can sync from 198 idles map[string]*peerConnection // Set of idle peers in the current sync cycle 199 drop peerDropFn // Drops a peer for misbehaving 200 201 progress *skeletonProgress // Sync progress tracker for resumption and metrics 202 started time.Time // Timestamp when the skeleton syncer was created 203 logged time.Time // Timestamp when progress was last logged to the user 204 pulled uint64 // Number of headers downloaded in this run 205 206 scratchSpace []*types.Header // Scratch space to accumulate headers in (first = recent) 207 scratchOwners []string // Peer IDs owning chunks of the scratch space (pend or delivered) 208 scratchHead uint64 // Block number of the first item in the scratch space 209 210 requests map[uint64]*headerRequest // Header requests currently running 211 212 headEvents chan *headUpdate // Notification channel for new heads 213 terminate chan chan error // Termination channel to abort sync 214 terminated chan struct{} // Channel to signal that the syncer is dead 215 216 // Callback hooks used during testing 217 syncStarting func() // callback triggered after a sync cycle is inited but before started 218 } 219 220 // newSkeleton creates a new sync skeleton that tracks a potentially dangling 221 // header chain until it's linked into an existing set of blocks. 222 func newSkeleton(db ethdb.Database, peers *peerSet, drop peerDropFn, filler backfiller) *skeleton { 223 sk := &skeleton{ 224 db: db, 225 filler: filler, 226 peers: peers, 227 drop: drop, 228 requests: make(map[uint64]*headerRequest), 229 headEvents: make(chan *headUpdate), 230 terminate: make(chan chan error), 231 terminated: make(chan struct{}), 232 } 233 go sk.startup() 234 return sk 235 } 236 237 // startup is an initial background loop which waits for an event to start or 238 // tear the syncer down. This is required to make the skeleton sync loop once 239 // per process but at the same time not start before the beacon chain announces 240 // a new (existing) head. 241 func (s *skeleton) startup() { 242 // Close a notification channel so anyone sending us events will know if the 243 // sync loop was torn down for good. 244 defer close(s.terminated) 245 246 // Wait for startup or teardown. This wait might loop a few times if a beacon 247 // client requests sync head extensions, but not forced reorgs (i.e. they are 248 // giving us new payloads without setting a starting head initially). 249 for { 250 select { 251 case errc := <-s.terminate: 252 // No head was announced but Geth is shutting down 253 errc <- nil 254 return 255 256 case event := <-s.headEvents: 257 // New head announced, start syncing to it, looping every time a current 258 // cycle is terminated due to a chain event (head reorg, old chain merge). 259 if !event.force { 260 event.errc <- errors.New("forced head needed for startup") 261 continue 262 } 263 event.errc <- nil // forced head accepted for startup 264 head := event.header 265 s.started = time.Now() 266 267 for { 268 // If the sync cycle terminated or was terminated, propagate up when 269 // higher layers request termination. There's no fancy explicit error 270 // signalling as the sync loop should never terminate (TM). 271 newhead, err := s.sync(head) 272 switch { 273 case err == errSyncLinked: 274 // Sync cycle linked up to the genesis block. Tear down the loop 275 // and restart it so, it can properly notify the backfiller. Don't 276 // account a new head. 277 head = nil 278 279 case err == errSyncMerged: 280 // Subchains were merged, we just need to reinit the internal 281 // start to continue on the tail of the merged chain. Don't 282 // announce a new head, 283 head = nil 284 285 case err == errSyncReorged: 286 // The subchain being synced got modified at the head in a 287 // way that requires resyncing it. Restart sync with the new 288 // head to force a cleanup. 289 head = newhead 290 291 case err == errTerminated: 292 // Sync was requested to be terminated from within, stop and 293 // return (no need to pass a message, was already done internally) 294 return 295 296 default: 297 // Sync either successfully terminated or failed with an unhandled 298 // error. Abort and wait until Geth requests a termination. 299 errc := <-s.terminate 300 errc <- err 301 return 302 } 303 } 304 } 305 } 306 } 307 308 // Terminate tears down the syncer indefinitely. 309 func (s *skeleton) Terminate() error { 310 // Request termination and fetch any errors 311 errc := make(chan error) 312 s.terminate <- errc 313 err := <-errc 314 315 // Wait for full shutdown (not necessary, but cleaner) 316 <-s.terminated 317 return err 318 } 319 320 // Sync starts or resumes a previous sync cycle to download and maintain a reverse 321 // header chain starting at the head and leading towards genesis to an available 322 // ancestor. 323 // 324 // This method does not block, rather it just waits until the syncer receives the 325 // fed header. What the syncer does with it is the syncer's problem. 