github.com/carter-ya/go-ethereum@v0.0.0-20230628080049-d2309be3983b/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/ethereum/go-ethereum/common" 26 "github.com/ethereum/go-ethereum/common/math" 27 "github.com/ethereum/go-ethereum/crypto" 28 "github.com/ethereum/go-ethereum/crypto/blake2b" 29 "github.com/ethereum/go-ethereum/crypto/bls12381" 30 "github.com/ethereum/go-ethereum/crypto/bn256" 31 "github.com/ethereum/go-ethereum/params" 32 "golang.org/x/crypto/ripemd160" 33 ) 34 35 // PrecompiledContract is the basic interface for native Go contracts. The implementation 36 // requires a deterministic gas count based on the input size of the Run method of the 37 // contract. 38 type PrecompiledContract interface { 39 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 40 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 41 } 42 43 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 44 // contracts used in the Frontier and Homestead releases. 45 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 46 common.BytesToAddress([]byte{1}): &ecrecover{}, 47 common.BytesToAddress([]byte{2}): &sha256hash{}, 48 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 49 common.BytesToAddress([]byte{4}): &dataCopy{}, 50 } 51 52 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 53 // contracts used in the Byzantium release. 54 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 55 common.BytesToAddress([]byte{1}): &ecrecover{}, 56 common.BytesToAddress([]byte{2}): &sha256hash{}, 57 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 58 common.BytesToAddress([]byte{4}): &dataCopy{}, 59 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 60 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 61 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 62 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 63 } 64 65 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 66 // contracts used in the Istanbul release. 67 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 68 common.BytesToAddress([]byte{1}): &ecrecover{}, 69 common.BytesToAddress([]byte{2}): &sha256hash{}, 70 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 71 common.BytesToAddress([]byte{4}): &dataCopy{}, 72 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false}, 73 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 74 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 75 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 76 common.BytesToAddress([]byte{9}): &blake2F{}, 77 } 78 79 // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum 80 // contracts used in the Berlin release. 81 var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{ 82 common.BytesToAddress([]byte{1}): &ecrecover{}, 83 common.BytesToAddress([]byte{2}): &sha256hash{}, 84 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 85 common.BytesToAddress([]byte{4}): &dataCopy{}, 86 common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true}, 87 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 88 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 89 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 90 common.BytesToAddress([]byte{9}): &blake2F{}, 91 } 92 93 // PrecompiledContractsBLS contains the set of pre-compiled Ethereum 94 // contracts specified in EIP-2537. These are exported for testing purposes. 95 var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{ 96 common.BytesToAddress([]byte{10}): &bls12381G1Add{}, 97 common.BytesToAddress([]byte{11}): &bls12381G1Mul{}, 98 common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{}, 99 common.BytesToAddress([]byte{13}): &bls12381G2Add{}, 100 common.BytesToAddress([]byte{14}): &bls12381G2Mul{}, 101 common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{}, 102 common.BytesToAddress([]byte{16}): &bls12381Pairing{}, 103 common.BytesToAddress([]byte{17}): &bls12381MapG1{}, 104 common.BytesToAddress([]byte{18}): &bls12381MapG2{}, 105 } 106 107 var ( 108 PrecompiledAddressesBerlin []common.Address 109 PrecompiledAddressesIstanbul []common.Address 110 PrecompiledAddressesByzantium []common.Address 111 PrecompiledAddressesHomestead []common.Address 112 ) 113 114 func init() { 115 for k := range PrecompiledContractsHomestead { 116 PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k) 117 } 118 for k := range PrecompiledContractsByzantium { 119 PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k) 120 } 121 for k := range PrecompiledContractsIstanbul { 122 PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k) 123 } 124 for k := range PrecompiledContractsBerlin { 125 PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k) 126 } 127 } 128 129 // ActivePrecompiles returns the precompiles enabled with the current configuration. 