github.com/calmw/ethereum@v0.1.1/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  
    25  	"github.com/calmw/ethereum/common"
    26  	"github.com/calmw/ethereum/core/types"
    27  	"github.com/calmw/ethereum/log"
    28  	"github.com/calmw/ethereum/trie/trienode"
    29  )
    30  
    31  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    32  // top of a database. Whenever trie performs a commit operation, the generated
    33  // nodes will be gathered and returned in a set. Once the trie is committed,
    34  // it's not usable anymore. Callers have to re-create the trie with new root
    35  // based on the updated trie database.
    36  //
    37  // Trie is not safe for concurrent use.
    38  type Trie struct {
    39  	root  node
    40  	owner common.Hash
    41  
    42  	// Keep track of the number leaves which have been inserted since the last
    43  	// hashing operation. This number will not directly map to the number of
    44  	// actually unhashed nodes.
    45  	unhashed int
    46  
    47  	// reader is the handler trie can retrieve nodes from.
    48  	reader *trieReader
    49  
    50  	// tracer is the tool to track the trie changes.
    51  	// It will be reset after each commit operation.
    52  	tracer *tracer
    53  }
    54  
    55  // newFlag returns the cache flag value for a newly created node.
    56  func (t *Trie) newFlag() nodeFlag {
    57  	return nodeFlag{dirty: true}
    58  }
    59  
    60  // Copy returns a copy of Trie.
    61  func (t *Trie) Copy() *Trie {
    62  	return &Trie{
    63  		root:     t.root,
    64  		owner:    t.owner,
    65  		unhashed: t.unhashed,
    66  		reader:   t.reader,
    67  		tracer:   t.tracer.copy(),
    68  	}
    69  }
    70  
    71  // New creates the trie instance with provided trie id and the read-only
    72  // database. The state specified by trie id must be available, otherwise
    73  // an error will be returned. The trie root specified by trie id can be
    74  // zero hash or the sha3 hash of an empty string, then trie is initially
    75  // empty, otherwise, the root node must be present in database or returns
    76  // a MissingNodeError if not.
    77  func New(id *ID, db NodeReader) (*Trie, error) {
    78  	reader, err := newTrieReader(id.StateRoot, id.Owner, db)
    79  	if err != nil {
    80  		return nil, err
    81  	}
    82  	trie := &Trie{
    83  		owner:  id.Owner,
    84  		reader: reader,
    85  		tracer: newTracer(),
    86  	}
    87  	if id.Root != (common.Hash{}) && id.Root != types.EmptyRootHash {
    88  		rootnode, err := trie.resolveAndTrack(id.Root[:], nil)
    89  		if err != nil {
    90  			return nil, err
    91  		}
    92  		trie.root = rootnode
    93  	}
    94  	return trie, nil
    95  }
    96  
    97  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
    98  func NewEmpty(db *Database) *Trie {
    99  	tr, _ := New(TrieID(types.EmptyRootHash), db)
   100  	return tr
   101  }
   102  
   103  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   104  // the key after the given start key.
   105  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   106  	return newNodeIterator(t, start)
   107  }
   108  
   109  // MustGet is a wrapper of Get and will omit any encountered error but just
   110  // print out an error message.
   111  func (t *Trie) MustGet(key []byte) []byte {
   112  	res, err := t.Get(key)
   113  	if err != nil {
   114  		log.Error("Unhandled trie error in Trie.Get", "err", err)
   115  	}
   116  	return res
   117  }
   118  
   119  // Get returns the value for key stored in the trie.
   120  // The value bytes must not be modified by the caller.
   121  //
   122  // If the requested node is not present in trie, no error will be returned.
   123  // If the trie is corrupted, a MissingNodeError is returned.