326 func (s *skeleton) Sync(head *types.Header, final *types.Header, force bool) error { 327 log.Trace("New skeleton head announced", "number", head.Number, "hash", head.Hash(), "force", force) 328 errc := make(chan error) 329 330 select { 331 case s.headEvents <- &headUpdate{header: head, final: final, force: force, errc: errc}: 332 return <-errc 333 case <-s.terminated: 334 return errTerminated 335 } 336 } 337 338 // sync is the internal version of Sync that executes a single sync cycle, either 339 // until some termination condition is reached, or until the current cycle merges 340 // with a previously aborted run. 341 func (s *skeleton) sync(head *types.Header) (*types.Header, error) { 342 // If we're continuing a previous merge interrupt, just access the existing 343 // old state without initing from disk. 344 if head == nil { 345 head = rawdb.ReadSkeletonHeader(s.db, s.progress.Subchains[0].Head) 346 } else { 347 // Otherwise, initialize the sync, trimming and previous leftovers until 348 // we're consistent with the newly requested chain head 349 s.initSync(head) 350 } 351 // Create the scratch space to fill with concurrently downloaded headers 352 s.scratchSpace = make([]*types.Header, scratchHeaders) 353 defer func() { s.scratchSpace = nil }() // don't hold on to references after sync 354 355 s.scratchOwners = make([]string, scratchHeaders/requestHeaders) 356 defer func() { s.scratchOwners = nil }() // don't hold on to references after sync 357 358 s.scratchHead = s.progress.Subchains[0].Tail - 1 // tail must not be 0! 359 360 // If the sync is already done, resume the backfiller. When the loop stops, 361 // terminate the backfiller too. 362 linked := len(s.progress.Subchains) == 1 && 363 rawdb.HasHeader(s.db, s.progress.Subchains[0].Next, s.scratchHead) && 364 rawdb.HasBody(s.db, s.progress.Subchains[0].Next, s.scratchHead) && 365 rawdb.HasReceipts(s.db, s.progress.Subchains[0].Next, s.scratchHead) 366 if linked { 367 s.filler.resume() 368 } 369 defer func() { 370 if filled := s.filler.suspend(); filled != nil { 371 // If something was filled, try to delete stale sync helpers. If 372 // unsuccessful, warn the user, but not much else we can do (it's 373 // a programming error, just let users report an issue and don't 374 // choke in the meantime). 375 if err := s.cleanStales(filled); err != nil { 376 log.Error("Failed to clean stale beacon headers", "err", err) 377 } 378 } 379 }() 380 // Create a set of unique channels for this sync cycle. We need these to be 381 // ephemeral so a data race doesn't accidentally deliver something stale on 382 // a persistent channel across syncs (yup, this happened) 383 var ( 384 requestFails = make(chan *headerRequest) 385 responses = make(chan *headerResponse) 386 ) 387 cancel := make(chan struct{}) 388 defer close(cancel) 389 390 log.Debug("Starting reverse header sync cycle", "head", head.Number, "hash", head.Hash(), "cont", s.scratchHead) 391 392 // Whether sync completed or not, disregard any future packets 393 defer func() { 394 log.Debug("Terminating reverse header sync cycle", "head", head.Number, "hash", head.Hash(), "cont", s.scratchHead) 395 s.requests = make(map[uint64]*headerRequest) 396 }() 397 398 // Start tracking idle peers for task assignments 399 peering := make(chan *peeringEvent, 64) // arbitrary buffer, just some burst protection 400 401 peeringSub := s.peers.SubscribeEvents(peering) 402 defer peeringSub.Unsubscribe() 403 404 s.idles = make(map[string]*peerConnection) 405 for _, peer := range s.peers.AllPeers() { 406 s.idles[peer.id] = peer 407 } 408 // Nofity any tester listening for startup events 409 if s.syncStarting != nil { 410 s.syncStarting() 411 } 412 for { 413 // Something happened, try to assign new tasks to any idle peers 414 if !linked { 415 s.assignTasks(responses, requestFails, cancel) 416 } 417 // Wait for something to happen 418 select { 419 case event := <-peering: 420 // A peer joined or left, the tasks queue and allocations need to be 421 // checked for potential assignment or reassignment 422 peerid := event.peer.id 423 if event.join { 424 log.Debug("Joining skeleton peer", "id", peerid) 425 s.idles[peerid] = event.peer 426 } else { 427 log.Debug("Leaving skeleton peer", "id", peerid) 428 s.revertRequests(peerid) 429 delete(s.idles, peerid) 430 } 431 432 case errc := <-s.terminate: 433 errc <- nil 434 return nil, errTerminated 435 436 case event := <-s.headEvents: 437 // New head was announced, try to integrate it. If successful, nothing 438 // needs to be done as the head simply extended the last range. For now 439 // we don't seamlessly integrate reorgs to keep things simple. If the 440 // network starts doing many mini reorgs, it might be worthwhile handling 441 // a limited depth without an error. 442 if reorged := s.processNewHead(event.header, event.final, event.force); reorged { 443 // If a reorg is needed, and we're forcing the new head, signal 444 // the syncer to tear down and start over. Otherwise, drop the 445 // non-force reorg. 446 if event.force { 447 event.errc <- nil // forced head reorg accepted 448 return event.header, errSyncReorged 449 } 450 event.errc <- errReorgDenied 451 continue 452 } 453 event.errc <- nil // head extension accepted 454 455 // New head was integrated into the skeleton chain. If the backfiller 456 // is still running, it will pick it up. If it already terminated, 457 // a new cycle needs to be spun up. 458 if linked { 459 s.filler.resume() 460 } 461 462 case req := <-requestFails: 463 s.revertRequest(req) 464 465 case res := <-responses: 466 // Process the batch of headers. If though processing we managed to 467 // link the current subchain to a previously downloaded one, abort the 468 // sync and restart with the merged subchains. 