130 func ActivePrecompiles(rules params.Rules) []common.Address { 131 switch { 132 case rules.IsBerlin: 133 return PrecompiledAddressesBerlin 134 case rules.IsIstanbul: 135 return PrecompiledAddressesIstanbul 136 case rules.IsByzantium: 137 return PrecompiledAddressesByzantium 138 default: 139 return PrecompiledAddressesHomestead 140 } 141 } 142 143 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 144 // It returns 145 // - the returned bytes, 146 // - the _remaining_ gas, 147 // - any error that occurred 148 func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) { 149 gasCost := p.RequiredGas(input) 150 if suppliedGas < gasCost { 151 return nil, 0, ErrOutOfGas 152 } 153 suppliedGas -= gasCost 154 output, err := p.Run(input) 155 return output, suppliedGas, err 156 } 157 158 // ECRECOVER implemented as a native contract. 159 type ecrecover struct{} 160 161 func (c *ecrecover) RequiredGas(input []byte) uint64 { 162 return params.EcrecoverGas 163 } 164 165 func (c *ecrecover) Run(input []byte) ([]byte, error) { 166 const ecRecoverInputLength = 128 167 168 input = common.RightPadBytes(input, ecRecoverInputLength) 169 // "input" is (hash, v, r, s), each 32 bytes 170 // but for ecrecover we want (r, s, v) 171 172 r := new(big.Int).SetBytes(input[64:96]) 173 s := new(big.Int).SetBytes(input[96:128]) 174 v := input[63] - 27 175 176 // tighter sig s values input homestead only apply to tx sigs 177 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 178 return nil, nil 179 } 180 // We must make sure not to modify the 'input', so placing the 'v' along with 181 // the signature needs to be done on a new allocation 182 sig := make([]byte, 65) 183 copy(sig, input[64:128]) 184 sig[64] = v 185 // v needs to be at the end for libsecp256k1 186 pubKey, err := crypto.Ecrecover(input[:32], sig) 187 // make sure the public key is a valid one 188 if err != nil { 189 return nil, nil 190 } 191 192 // the first byte of pubkey is bitcoin heritage 193 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 194 } 195 196 // SHA256 implemented as a native contract. 197 type sha256hash struct{} 198 199 // RequiredGas returns the gas required to execute the pre-compiled contract. 200 // 201 // This method does not require any overflow checking as the input size gas costs 202 // required for anything significant is so high it's impossible to pay for. 203 func (c *sha256hash) RequiredGas(input []byte) uint64 { 204 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 205 } 206 func (c *sha256hash) Run(input []byte) ([]byte, error) { 207 h := sha256.Sum256(input) 208 return h[:], nil 209 } 210 211 // RIPEMD160 implemented as a native contract. 212 type ripemd160hash struct{} 213 214 // RequiredGas returns the gas required to execute the pre-compiled contract. 215 // 216 // This method does not require any overflow checking as the input size gas costs 217 // required for anything significant is so high it's impossible to pay for. 218 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 219 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 220 } 221 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 222 ripemd := ripemd160.New() 223 ripemd.Write(input) 224 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 225 } 226 227 // data copy implemented as a native contract. 228 type dataCopy struct{} 229 230 // RequiredGas returns the gas required to execute the pre-compiled contract. 