   124  func (t *Trie) Get(key []byte) ([]byte, error) {
   125  	value, newroot, didResolve, err := t.get(t.root, keybytesToHex(key), 0)
   126  	if err == nil && didResolve {
   127  		t.root = newroot
   128  	}
   129  	return value, err
   130  }
   131  
   132  func (t *Trie) get(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   133  	switch n := (origNode).(type) {
   134  	case nil:
   135  		return nil, nil, false, nil
   136  	case valueNode:
   137  		return n, n, false, nil
   138  	case *shortNode:
   139  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   140  			// key not found in trie
   141  			return nil, n, false, nil
   142  		}
   143  		value, newnode, didResolve, err = t.get(n.Val, key, pos+len(n.Key))
   144  		if err == nil && didResolve {
   145  			n = n.copy()
   146  			n.Val = newnode
   147  		}
   148  		return value, n, didResolve, err
   149  	case *fullNode:
   150  		value, newnode, didResolve, err = t.get(n.Children[key[pos]], key, pos+1)
   151  		if err == nil && didResolve {
   152  			n = n.copy()
   153  			n.Children[key[pos]] = newnode
   154  		}
   155  		return value, n, didResolve, err
   156  	case hashNode:
   157  		child, err := t.resolveAndTrack(n, key[:pos])
   158  		if err != nil {
   159  			return nil, n, true, err
   160  		}
   161  		value, newnode, _, err := t.get(child, key, pos)
   162  		return value, newnode, true, err
   163  	default:
   164  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   165  	}
   166  }
   167  
   168  // MustGetNode is a wrapper of GetNode and will omit any encountered error but
   169  // just print out an error message.
   170  func (t *Trie) MustGetNode(path []byte) ([]byte, int) {
   171  	item, resolved, err := t.GetNode(path)
   172  	if err != nil {
   173  		log.Error("Unhandled trie error in Trie.GetNode", "err", err)
   174  	}
   175  	return item, resolved
   176  }
   177  
   178  // GetNode retrieves a trie node by compact-encoded path. It is not possible
   179  // to use keybyte-encoding as the path might contain odd nibbles.
   180  //
   181  // If the requested node is not present in trie, no error will be returned.
   182  // If the trie is corrupted, a MissingNodeError is returned.
   183  func (t *Trie) GetNode(path []byte) ([]byte, int, error) {
   184  	item, newroot, resolved, err := t.getNode(t.root, compactToHex(path), 0)
   185  	if err != nil {
   186  		return nil, resolved, err
   187  	}
   188  	if resolved > 0 {
   189  		t.root = newroot
   190  	}
   191  	if item == nil {
   192  		return nil, resolved, nil
   193  	}
   194  	return item, resolved, nil
   195  }
   196  
   197  func (t *Trie) getNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   198  	// If non-existent path requested, abort
   199  	if origNode == nil {
   200  		return nil, nil, 0, nil
   201  	}
   202  	// If we reached the requested path, return the current node
   203  	if pos >= len(path) {
   204  		// Although we most probably have the original node expanded, encoding
   205  		// that into consensus form can be nasty (needs to cascade down) and
   206  		// time consuming. Instead, just pull the hash up from disk directly.
   207  		var hash hashNode
   208  		if node, ok := origNode.(hashNode); ok {
   209  			hash = node
   210  		} else {
   211  			hash, _ = origNode.cache()
   212  		}
   213  		if hash == nil {
   214  			return nil, origNode, 0, errors.New("non-consensus node")
   215  		}
   216  		blob, err := t.reader.node(path, common.BytesToHash(hash))
   217  		return blob, origNode, 1, err
   218  	}
   219  	// Path still needs to be traversed, descend into children
   220  	switch n := (origNode).(type) {
   221  	case valueNode:
   222  		// Path prematurely ended, abort
   223  		return nil, nil, 0, nil
   224  
   225  	case *shortNode:
   226  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   227  			// Path branches off from short node
   228  			return nil, n, 0, nil
   229  		}
   230  		item, newnode, resolved, err = t.getNode(n.Val, path, pos+len(n.Key))
   231  		if err == nil && resolved > 0 {
   232  			n = n.copy()
   233  			n.Val = newnode
   234  		}
   235  		return item, n, resolved, err
   236  
   237  	case *fullNode:
   238  		item, newnode, resolved, err = t.getNode(n.Children[path[pos]], path, pos+1)
   239  		if err == nil && resolved > 0 {
   240  			n = n.copy()
   241  			n.Children[path[pos]] = newnode
   242  		}
   243  		return item, n, resolved, err
   244  
   245  	case hashNode:
   246  		child, err := t.resolveAndTrack(n, path[:pos])
   247  		if err != nil {
   248  			return nil, n, 1, err
   249  		}
   250  		item, newnode, resolved, err := t.getNode(child, path, pos)
   251  		return item, newnode, resolved + 1, err
   252  
   253  	default:
   254  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   255  	}
   256  }
   257  
   258  // MustUpdate is a wrapper of Update and will omit any encountered error but
   259  // just print out an error message.