469 // 470 // If we managed to link to the existing local chain or genesis block, 471 // abort sync altogether. 472 linked, merged := s.processResponse(res) 473 if linked { 474 log.Debug("Beacon sync linked to local chain") 475 return nil, errSyncLinked 476 } 477 if merged { 478 log.Debug("Beacon sync merged subchains") 479 return nil, errSyncMerged 480 } 481 // We still have work to do, loop and repeat 482 } 483 } 484 } 485 486 // initSync attempts to get the skeleton sync into a consistent state wrt any 487 // past state on disk and the newly requested head to sync to. If the new head 488 // is nil, the method will return and continue from the previous head. 489 func (s *skeleton) initSync(head *types.Header) { 490 // Extract the head number, we'll need it all over 491 number := head.Number.Uint64() 492 493 // Retrieve the previously saved sync progress 494 if status := rawdb.ReadSkeletonSyncStatus(s.db); len(status) > 0 { 495 s.progress = new(skeletonProgress) 496 if err := json.Unmarshal(status, s.progress); err != nil { 497 log.Error("Failed to decode skeleton sync status", "err", err) 498 } else { 499 // Previous sync was available, print some continuation logs 500 for _, subchain := range s.progress.Subchains { 501 log.Debug("Restarting skeleton subchain", "head", subchain.Head, "tail", subchain.Tail) 502 } 503 // Create a new subchain for the head (unless the last can be extended), 504 // trimming anything it would overwrite 505 headchain := &subchain{ 506 Head: number, 507 Tail: number, 508 Next: head.ParentHash, 509 } 510 for len(s.progress.Subchains) > 0 { 511 // If the last chain is above the new head, delete altogether 512 lastchain := s.progress.Subchains[0] 513 if lastchain.Tail >= headchain.Tail { 514 log.Debug("Dropping skeleton subchain", "head", lastchain.Head, "tail", lastchain.Tail) 515 s.progress.Subchains = s.progress.Subchains[1:] 516 continue 517 } 518 // Otherwise truncate the last chain if needed and abort trimming 519 if lastchain.Head >= headchain.Tail { 520 log.Debug("Trimming skeleton subchain", "oldhead", lastchain.Head, "newhead", headchain.Tail-1, "tail", lastchain.Tail) 521 lastchain.Head = headchain.Tail - 1 522 } 523 break 524 } 525 // If the last subchain can be extended, we're lucky. Otherwise, create 526 // a new subchain sync task. 527 var extended bool 528 if n := len(s.progress.Subchains); n > 0 { 529 lastchain := s.progress.Subchains[0] 530 if lastchain.Head == headchain.Tail-1 { 531 lasthead := rawdb.ReadSkeletonHeader(s.db, lastchain.Head) 532 if lasthead.Hash() == head.ParentHash { 533 log.Debug("Extended skeleton subchain with new head", "head", headchain.Tail, "tail", lastchain.Tail) 534 lastchain.Head = headchain.Tail 535 extended = true 536 } 537 } 538 } 539 if !extended { 540 log.Debug("Created new skeleton subchain", "head", number, "tail", number) 541 s.progress.Subchains = append([]*subchain{headchain}, s.progress.Subchains...) 542 } 543 // Update the database with the new sync stats and insert the new 544 // head header. We won't delete any trimmed skeleton headers since 545 // those will be outside the index space of the many subchains and 546 // the database space will be reclaimed eventually when processing 547 // blocks above the current head (TODO(karalabe): don't forget). 548 batch := s.db.NewBatch() 549 550 rawdb.WriteSkeletonHeader(batch, head) 551 s.saveSyncStatus(batch) 552 553 if err := batch.Write(); err != nil { 554 log.Crit("Failed to write skeleton sync status", "err", err) 555 } 556 return 557 } 558 } 559 // Either we've failed to decode the previous state, or there was none. Start 560 // a fresh sync with a single subchain represented by the currently sent 561 // chain head. 562 s.progress = &skeletonProgress{ 563 Subchains: []*subchain{ 564 { 565 Head: number, 566 Tail: number, 567 Next: head.ParentHash, 568 }, 569 }, 570 } 571 batch := s.db.NewBatch() 572 573 rawdb.WriteSkeletonHeader(batch, head) 574 s.saveSyncStatus(batch) 575 576 if err := batch.Write(); err != nil { 577 log.Crit("Failed to write initial skeleton sync status", "err", err) 578 } 579 log.Debug("Created initial skeleton subchain", "head", number, "tail", number) 580 } 581 582 // saveSyncStatus marshals the remaining sync tasks into leveldb. 