231 // 232 // This method does not require any overflow checking as the input size gas costs 233 // required for anything significant is so high it's impossible to pay for. 234 func (c *dataCopy) RequiredGas(input []byte) uint64 { 235 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 236 } 237 func (c *dataCopy) Run(in []byte) ([]byte, error) { 238 return common.CopyBytes(in), nil 239 } 240 241 // bigModExp implements a native big integer exponential modular operation. 242 type bigModExp struct { 243 eip2565 bool 244 } 245 246 var ( 247 big0 = big.NewInt(0) 248 big1 = big.NewInt(1) 249 big3 = big.NewInt(3) 250 big4 = big.NewInt(4) 251 big7 = big.NewInt(7) 252 big8 = big.NewInt(8) 253 big16 = big.NewInt(16) 254 big20 = big.NewInt(20) 255 big32 = big.NewInt(32) 256 big64 = big.NewInt(64) 257 big96 = big.NewInt(96) 258 big480 = big.NewInt(480) 259 big1024 = big.NewInt(1024) 260 big3072 = big.NewInt(3072) 261 big199680 = big.NewInt(199680) 262 ) 263 264 // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198 265 // 266 // def mult_complexity(x): 267 // if x <= 64: return x ** 2 268 // elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072 269 // else: return x ** 2 // 16 + 480 * x - 199680 270 // 271 // where is x is max(length_of_MODULUS, length_of_BASE) 272 func modexpMultComplexity(x *big.Int) *big.Int { 273 switch { 274 case x.Cmp(big64) <= 0: 275 x.Mul(x, x) // x ** 2 276 case x.Cmp(big1024) <= 0: 277 // (x ** 2 // 4 ) + ( 96 * x - 3072) 278 x = new(big.Int).Add( 279 new(big.Int).Div(new(big.Int).Mul(x, x), big4), 280 new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072), 281 ) 282 default: 283 // (x ** 2 // 16) + (480 * x - 199680) 284 x = new(big.Int).Add( 285 new(big.Int).Div(new(big.Int).Mul(x, x), big16), 286 new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680), 287 ) 288 } 289 return x 290 } 291 292 // RequiredGas returns the gas required to execute the pre-compiled contract. 293 func (c *bigModExp) RequiredGas(input []byte) uint64 { 294 var ( 295 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 296 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 297 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 298 ) 299 if len(input) > 96 { 300 input = input[96:] 301 } else { 302 input = input[:0] 303 } 304 // Retrieve the head 32 bytes of exp for the adjusted exponent length 305 var expHead *big.Int 306 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 307 expHead = new(big.Int) 308 } else { 309 if expLen.Cmp(big32) > 0 { 310 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 311 } else { 312 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 313 } 314 } 315 // Calculate the adjusted exponent length 316 var msb int 317 if bitlen := expHead.BitLen(); bitlen > 0 { 318 msb = bitlen - 1 319 } 320 adjExpLen := new(big.Int) 321 if expLen.Cmp(big32) > 0 { 322 adjExpLen.Sub(expLen, big32) 323 adjExpLen.Mul(big8, adjExpLen) 324 } 325 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 326 // Calculate the gas cost of the operation 327 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 328 if c.eip2565 { 329 // EIP-2565 has three changes 330 // 1. Different multComplexity (inlined here) 331 // in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565): 332 // 333 // def mult_complexity(x): 334 // ceiling(x/8)^2 335 // 336 //where is x is max(length_of_MODULUS, length_of_BASE) 337 gas = gas.Add(gas, big7) 338 gas = gas.Div(gas, big8) 339 gas.Mul(gas, gas) 340 341 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 342 // 2. Different divisor (`GQUADDIVISOR`) (3) 343 gas.Div(gas, big3) 344 if gas.BitLen() > 64 { 345 return math.MaxUint64 346 } 347 // 3. Minimum price of 200 gas 348 if gas.Uint64() < 200 { 349 return 200 350 } 351 return gas.Uint64() 352 } 353 gas = modexpMultComplexity(gas) 354 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 355 gas.Div(gas, big20) 356 357 if gas.BitLen() > 64 { 358 return math.MaxUint64 359 } 360 return gas.Uint64() 361 } 362 363 func (c *bigModExp) Run(input []byte) ([]byte, error) { 364 var ( 365 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 366 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 367 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 