   260  func (t *Trie) MustUpdate(key, value []byte) {
   261  	if err := t.Update(key, value); err != nil {
   262  		log.Error("Unhandled trie error in Trie.Update", "err", err)
   263  	}
   264  }
   265  
   266  // Update associates key with value in the trie. Subsequent calls to
   267  // Get will return value. If value has length zero, any existing value
   268  // is deleted from the trie and calls to Get will return nil.
   269  //
   270  // The value bytes must not be modified by the caller while they are
   271  // stored in the trie.
   272  //
   273  // If the requested node is not present in trie, no error will be returned.
   274  // If the trie is corrupted, a MissingNodeError is returned.
   275  func (t *Trie) Update(key, value []byte) error {
   276  	return t.update(key, value)
   277  }
   278  
   279  func (t *Trie) update(key, value []byte) error {
   280  	t.unhashed++
   281  	k := keybytesToHex(key)
   282  	if len(value) != 0 {
   283  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   284  		if err != nil {
   285  			return err
   286  		}
   287  		t.root = n
   288  	} else {
   289  		_, n, err := t.delete(t.root, nil, k)
   290  		if err != nil {
   291  			return err
   292  		}
   293  		t.root = n
   294  	}
   295  	return nil
   296  }
   297  
   298  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   299  	if len(key) == 0 {
   300  		if v, ok := n.(valueNode); ok {
   301  			return !bytes.Equal(v, value.(valueNode)), value, nil
   302  		}
   303  		return true, value, nil
   304  	}
   305  	switch n := n.(type) {
   306  	case *shortNode:
   307  		matchlen := prefixLen(key, n.Key)
   308  		// If the whole key matches, keep this short node as is
   309  		// and only update the value.
   310  		if matchlen == len(n.Key) {
   311  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   312  			if !dirty || err != nil {
   313  				return false, n, err
   314  			}
   315  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   316  		}
   317  		// Otherwise branch out at the index where they differ.
   318  		branch := &fullNode{flags: t.newFlag()}
   319  		var err error
   320  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   321  		if err != nil {
   322  			return false, nil, err
   323  		}
   324  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   325  		if err != nil {
   326  			return false, nil, err
   327  		}
   328  		// Replace this shortNode with the branch if it occurs at index 0.
   329  		if matchlen == 0 {
   330  			return true, branch, nil
   331  		}
   332  		// New branch node is created as a child of the original short node.
   333  		// Track the newly inserted node in the tracer. The node identifier
   334  		// passed is the path from the root node.
   335  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   336  
   337  		// Replace it with a short node leading up to the branch.
   338  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   339  
   340  	case *fullNode:
   341  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   342  		if !dirty || err != nil {
   343  			return false, n, err
   344  		}
   345  		n = n.copy()
   346  		n.flags = t.newFlag()
   347  		n.Children[key[0]] = nn
   348  		return true, n, nil
   349  
   350  	case nil:
   351  		// New short node is created and track it in the tracer. The node identifier
   352  		// passed is the path from the root node. Note the valueNode won't be tracked
   353  		// since it's always embedded in its parent.
   354  		t.tracer.onInsert(prefix)
   355  
   356  		return true, &shortNode{key, value, t.newFlag()}, nil
   357  
   358  	case hashNode:
   359  		// We've hit a part of the trie that isn't loaded yet. Load
   360  		// the node and insert into it. This leaves all child nodes on
   361  		// the path to the value in the trie.
   362  		rn, err := t.resolveAndTrack(n, prefix)
   363  		if err != nil {
   364  			return false, nil, err
   365  		}
   366  		dirty, nn, err := t.insert(rn, prefix, key, value)
   367  		if !dirty || err != nil {
   368  			return false, rn, err
   369  		}
   370  		return true, nn, nil
   371  
   372  	default:
   373  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   374  	}
   375  }
   376  
   377  // MustDelete is a wrapper of Delete and will omit any encountered error but
   378  // just print out an error message.
   379  func (t *Trie) MustDelete(key []byte) {
   380  	if err := t.Delete(key); err != nil {
   381  		log.Error("Unhandled trie error in Trie.Delete", "err", err)
   382  	}
   383  }
   384  
   385  // Delete removes any existing value for key from the trie.
   386  //
   387  // If the requested node is not present in trie, no error will be returned.
   388  // If the trie is corrupted, a MissingNodeError is returned.