583 func (s *skeleton) saveSyncStatus(db ethdb.KeyValueWriter) { 584 status, err := json.Marshal(s.progress) 585 if err != nil { 586 panic(err) // This can only fail during implementation 587 } 588 rawdb.WriteSkeletonSyncStatus(db, status) 589 } 590 591 // processNewHead does the internal shuffling for a new head marker and either 592 // accepts and integrates it into the skeleton or requests a reorg. Upon reorg, 593 // the syncer will tear itself down and restart with a fresh head. It is simpler 594 // to reconstruct the sync state than to mutate it and hope for the best. 595 func (s *skeleton) processNewHead(head *types.Header, final *types.Header, force bool) bool { 596 // If a new finalized block was announced, update the sync process independent 597 // of what happens with the sync head below 598 if final != nil { 599 if number := final.Number.Uint64(); s.progress.Finalized == nil || *s.progress.Finalized != number { 600 s.progress.Finalized = new(uint64) 601 *s.progress.Finalized = final.Number.Uint64() 602 603 s.saveSyncStatus(s.db) 604 } 605 } 606 // If the header cannot be inserted without interruption, return an error for 607 // the outer loop to tear down the skeleton sync and restart it 608 number := head.Number.Uint64() 609 610 lastchain := s.progress.Subchains[0] 611 if lastchain.Tail >= number { 612 // If the chain is down to a single beacon header, and it is re-announced 613 // once more, ignore it instead of tearing down sync for a noop. 614 if lastchain.Head == lastchain.Tail { 615 if current := rawdb.ReadSkeletonHeader(s.db, number); current.Hash() == head.Hash() { 616 return false 617 } 618 } 619 // Not a noop / double head announce, abort with a reorg 620 if force { 621 log.Warn("Beacon chain reorged", "tail", lastchain.Tail, "head", lastchain.Head, "newHead", number) 622 } 623 return true 624 } 625 if lastchain.Head+1 < number { 626 if force { 627 log.Warn("Beacon chain gapped", "head", lastchain.Head, "newHead", number) 628 } 629 return true 630 } 631 if parent := rawdb.ReadSkeletonHeader(s.db, number-1); parent.Hash() != head.ParentHash { 632 if force { 633 log.Warn("Beacon chain forked", "ancestor", parent.Number, "hash", parent.Hash(), "want", head.ParentHash) 634 } 635 return true 636 } 637 // New header seems to be in the last subchain range. Unwind any extra headers 638 // from the chain tip and insert the new head. We won't delete any trimmed 639 // skeleton headers since those will be outside the index space of the many 640 // subchains and the database space will be reclaimed eventually when processing 641 // blocks above the current head (TODO(karalabe): don't forget). 642 batch := s.db.NewBatch() 643 644 rawdb.WriteSkeletonHeader(batch, head) 645 lastchain.Head = number 646 s.saveSyncStatus(batch) 647 648 if err := batch.Write(); err != nil { 649 log.Crit("Failed to write skeleton sync status", "err", err) 650 } 651 return false 652 } 653 654 // assignTasks attempts to match idle peers to pending header retrievals. 655 func (s *skeleton) assignTasks(success chan *headerResponse, fail chan *headerRequest, cancel chan struct{}) { 656 // Sort the peers by download capacity to use faster ones if many available 657 idlers := &peerCapacitySort{ 658 peers: make([]*peerConnection, 0, len(s.idles)), 659 caps: make([]int, 0, len(s.idles)), 660 } 661 targetTTL := s.peers.rates.TargetTimeout() 662 for _, peer := range s.idles { 663 idlers.peers = append(idlers.peers, peer) 664 idlers.caps = append(idlers.caps, s.peers.rates.Capacity(peer.id, eth.BlockHeadersMsg, targetTTL)) 665 } 666 if len(idlers.peers) == 0 { 667 return 668 } 669 sort.Sort(idlers) 670 671 // Find header regions not yet downloading and fill them 672 for task, owner := range s.scratchOwners { 673 // If we're out of idle peers, stop assigning tasks 674 if len(idlers.peers) == 0 { 675 return 676 } 677 // Skip any tasks already filling 678 if owner != "" { 679 continue 680 } 681 // If we've reached the genesis, stop assigning tasks 682 if uint64(task*requestHeaders) >= s.scratchHead { 683 return 684 } 685 // Found a task and have peers available, assign it 686 idle := idlers.peers[0] 687 688 idlers.peers = idlers.peers[1:] 689 idlers.caps = idlers.caps[1:] 690 691 // Matched a pending task to an idle peer, allocate a unique request id 692 var reqid uint64 693 for { 694 reqid = uint64(rand.Int63()) 695 if reqid == 0 { 696 continue 697 } 698 if _, ok := s.requests[reqid]; ok { 699 continue 700 } 701 break 702 } 703 // Generate the network query and send it to the peer 704 req := &headerRequest{ 705 peer: idle.id, 706 id: reqid, 707 deliver: success, 708 revert: fail, 709 cancel: cancel, 710 stale: make(chan struct{}), 711 head: s.scratchHead - uint64(task*requestHeaders), 712 } 713 s.requests[reqid] = req 714 delete(s.idles, idle.id) 715 716 // Generate the network query and send it to the peer 717 go s.executeTask(idle, req) 718 719 // Inject the request into the task to block further assignments 720 s.scratchOwners[task] = idle.id 721 } 722 } 723 724 // executeTask executes a single fetch request, blocking until either a result 725 // arrives or a timeouts / cancellation is triggered. The method should be run 726 // on its own goroutine and will deliver on the requested channels. 