368 ) 369 if len(input) > 96 { 370 input = input[96:] 371 } else { 372 input = input[:0] 373 } 374 // Handle a special case when both the base and mod length is zero 375 if baseLen == 0 && modLen == 0 { 376 return []byte{}, nil 377 } 378 // Retrieve the operands and execute the exponentiation 379 var ( 380 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 381 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 382 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 383 ) 384 if mod.BitLen() == 0 { 385 // Modulo 0 is undefined, return zero 386 return common.LeftPadBytes([]byte{}, int(modLen)), nil 387 } 388 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 389 } 390 391 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 392 // returning it, or an error if the point is invalid. 393 func newCurvePoint(blob []byte) (*bn256.G1, error) { 394 p := new(bn256.G1) 395 if _, err := p.Unmarshal(blob); err != nil { 396 return nil, err 397 } 398 return p, nil 399 } 400 401 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 402 // returning it, or an error if the point is invalid. 403 func newTwistPoint(blob []byte) (*bn256.G2, error) { 404 p := new(bn256.G2) 405 if _, err := p.Unmarshal(blob); err != nil { 406 return nil, err 407 } 408 return p, nil 409 } 410 411 // runBn256Add implements the Bn256Add precompile, referenced by both 412 // Byzantium and Istanbul operations. 413 func runBn256Add(input []byte) ([]byte, error) { 414 x, err := newCurvePoint(getData(input, 0, 64)) 415 if err != nil { 416 return nil, err 417 } 418 y, err := newCurvePoint(getData(input, 64, 64)) 419 if err != nil { 420 return nil, err 421 } 422 res := new(bn256.G1) 423 res.Add(x, y) 424 return res.Marshal(), nil 425 } 426 427 // bn256Add implements a native elliptic curve point addition conforming to 428 // Istanbul consensus rules. 429 type bn256AddIstanbul struct{} 430 431 // RequiredGas returns the gas required to execute the pre-compiled contract. 432 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 433 return params.Bn256AddGasIstanbul 434 } 435 436 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 437 return runBn256Add(input) 438 } 439 440 // bn256AddByzantium implements a native elliptic curve point addition 441 // conforming to Byzantium consensus rules. 442 type bn256AddByzantium struct{} 443 444 // RequiredGas returns the gas required to execute the pre-compiled contract. 445 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 446 return params.Bn256AddGasByzantium 447 } 448 449 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 450 return runBn256Add(input) 451 } 452 453 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 454 // both Byzantium and Istanbul operations. 455 func runBn256ScalarMul(input []byte) ([]byte, error) { 456 p, err := newCurvePoint(getData(input, 0, 64)) 457 if err != nil { 458 return nil, err 459 } 460 res := new(bn256.G1) 461 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 462 return res.Marshal(), nil 463 } 464 465 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 466 // multiplication conforming to Istanbul consensus rules. 467 type bn256ScalarMulIstanbul struct{} 468 469 // RequiredGas returns the gas required to execute the pre-compiled contract. 470 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 471 return params.Bn256ScalarMulGasIstanbul 472 } 473 474 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 475 return runBn256ScalarMul(input) 476 } 477 478 // bn256ScalarMulByzantium implements a native elliptic curve scalar 479 // multiplication conforming to Byzantium consensus rules. 480 type bn256ScalarMulByzantium struct{} 481 482 // RequiredGas returns the gas required to execute the pre-compiled contract. 483 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 484 return params.Bn256ScalarMulGasByzantium 485 } 486 487 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 488 return runBn256ScalarMul(input) 489 } 490 491 var ( 492 // true32Byte is returned if the bn256 pairing check succeeds. 493 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 494 495 // false32Byte is returned if the bn256 pairing check fails. 