   389  func (t *Trie) Delete(key []byte) error {
   390  	t.unhashed++
   391  	k := keybytesToHex(key)
   392  	_, n, err := t.delete(t.root, nil, k)
   393  	if err != nil {
   394  		return err
   395  	}
   396  	t.root = n
   397  	return nil
   398  }
   399  
   400  // delete returns the new root of the trie with key deleted.
   401  // It reduces the trie to minimal form by simplifying
   402  // nodes on the way up after deleting recursively.
   403  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   404  	switch n := n.(type) {
   405  	case *shortNode:
   406  		matchlen := prefixLen(key, n.Key)
   407  		if matchlen < len(n.Key) {
   408  			return false, n, nil // don't replace n on mismatch
   409  		}
   410  		if matchlen == len(key) {
   411  			// The matched short node is deleted entirely and track
   412  			// it in the deletion set. The same the valueNode doesn't
   413  			// need to be tracked at all since it's always embedded.
   414  			t.tracer.onDelete(prefix)
   415  
   416  			return true, nil, nil // remove n entirely for whole matches
   417  		}
   418  		// The key is longer than n.Key. Remove the remaining suffix
   419  		// from the subtrie. Child can never be nil here since the
   420  		// subtrie must contain at least two other values with keys
   421  		// longer than n.Key.
   422  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   423  		if !dirty || err != nil {
   424  			return false, n, err
   425  		}
   426  		switch child := child.(type) {
   427  		case *shortNode:
   428  			// The child shortNode is merged into its parent, track
   429  			// is deleted as well.
   430  			t.tracer.onDelete(append(prefix, n.Key...))
   431  
   432  			// Deleting from the subtrie reduced it to another
   433  			// short node. Merge the nodes to avoid creating a
   434  			// shortNode{..., shortNode{...}}. Use concat (which
   435  			// always creates a new slice) instead of append to
   436  			// avoid modifying n.Key since it might be shared with
   437  			// other nodes.
   438  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   439  		default:
   440  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   441  		}
   442  
   443  	case *fullNode:
   444  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   445  		if !dirty || err != nil {
   446  			return false, n, err
   447  		}
   448  		n = n.copy()
   449  		n.flags = t.newFlag()
   450  		n.Children[key[0]] = nn
   451  
   452  		// Because n is a full node, it must've contained at least two children
   453  		// before the delete operation. If the new child value is non-nil, n still
   454  		// has at least two children after the deletion, and cannot be reduced to
   455  		// a short node.
   456  		if nn != nil {
   457  			return true, n, nil
   458  		}
   459  		// Reduction:
   460  		// Check how many non-nil entries are left after deleting and
   461  		// reduce the full node to a short node if only one entry is
   462  		// left. Since n must've contained at least two children
   463  		// before deletion (otherwise it would not be a full node) n
   464  		// can never be reduced to nil.
   465  		//
   466  		// When the loop is done, pos contains the index of the single
   467  		// value that is left in n or -2 if n contains at least two
   468  		// values.
   469  		pos := -1
   470  		for i, cld := range &n.Children {
   471  			if cld != nil {
   472  				if pos == -1 {
   473  					pos = i
   474  				} else {
   475  					pos = -2
   476  					break
   477  				}
   478  			}
   479  		}
   480  		if pos >= 0 {
   481  			if pos != 16 {
   482  				// If the remaining entry is a short node, it replaces
   483  				// n and its key gets the missing nibble tacked to the
   484  				// front. This avoids creating an invalid
   485  				// shortNode{..., shortNode{...}}.  Since the entry
   486  				// might not be loaded yet, resolve it just for this
   487  				// check.
   488  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   489  				if err != nil {
   490  					return false, nil, err
   491  				}
   492  				if cnode, ok := cnode.(*shortNode); ok {
   493  					// Replace the entire full node with the short node.
   494  					// Mark the original short node as deleted since the
   495  					// value is embedded into the parent now.
   496  					t.tracer.onDelete(append(prefix, byte(pos)))
   497  
   498  					k := append([]byte{byte(pos)}, cnode.Key...)
   499  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   500  				}
   501  			}
   502  			// Otherwise, n is replaced by a one-nibble short node
   503  			// containing the child.
   504  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   505  		}
   506  		// n still contains at least two values and cannot be reduced.
   507  		return true, n, nil
   508  
   509  	case valueNode:
   510  		return true, nil, nil
   511  
   512  	case nil:
   513  		return false, nil, nil
   514  
   515  	case hashNode:
   516  		// We've hit a part of the trie that isn't loaded yet. Load
   517  		// the node and delete from it. This leaves all child nodes on
   518  		// the path to the value in the trie.