727 func (s *skeleton) executeTask(peer *peerConnection, req *headerRequest) { 728 start := time.Now() 729 resCh := make(chan *eth.Response) 730 731 // Figure out how many headers to fetch. Usually this will be a full batch, 732 // but for the very tail of the chain, trim the request to the number left. 733 // Since nodes may or may not return the genesis header for a batch request, 734 // don't even request it. The parent hash of block #1 is enough to link. 735 requestCount := requestHeaders 736 if req.head < requestHeaders { 737 requestCount = int(req.head) 738 } 739 peer.log.Trace("Fetching skeleton headers", "from", req.head, "count", requestCount) 740 netreq, err := peer.peer.RequestHeadersByNumber(req.head, requestCount, 0, true, resCh) 741 if err != nil { 742 peer.log.Trace("Failed to request headers", "err", err) 743 s.scheduleRevertRequest(req) 744 return 745 } 746 defer netreq.Close() 747 748 // Wait until the response arrives, the request is cancelled or times out 749 ttl := s.peers.rates.TargetTimeout() 750 751 timeoutTimer := time.NewTimer(ttl) 752 defer timeoutTimer.Stop() 753 754 select { 755 case <-req.cancel: 756 peer.log.Debug("Header request cancelled") 757 s.scheduleRevertRequest(req) 758 759 case <-timeoutTimer.C: 760 // Header retrieval timed out, update the metrics 761 peer.log.Warn("Header request timed out, dropping peer", "elapsed", ttl) 762 headerTimeoutMeter.Mark(1) 763 s.peers.rates.Update(peer.id, eth.BlockHeadersMsg, 0, 0) 764 s.scheduleRevertRequest(req) 765 766 // At this point we either need to drop the offending peer, or we need a 767 // mechanism to allow waiting for the response and not cancel it. For now 768 // lets go with dropping since the header sizes are deterministic and the 769 // beacon sync runs exclusive (downloader is idle) so there should be no 770 // other load to make timeouts probable. If we notice that timeouts happen 771 // more often than we'd like, we can introduce a tracker for the requests 772 // gone stale and monitor them. However, in that case too, we need a way 773 // to protect against malicious peers never responding, so it would need 774 // a second, hard-timeout mechanism. 775 s.drop(peer.id) 776 777 case res := <-resCh: 778 // Headers successfully retrieved, update the metrics 779 headers := *res.Res.(*eth.BlockHeadersPacket) 780 781 headerReqTimer.Update(time.Since(start)) 782 s.peers.rates.Update(peer.id, eth.BlockHeadersMsg, res.Time, len(headers)) 783 784 // Cross validate the headers with the requests 785 switch { 786 case len(headers) == 0: 787 // No headers were delivered, reject the response and reschedule 788 peer.log.Debug("No headers delivered") 789 res.Done <- errors.New("no headers delivered") 790 s.scheduleRevertRequest(req) 791 792 case headers[0].Number.Uint64() != req.head: 793 // Header batch anchored at non-requested number 794 peer.log.Debug("Invalid header response head", "have", headers[0].Number, "want", req.head) 795 res.Done <- errors.New("invalid header batch anchor") 796 s.scheduleRevertRequest(req) 797 798 case req.head >= requestHeaders && len(headers) != requestHeaders: 799 // Invalid number of non-genesis headers delivered, reject the response and reschedule 800 peer.log.Debug("Invalid non-genesis header count", "have", len(headers), "want", requestHeaders) 801 res.Done <- errors.New("not enough non-genesis headers delivered") 802 s.scheduleRevertRequest(req) 803 804 case req.head < requestHeaders && uint64(len(headers)) != req.head: 805 // Invalid number of genesis headers delivered, reject the response and reschedule 806 peer.log.Debug("Invalid genesis header count", "have", len(headers), "want", headers[0].Number.Uint64()) 807 res.Done <- errors.New("not enough genesis headers delivered") 808 s.scheduleRevertRequest(req) 809 810 default: 811 // Packet seems structurally valid, check hash progression and if it 812 // is correct too, deliver for storage 813 for i := 0; i < len(headers)-1; i++ { 814 if headers[i].ParentHash != headers[i+1].Hash() { 815 peer.log.Debug("Invalid hash progression", "index", i, "wantparenthash", headers[i].ParentHash, "haveparenthash", headers[i+1].Hash()) 816 res.Done <- errors.New("invalid hash progression") 817 s.scheduleRevertRequest(req) 818 return 819 } 820 } 821 // Hash chain is valid. The delivery might still be junk as we're 822 // downloading batches concurrently (so no way to link the headers 823 // until gaps are filled); in that case, we'll nuke the peer when 824 // we detect the fault. 825 res.Done <- nil 826 827 select { 828 case req.deliver <- &headerResponse{ 829 peer: peer, 830 reqid: req.id, 831 headers: headers, 832 }: 833 case <-req.cancel: 834 } 835 } 836 } 837 } 838 839 // revertRequests locates all the currently pending requests from a particular 840 // peer and reverts them, rescheduling for others to fulfill. 841 func (s *skeleton) revertRequests(peer string) { 842 // Gather the requests first, revertals need the lock too 843 var requests []*headerRequest 844 for _, req := range s.requests { 845 if req.peer == peer { 846 requests = append(requests, req) 847 } 848 } 849 // Revert all the requests matching the peer 850 for _, req := range requests { 851 s.revertRequest(req) 852 } 853 } 854 855 // scheduleRevertRequest asks the event loop to clean up a request and return 856 // all failed retrieval tasks to the scheduler for reassignment. 857 func (s *skeleton) scheduleRevertRequest(req *headerRequest) { 858 select { 859 case req.revert <- req: 860 // Sync event loop notified 861 case <-req.cancel: 862 // Sync cycle got cancelled 863 case <-req.stale: 864 // Request already reverted 865 } 866 } 867 868 // revertRequest cleans up a request and returns all failed retrieval tasks to 869 // the scheduler for reassignment. 870 // 871 // Note, this needs to run on the event runloop thread to reschedule to idle peers. 872 // On peer threads, use scheduleRevertRequest. 