496 false32Byte = make([]byte, 32) 497 498 // errBadPairingInput is returned if the bn256 pairing input is invalid. 499 errBadPairingInput = errors.New("bad elliptic curve pairing size") 500 ) 501 502 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 503 // Byzantium and Istanbul operations. 504 func runBn256Pairing(input []byte) ([]byte, error) { 505 // Handle some corner cases cheaply 506 if len(input)%192 > 0 { 507 return nil, errBadPairingInput 508 } 509 // Convert the input into a set of coordinates 510 var ( 511 cs []*bn256.G1 512 ts []*bn256.G2 513 ) 514 for i := 0; i < len(input); i += 192 { 515 c, err := newCurvePoint(input[i : i+64]) 516 if err != nil { 517 return nil, err 518 } 519 t, err := newTwistPoint(input[i+64 : i+192]) 520 if err != nil { 521 return nil, err 522 } 523 cs = append(cs, c) 524 ts = append(ts, t) 525 } 526 // Execute the pairing checks and return the results 527 if bn256.PairingCheck(cs, ts) { 528 return true32Byte, nil 529 } 530 return false32Byte, nil 531 } 532 533 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 534 // conforming to Istanbul consensus rules. 535 type bn256PairingIstanbul struct{} 536 537 // RequiredGas returns the gas required to execute the pre-compiled contract. 538 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 539 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 540 } 541 542 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 543 return runBn256Pairing(input) 544 } 545 546 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 547 // conforming to Byzantium consensus rules. 548 type bn256PairingByzantium struct{} 549 550 // RequiredGas returns the gas required to execute the pre-compiled contract. 551 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 552 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 553 } 554 555 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 556 return runBn256Pairing(input) 557 } 558 559 type blake2F struct{} 560 561 func (c *blake2F) RequiredGas(input []byte) uint64 { 562 // If the input is malformed, we can't calculate the gas, return 0 and let the 563 // actual call choke and fault. 564 if len(input) != blake2FInputLength { 565 return 0 566 } 567 return uint64(binary.BigEndian.Uint32(input[0:4])) 568 } 569 570 const ( 571 blake2FInputLength = 213 572 blake2FFinalBlockBytes = byte(1) 573 blake2FNonFinalBlockBytes = byte(0) 574 ) 575 576 var ( 577 errBlake2FInvalidInputLength = errors.New("invalid input length") 578 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 579 ) 580 581 func (c *blake2F) Run(input []byte) ([]byte, error) { 582 // Make sure the input is valid (correct length and final flag) 583 if len(input) != blake2FInputLength { 584 return nil, errBlake2FInvalidInputLength 585 } 586 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 587 return nil, errBlake2FInvalidFinalFlag 588 } 589 // Parse the input into the Blake2b call parameters 590 var ( 591 rounds = binary.BigEndian.Uint32(input[0:4]) 592 final = input[212] == blake2FFinalBlockBytes 593 594 h [8]uint64 595 m [16]uint64 596 t [2]uint64 597 ) 598 for i := 0; i < 8; i++ { 599 offset := 4 + i*8 600 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 601 } 602 for i := 0; i < 16; i++ { 603 offset := 68 + i*8 604 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 605 } 606 t[0] = binary.LittleEndian.Uint64(input[196:204]) 607 t[1] = binary.LittleEndian.Uint64(input[204:212]) 608 609 // Execute the compression function, extract and return the result 610 blake2b.F(&h, m, t, final, rounds) 611 612 output := make([]byte, 64) 613 for i := 0; i < 8; i++ { 614 offset := i * 8 615 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 616 } 617 return output, nil 618 } 619 620 var ( 621 errBLS12381InvalidInputLength = errors.New("invalid input length") 622 errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes") 623 errBLS12381G1PointSubgroup = errors.New("g1 point is not on correct subgroup") 624 errBLS12381G2PointSubgroup = errors.New("g2 point is not on correct subgroup") 625 ) 626 627 // bls12381G1Add implements EIP-2537 G1Add precompile. 