   519  		rn, err := t.resolveAndTrack(n, prefix)
   520  		if err != nil {
   521  			return false, nil, err
   522  		}
   523  		dirty, nn, err := t.delete(rn, prefix, key)
   524  		if !dirty || err != nil {
   525  			return false, rn, err
   526  		}
   527  		return true, nn, nil
   528  
   529  	default:
   530  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   531  	}
   532  }
   533  
   534  func concat(s1 []byte, s2 ...byte) []byte {
   535  	r := make([]byte, len(s1)+len(s2))
   536  	copy(r, s1)
   537  	copy(r[len(s1):], s2)
   538  	return r
   539  }
   540  
   541  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   542  	if n, ok := n.(hashNode); ok {
   543  		return t.resolveAndTrack(n, prefix)
   544  	}
   545  	return n, nil
   546  }
   547  
   548  // resolveAndTrack loads node from the underlying store with the given node hash
   549  // and path prefix and also tracks the loaded node blob in tracer treated as the
   550  // node's original value. The rlp-encoded blob is preferred to be loaded from
   551  // database because it's easy to decode node while complex to encode node to blob.
   552  func (t *Trie) resolveAndTrack(n hashNode, prefix []byte) (node, error) {
   553  	blob, err := t.reader.node(prefix, common.BytesToHash(n))
   554  	if err != nil {
   555  		return nil, err
   556  	}
   557  	t.tracer.onRead(prefix, blob)
   558  	return mustDecodeNode(n, blob), nil
   559  }
   560  
   561  // Hash returns the root hash of the trie. It does not write to the
   562  // database and can be used even if the trie doesn't have one.
   563  func (t *Trie) Hash() common.Hash {
   564  	hash, cached := t.hashRoot()
   565  	t.root = cached
   566  	return common.BytesToHash(hash.(hashNode))
   567  }
   568  
   569  // Commit collects all dirty nodes in the trie and replaces them with the
   570  // corresponding node hash. All collected nodes (including dirty leaves if
   571  // collectLeaf is true) will be encapsulated into a nodeset for return.
   572  // The returned nodeset can be nil if the trie is clean (nothing to commit).
   573  // Once the trie is committed, it's not usable anymore. A new trie must
   574  // be created with new root and updated trie database for following usage
   575  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet) {
   576  	defer t.tracer.reset()
   577  
   578  	nodes := trienode.NewNodeSet(t.owner)
   579  	t.tracer.markDeletions(nodes)
   580  
   581  	// Trie is empty and can be classified into two types of situations:
   582  	// - The trie was empty and no update happens
   583  	// - The trie was non-empty and all nodes are dropped
   584  	if t.root == nil {
   585  		return types.EmptyRootHash, nodes
   586  	}
   587  	// Derive the hash for all dirty nodes first. We hold the assumption
   588  	// in the following procedure that all nodes are hashed.
   589  	rootHash := t.Hash()
   590  
   591  	// Do a quick check if we really need to commit. This can happen e.g.
   592  	// if we load a trie for reading storage values, but don't write to it.
   593  	if hashedNode, dirty := t.root.cache(); !dirty {
   594  		// Replace the root node with the origin hash in order to
   595  		// ensure all resolved nodes are dropped after the commit.
   596  		t.root = hashedNode
   597  		return rootHash, nil
   598  	}
   599  	t.root = newCommitter(nodes, t.tracer, collectLeaf).Commit(t.root)
   600  	return rootHash, nodes
   601  }
   602  
   603  // hashRoot calculates the root hash of the given trie
   604  func (t *Trie) hashRoot() (node, node) {
   605  	if t.root == nil {
   606  		return hashNode(types.EmptyRootHash.Bytes()), nil
   607  	}
   608  	// If the number of changes is below 100, we let one thread handle it
   609  	h := newHasher(t.unhashed >= 100)
   610  	defer func() {
   611  		returnHasherToPool(h)
   612  		t.unhashed = 0
   613  	}()
   614  	hashed, cached := h.hash(t.root, true)
   615  	return hashed, cached
   616  }
   617  
   618  // Reset drops the referenced root node and cleans all internal state.
   619  func (t *Trie) Reset() {
   620  	t.root = nil
   621  	t.owner = common.Hash{}
   622  	t.unhashed = 0
   623  	t.tracer.reset()
   624  }