873 func (s *skeleton) revertRequest(req *headerRequest) { 874 log.Trace("Reverting header request", "peer", req.peer, "reqid", req.id) 875 select { 876 case <-req.stale: 877 log.Trace("Header request already reverted", "peer", req.peer, "reqid", req.id) 878 return 879 default: 880 } 881 close(req.stale) 882 883 // Remove the request from the tracked set 884 delete(s.requests, req.id) 885 886 // Remove the request from the tracked set and mark the task as not-pending, 887 // ready for rescheduling 888 s.scratchOwners[(s.scratchHead-req.head)/requestHeaders] = "" 889 } 890 891 func (s *skeleton) processResponse(res *headerResponse) (linked bool, merged bool) { 892 res.peer.log.Trace("Processing header response", "head", res.headers[0].Number, "hash", res.headers[0].Hash(), "count", len(res.headers)) 893 894 // Whether the response is valid, we can mark the peer as idle and notify 895 // the scheduler to assign a new task. If the response is invalid, we'll 896 // drop the peer in a bit. 897 s.idles[res.peer.id] = res.peer 898 899 // Ensure the response is for a valid request 900 if _, ok := s.requests[res.reqid]; !ok { 901 // Some internal accounting is broken. A request either times out or it 902 // gets fulfilled successfully. It should not be possible to deliver a 903 // response to a non-existing request. 904 res.peer.log.Error("Unexpected header packet") 905 return false, false 906 } 907 delete(s.requests, res.reqid) 908 909 // Insert the delivered headers into the scratch space independent of the 910 // content or continuation; those will be validated in a moment 911 head := res.headers[0].Number.Uint64() 912 copy(s.scratchSpace[s.scratchHead-head:], res.headers) 913 914 // If there's still a gap in the head of the scratch space, abort 915 if s.scratchSpace[0] == nil { 916 return false, false 917 } 918 // Try to consume any head headers, validating the boundary conditions 919 batch := s.db.NewBatch() 920 for s.scratchSpace[0] != nil { 921 // Next batch of headers available, cross-reference with the subchain 922 // we are extending and either accept or discard 923 if s.progress.Subchains[0].Next != s.scratchSpace[0].Hash() { 924 // Print a log messages to track what's going on 925 tail := s.progress.Subchains[0].Tail 926 want := s.progress.Subchains[0].Next 927 have := s.scratchSpace[0].Hash() 928 929 log.Warn("Invalid skeleton headers", "peer", s.scratchOwners[0], "number", tail-1, "want", want, "have", have) 930 931 // The peer delivered junk, or at least not the subchain we are 932 // syncing to. Free up the scratch space and assignment, reassign 933 // and drop the original peer. 934 for i := 0; i < requestHeaders; i++ { 935 s.scratchSpace[i] = nil 936 } 937 s.drop(s.scratchOwners[0]) 938 s.scratchOwners[0] = "" 939 break 940 } 941 // Scratch delivery matches required subchain, deliver the batch of 942 // headers and push the subchain forward 943 var consumed int 944 for _, header := range s.scratchSpace[:requestHeaders] { 945 if header != nil { // nil when the genesis is reached 946 consumed++ 947 948 rawdb.WriteSkeletonHeader(batch, header) 949 s.pulled++ 950 951 s.progress.Subchains[0].Tail-- 952 s.progress.Subchains[0].Next = header.ParentHash 953 954 // If we've reached an existing block in the chain, stop retrieving 955 // headers. Note, if we want to support light clients with the same 956 // code we'd need to switch here based on the downloader mode. That 957 // said, there's no such functionality for now, so don't complicate. 958 // 959 // In the case of full sync it would be enough to check for the body, 960 // but even a full syncing node will generate a receipt once block 961 // processing is done, so it's just one more "needless" check. 962 // 963 // The weird cascading checks are done to minimize the database reads. 964 linked = rawdb.HasHeader(s.db, header.ParentHash, header.Number.Uint64()-1) && 965 rawdb.HasBody(s.db, header.ParentHash, header.Number.Uint64()-1) && 966 rawdb.HasReceipts(s.db, header.ParentHash, header.Number.Uint64()-1) 967 if linked { 968 break 969 } 970 } 971 } 972 head := s.progress.Subchains[0].Head 973 tail := s.progress.Subchains[0].Tail 974 next := s.progress.Subchains[0].Next 975 976 log.Trace("Primary subchain extended", "head", head, "tail", tail, "next", next) 977 978 // If the beacon chain was linked to the local chain, completely swap out 979 // all internal progress and abort header synchronization. 980 if linked { 981 // Linking into the local chain should also mean that there are no 982 // leftover subchains, but in the case of importing the blocks via 983 // the engine API, we will not push the subchains forward. This will 984 // lead to a gap between an old sync cycle and a future one. 985 if subchains := len(s.progress.Subchains); subchains > 1 { 986 switch { 987 // If there are only 2 subchains - the current one and an older 988 // one - and the old one consists of a single block, then it's 989 // the expected new sync cycle after some propagated blocks. Log 990 // it for debugging purposes, explicitly clean and don't escalate. 991 case subchains == 2 && s.progress.Subchains[1].Head == s.progress.Subchains[1].Tail: 992 // Remove the leftover skeleton header associated with old 993 // skeleton chain only if it's not covered by the current 994 // skeleton range. 