628 type bls12381G1Add struct{} 629 630 // RequiredGas returns the gas required to execute the pre-compiled contract. 631 func (c *bls12381G1Add) RequiredGas(input []byte) uint64 { 632 return params.Bls12381G1AddGas 633 } 634 635 func (c *bls12381G1Add) Run(input []byte) ([]byte, error) { 636 // Implements EIP-2537 G1Add precompile. 637 // > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each). 638 // > Output is an encoding of addition operation result - single G1 point (`128` bytes). 639 if len(input) != 256 { 640 return nil, errBLS12381InvalidInputLength 641 } 642 var err error 643 var p0, p1 *bls12381.PointG1 644 645 // Initialize G1 646 g := bls12381.NewG1() 647 648 // Decode G1 point p_0 649 if p0, err = g.DecodePoint(input[:128]); err != nil { 650 return nil, err 651 } 652 // Decode G1 point p_1 653 if p1, err = g.DecodePoint(input[128:]); err != nil { 654 return nil, err 655 } 656 657 // Compute r = p_0 + p_1 658 r := g.New() 659 g.Add(r, p0, p1) 660 661 // Encode the G1 point result into 128 bytes 662 return g.EncodePoint(r), nil 663 } 664 665 // bls12381G1Mul implements EIP-2537 G1Mul precompile. 666 type bls12381G1Mul struct{} 667 668 // RequiredGas returns the gas required to execute the pre-compiled contract. 669 func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 { 670 return params.Bls12381G1MulGas 671 } 672 673 func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) { 674 // Implements EIP-2537 G1Mul precompile. 675 // > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 676 // > Output is an encoding of multiplication operation result - single G1 point (`128` bytes). 677 if len(input) != 160 { 678 return nil, errBLS12381InvalidInputLength 679 } 680 var err error 681 var p0 *bls12381.PointG1 682 683 // Initialize G1 684 g := bls12381.NewG1() 685 686 // Decode G1 point 687 if p0, err = g.DecodePoint(input[:128]); err != nil { 688 return nil, err 689 } 690 // Decode scalar value 691 e := new(big.Int).SetBytes(input[128:]) 692 693 // Compute r = e * p_0 694 r := g.New() 695 g.MulScalar(r, p0, e) 696 697 // Encode the G1 point into 128 bytes 698 return g.EncodePoint(r), nil 699 } 700 701 // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile. 702 type bls12381G1MultiExp struct{} 703 704 // RequiredGas returns the gas required to execute the pre-compiled contract. 705 func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 { 706 // Calculate G1 point, scalar value pair length 707 k := len(input) / 160 708 if k == 0 { 709 // Return 0 gas for small input length 710 return 0 711 } 712 // Lookup discount value for G1 point, scalar value pair length 713 var discount uint64 714 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 715 discount = params.Bls12381MultiExpDiscountTable[k-1] 716 } else { 717 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 718 } 719 // Calculate gas and return the result 720 return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000 721 } 722 723 func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) { 724 // Implements EIP-2537 G1MultiExp precompile. 725 // G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes). 726 // Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes). 727 k := len(input) / 160 728 if len(input) == 0 || len(input)%160 != 0 { 729 return nil, errBLS12381InvalidInputLength 730 } 731 var err error 732 points := make([]*bls12381.PointG1, k) 733 scalars := make([]*big.Int, k) 734 735 // Initialize G1 736 g := bls12381.NewG1() 737 738 // Decode point scalar pairs 739 for i := 0; i < k; i++ { 740 off := 160 * i 741 t0, t1, t2 := off, off+128, off+160 742 // Decode G1 point 743 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 744 return nil, err 745 } 746 // Decode scalar value 747 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 748 } 749 750 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 751 r := g.New() 752 g.MultiExp(r, points, scalars) 753 754 // Encode the G1 point to 128 bytes 755 return g.EncodePoint(r), nil 756 } 757 758 // bls12381G2Add implements EIP-2537 G2Add precompile. 759 type bls12381G2Add struct{} 760 761 // RequiredGas returns the gas required to execute the pre-compiled contract. 762 func (c *bls12381G2Add) RequiredGas(input []byte) uint64 { 763 return params.Bls12381G2AddGas 764 } 765 766 func (c *bls12381G2Add) Run(input []byte) ([]byte, error) { 767 // Implements EIP-2537 G2Add precompile. 768 // > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each). 769 // > Output is an encoding of addition operation result - single G2 point (`256` bytes). 770 if len(input) != 512 { 771 return nil, errBLS12381InvalidInputLength 772 } 773 var err error 774 var p0, p1 *bls12381.PointG2 775 776 // Initialize G2 777 g := bls12381.NewG2() 778 r := g.New() 779 780 // Decode G2 point p_0 781 if p0, err = g.DecodePoint(input[:256]); err != nil { 782 return nil, err 783 } 784 // Decode G2 point p_1 785 if p1, err = g.DecodePoint(input[256:]); err != nil { 786 return nil, err 787 } 788 789 // Compute r = p_0 + p_1 790 g.Add(r, p0, p1) 791 792 // Encode the G2 point into 256 bytes 793 return g.EncodePoint(r), nil 794 } 795 796 // bls12381G2Mul implements EIP-2537 G2Mul precompile. 797 type bls12381G2Mul struct{} 798 799 // RequiredGas returns the gas required to execute the pre-compiled contract. 800 func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 { 801 return params.Bls12381G2MulGas 802 } 803 804 func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) { 805 // Implements EIP-2537 G2MUL precompile logic. 806 // > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 807 // > Output is an encoding of multiplication operation result - single G2 point (`256` bytes). 808 if len(input) != 288 { 809 return nil, errBLS12381InvalidInputLength 810 } 811 var err error 812 var p0 *bls12381.PointG2 813 814 // Initialize G2 815 g := bls12381.NewG2() 816 817 // Decode G2 point 818 if p0, err = g.DecodePoint(input[:256]); err != nil { 819 return nil, err 820 } 821 // Decode scalar value 822 e := new(big.Int).SetBytes(input[256:]) 823 824 // Compute r = e * p_0 825 r := g.New() 826 g.MulScalar(r, p0, e) 827 828 // Encode the G2 point into 256 bytes 829 return g.EncodePoint(r), nil 830 } 831 832 // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile. 833 type bls12381G2MultiExp struct{} 834 835 // RequiredGas returns the gas required to execute the pre-compiled contract. 836 func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 { 837 // Calculate G2 point, scalar value pair length 838 k := len(input) / 288 839 if k == 0 { 840 // Return 0 gas for small input length 841 return 0 842 } 843 // Lookup discount value for G2 point, scalar value pair length 844 var discount uint64 845 if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen { 846 discount = params.Bls12381MultiExpDiscountTable[k-1] 847 } else { 848 discount = params.Bls12381MultiExpDiscountTable[dLen-1] 849 } 850 // Calculate gas and return the result 851 return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000 852 } 853 854 func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) { 855 // Implements EIP-2537 G2MultiExp precompile logic 856 // > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes). 857 // > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes). 858 k := len(input) / 288 859 if len(input) == 0 || len(input)%288 != 0 { 860 return nil, errBLS12381InvalidInputLength 861 } 862 var err error 863 points := make([]*bls12381.PointG2, k) 864 scalars := make([]*big.Int, k) 865 866 // Initialize G2 867 g := bls12381.NewG2() 868 869 // Decode point scalar pairs 870 for i := 0; i < k; i++ { 871 off := 288 * i 872 t0, t1, t2 := off, off+256, off+288 873 // Decode G1 point 874 if points[i], err = g.DecodePoint(input[t0:t1]); err != nil { 875 return nil, err 876 } 877 // Decode scalar value 878 scalars[i] = new(big.Int).SetBytes(input[t1:t2]) 879 } 880 881 // Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1) 882 r := g.New() 883 g.MultiExp(r, points, scalars) 884 885 // Encode the G2 point to 256 bytes. 886 return g.EncodePoint(r), nil 887 } 888 889 // bls12381Pairing implements EIP-2537 Pairing precompile. 890 type bls12381Pairing struct{} 891 892 // RequiredGas returns the gas required to execute the pre-compiled contract. 