995 if s.progress.Subchains[1].Head < s.progress.Subchains[0].Tail { 996 log.Debug("Cleaning previous beacon sync state", "head", s.progress.Subchains[1].Head) 997 rawdb.DeleteSkeletonHeader(batch, s.progress.Subchains[1].Head) 998 } 999 // Drop the leftover skeleton chain since it's stale. 1000 s.progress.Subchains = s.progress.Subchains[:1] 1001 1002 // If we have more than one header or more than one leftover chain, 1003 // the syncer's internal state is corrupted. Do try to fix it, but 1004 // be very vocal about the fault. 1005 default: 1006 var context []interface{} 1007 1008 for i := range s.progress.Subchains[1:] { 1009 context = append(context, fmt.Sprintf("stale_head_%d", i+1)) 1010 context = append(context, s.progress.Subchains[i+1].Head) 1011 context = append(context, fmt.Sprintf("stale_tail_%d", i+1)) 1012 context = append(context, s.progress.Subchains[i+1].Tail) 1013 context = append(context, fmt.Sprintf("stale_next_%d", i+1)) 1014 context = append(context, s.progress.Subchains[i+1].Next) 1015 } 1016 log.Error("Cleaning spurious beacon sync leftovers", context...) 1017 s.progress.Subchains = s.progress.Subchains[:1] 1018 1019 // Note, here we didn't actually delete the headers at all, 1020 // just the metadata. We could implement a cleanup mechanism, 1021 // but further modifying corrupted state is kind of asking 1022 // for it. Unless there's a good enough reason to risk it, 1023 // better to live with the small database junk. 1024 } 1025 } 1026 break 1027 } 1028 // Batch of headers consumed, shift the download window forward 1029 copy(s.scratchSpace, s.scratchSpace[requestHeaders:]) 1030 for i := 0; i < requestHeaders; i++ { 1031 s.scratchSpace[scratchHeaders-i-1] = nil 1032 } 1033 copy(s.scratchOwners, s.scratchOwners[1:]) 1034 s.scratchOwners[scratchHeaders/requestHeaders-1] = "" 1035 1036 s.scratchHead -= uint64(consumed) 1037 1038 // If the subchain extended into the next subchain, we need to handle 1039 // the overlap. Since there could be many overlaps (come on), do this 1040 // in a loop. 1041 for len(s.progress.Subchains) > 1 && s.progress.Subchains[1].Head >= s.progress.Subchains[0].Tail { 1042 // Extract some stats from the second subchain 1043 head := s.progress.Subchains[1].Head 1044 tail := s.progress.Subchains[1].Tail 1045 next := s.progress.Subchains[1].Next 1046 1047 // Since we just overwrote part of the next subchain, we need to trim 1048 // its head independent of matching or mismatching content 1049 if s.progress.Subchains[1].Tail >= s.progress.Subchains[0].Tail { 1050 // Fully overwritten, get rid of the subchain as a whole 1051 log.Debug("Previous subchain fully overwritten", "head", head, "tail", tail, "next", next) 1052 s.progress.Subchains = append(s.progress.Subchains[:1], s.progress.Subchains[2:]...) 1053 continue 1054 } else { 1055 // Partially overwritten, trim the head to the overwritten size 1056 log.Debug("Previous subchain partially overwritten", "head", head, "tail", tail, "next", next) 1057 s.progress.Subchains[1].Head = s.progress.Subchains[0].Tail - 1 1058 } 1059 // If the old subchain is an extension of the new one, merge the two 1060 // and let the skeleton syncer restart (to clean internal state) 1061 if rawdb.ReadSkeletonHeader(s.db, s.progress.Subchains[1].Head).Hash() == s.progress.Subchains[0].Next { 1062 log.Debug("Previous subchain merged", "head", head, "tail", tail, "next", next) 1063 s.progress.Subchains[0].Tail = s.progress.Subchains[1].Tail 1064 s.progress.Subchains[0].Next = s.progress.Subchains[1].Next 1065 1066 s.progress.Subchains = append(s.progress.Subchains[:1], s.progress.Subchains[2:]...) 1067 merged = true 1068 } 1069 } 1070 // If subchains were merged, all further available headers in the scratch 1071 // space are invalid since we skipped ahead. Stop processing the scratch 1072 // space to avoid dropping peers thinking they delivered invalid data. 1073 if merged { 1074 break 1075 } 1076 } 1077 s.saveSyncStatus(batch) 1078 if err := batch.Write(); err != nil { 1079 log.Crit("Failed to write skeleton headers and progress", "err", err) 1080 } 1081 // Print a progress report making the UX a bit nicer 1082 left := s.progress.Subchains[0].Tail - 1 1083 if linked { 1084 left = 0 1085 } 1086 if time.Since(s.logged) > 8*time.Second || left == 0 { 1087 s.logged = time.Now() 1088 1089 if s.pulled == 0 { 1090 log.Info("Beacon sync starting", "left", left) 1091 } else { 1092 eta := float64(time.Since(s.started)) / float64(s.pulled) * float64(left) 1093 log.Info("Syncing beacon headers", "downloaded", s.pulled, "left", left, "eta", common.PrettyDuration(eta)) 1094 } 1095 } 1096 return linked, merged 1097 } 1098 1099 // cleanStales removes previously synced beacon headers that have become stale 1100 // due to the downloader backfilling past the tracked tail. 1101 func (s *skeleton) cleanStales(filled *types.Header) error { 1102 number := filled.Number.Uint64() 1103 log.Trace("Cleaning stale beacon headers", "filled", number, "hash", filled.Hash()) 1104 1105 // If the filled header is below the linked subchain, something's 1106 // corrupted internally. Report and error and refuse to do anything. 1107 if number < s.progress.Subchains[0].Tail { 1108 return fmt.Errorf("filled header below beacon header tail: %d < %d", number, s.progress.Subchains[0].Tail) 1109 } 1110 // Subchain seems trimmable, push the tail forward up to the last 1111 // filled header and delete everything before it - if available. In 1112 // case we filled past the head, recreate the subchain with a new 1113 // head to keep it consistent with the data on disk. 1114 var ( 1115 start = s.progress.Subchains[0].Tail // start deleting from the first known header 1116 end = number // delete until the requested threshold 1117 batch = s.db.NewBatch() 1118 ) 1119 s.progress.Subchains[0].Tail = number 1120 s.progress.Subchains[0].Next = filled.ParentHash 1121 1122 if s.progress.Subchains[0].Head < number { 1123 // If more headers were filled than available, push the entire 1124 // subchain forward to keep tracking the node's block imports 1125 end = s.progress.Subchains[0].Head + 1 // delete the entire original range, including the head 1126 s.progress.Subchains[0].Head = number // assign a new head (tail is already assigned to this) 1127 1128 // The entire original skeleton chain was deleted and a new one 1129 // defined. Make sure the new single-header chain gets pushed to 1130 // disk to keep internal state consistent. 1131 rawdb.WriteSkeletonHeader(batch, filled) 1132 } 1133 // Execute the trimming and the potential rewiring of the progress 1134 s.saveSyncStatus(batch) 1135 for n := start; n < end; n++ { 1136 // If the batch grew too big, flush it and continue with a new batch. 1137 // The catch is that the sync metadata needs to reflect the actually 1138 // flushed state, so temporarily change the subchain progress and 1139 // revert after the flush. 1140 if batch.ValueSize() >= ethdb.IdealBatchSize { 1141 tmpTail := s.progress.Subchains[0].Tail 1142 tmpNext := s.progress.Subchains[0].Next 1143 1144 s.progress.Subchains[0].Tail = n 1145 s.progress.Subchains[0].Next = rawdb.ReadSkeletonHeader(s.db, n).ParentHash 1146 s.saveSyncStatus(batch) 1147 1148 if err := batch.Write(); err != nil { 1149 log.Crit("Failed to write beacon trim data", "err", err) 1150 } 1151 batch.Reset() 1152 1153 s.progress.Subchains[0].Tail = tmpTail 1154 s.progress.Subchains[0].Next = tmpNext 1155 s.saveSyncStatus(batch) 1156 } 1157 rawdb.DeleteSkeletonHeader(batch, n) 1158 } 1159 if err := batch.Write(); err != nil { 1160 log.Crit("Failed to write beacon trim data", "err", err) 1161 } 1162 return nil 1163 } 1164 1165 // Bounds retrieves the current head and tail tracked by the skeleton syncer 1166 // and optionally the last known finalized header if any was announced and if 1167 // it is still in the sync range. This method is used by the backfiller, whose 1168 // life cycle is controlled by the skeleton syncer. 1169 // 1170 // Note, the method will not use the internal state of the skeleton, but will 1171 // rather blindly pull stuff from the database. This is fine, because the back- 1172 // filler will only run when the skeleton chain is fully downloaded and stable. 1173 // There might be new heads appended, but those are atomic from the perspective 1174 // of this method. Any head reorg will first tear down the backfiller and only 1175 // then make the modification. 1176 func (s *skeleton) Bounds() (head *types.Header, tail *types.Header, final *types.Header, err error) { 1177 // Read the current sync progress from disk and figure out the current head. 1178 // Although there's a lot of error handling here, these are mostly as sanity 1179 // checks to avoid crashing if a programming error happens. These should not 1180 // happen in live code. 1181 status := rawdb.ReadSkeletonSyncStatus(s.db) 1182 if len(status) == 0 { 1183 return nil, nil, nil, errors.New("beacon sync not yet started") 1184 } 1185 progress := new(skeletonProgress) 1186 if err := json.Unmarshal(status, progress); err != nil { 1187 return nil, nil, nil, err 1188 } 1189 head = rawdb.ReadSkeletonHeader(s.db, progress.Subchains[0].Head) 1190 if head == nil { 1191 return nil, nil, nil, fmt.Errorf("head skeleton header %d is missing", progress.Subchains[0].Head) 1192 } 1193 tail = rawdb.ReadSkeletonHeader(s.db, progress.Subchains[0].Tail) 1194 if tail == nil { 1195 return nil, nil, nil, fmt.Errorf("tail skeleton header %d is missing", progress.Subchains[0].Tail) 1196 } 1197 if progress.Finalized != nil && tail.Number.Uint64() <= *progress.Finalized && *progress.Finalized <= head.Number.Uint64() { 1198 final = rawdb.ReadSkeletonHeader(s.db, *progress.Finalized) 1199 if final == nil { 1200 return nil, nil, nil, fmt.Errorf("finalized skeleton header %d is missing", *progress.Finalized) 1201 } 1202 } 1203 return head, tail, final, nil 1204 } 1205 1206 // Header retrieves a specific header tracked by the skeleton syncer. This method 1207 // is meant to be used by the backfiller, whose life cycle is controlled by the 1208 // skeleton syncer. 1209 // 1210 // Note, outside the permitted runtimes, this method might return nil results and 1211 // subsequent calls might return headers from different chains. 1212 func (s *skeleton) Header(number uint64) *types.Header { 1213 return rawdb.ReadSkeletonHeader(s.db, number) 1214 }