893 func (c *bls12381Pairing) RequiredGas(input []byte) uint64 { 894 return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas 895 } 896 897 func (c *bls12381Pairing) Run(input []byte) ([]byte, error) { 898 // Implements EIP-2537 Pairing precompile logic. 899 // > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure: 900 // > - `128` bytes of G1 point encoding 901 // > - `256` bytes of G2 point encoding 902 // > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise 903 // > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively). 904 k := len(input) / 384 905 if len(input) == 0 || len(input)%384 != 0 { 906 return nil, errBLS12381InvalidInputLength 907 } 908 909 // Initialize BLS12-381 pairing engine 910 e := bls12381.NewPairingEngine() 911 g1, g2 := e.G1, e.G2 912 913 // Decode pairs 914 for i := 0; i < k; i++ { 915 off := 384 * i 916 t0, t1, t2 := off, off+128, off+384 917 918 // Decode G1 point 919 p1, err := g1.DecodePoint(input[t0:t1]) 920 if err != nil { 921 return nil, err 922 } 923 // Decode G2 point 924 p2, err := g2.DecodePoint(input[t1:t2]) 925 if err != nil { 926 return nil, err 927 } 928 929 // 'point is on curve' check already done, 930 // Here we need to apply subgroup checks. 931 if !g1.InCorrectSubgroup(p1) { 932 return nil, errBLS12381G1PointSubgroup 933 } 934 if !g2.InCorrectSubgroup(p2) { 935 return nil, errBLS12381G2PointSubgroup 936 } 937 938 // Update pairing engine with G1 and G2 ponits 939 e.AddPair(p1, p2) 940 } 941 // Prepare 32 byte output 942 out := make([]byte, 32) 943 944 // Compute pairing and set the result 945 if e.Check() { 946 out[31] = 1 947 } 948 return out, nil 949 } 950 951 // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element. 952 // Removes top 16 bytes of 64 byte input. 953 func decodeBLS12381FieldElement(in []byte) ([]byte, error) { 954 if len(in) != 64 { 955 return nil, errors.New("invalid field element length") 956 } 957 // check top bytes 958 for i := 0; i < 16; i++ { 959 if in[i] != byte(0x00) { 960 return nil, errBLS12381InvalidFieldElementTopBytes 961 } 962 } 963 out := make([]byte, 48) 964 copy(out[:], in[16:]) 965 return out, nil 966 } 967 968 // bls12381MapG1 implements EIP-2537 MapG1 precompile. 969 type bls12381MapG1 struct{} 970 971 // RequiredGas returns the gas required to execute the pre-compiled contract. 972 func (c *bls12381MapG1) RequiredGas(input []byte) uint64 { 973 return params.Bls12381MapG1Gas 974 } 975 976 func (c *bls12381MapG1) Run(input []byte) ([]byte, error) { 977 // Implements EIP-2537 Map_To_G1 precompile. 978 // > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field. 979 // > Output of this call is `128` bytes and is G1 point following respective encoding rules. 980 if len(input) != 64 { 981 return nil, errBLS12381InvalidInputLength 982 } 983 984 // Decode input field element 985 fe, err := decodeBLS12381FieldElement(input) 986 if err != nil { 987 return nil, err 988 } 989 990 // Initialize G1 991 g := bls12381.NewG1() 992 993 // Compute mapping 994 r, err := g.MapToCurve(fe) 995 if err != nil { 996 return nil, err 997 } 998 999 // Encode the G1 point to 128 bytes 1000 return g.EncodePoint(r), nil 1001 } 1002 1003 // bls12381MapG2 implements EIP-2537 MapG2 precompile. 1004 type bls12381MapG2 struct{} 1005 1006 // RequiredGas returns the gas required to execute the pre-compiled contract. 1007 func (c *bls12381MapG2) RequiredGas(input []byte) uint64 { 1008 return params.Bls12381MapG2Gas 1009 } 1010 1011 func (c *bls12381MapG2) Run(input []byte) ([]byte, error) { 1012 // Implements EIP-2537 Map_FP2_TO_G2 precompile logic. 1013 // > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field. 1014 // > Output of this call is `256` bytes and is G2 point following respective encoding rules. 1015 if len(input) != 128 { 1016 return nil, errBLS12381InvalidInputLength 1017 } 1018 1019 // Decode input field element 1020 fe := make([]byte, 96) 1021 c0, err := decodeBLS12381FieldElement(input[:64]) 1022 if err != nil { 1023 return nil, err 1024 } 1025 copy(fe[48:], c0) 1026 c1, err := decodeBLS12381FieldElement(input[64:]) 1027 if err != nil { 1028 return nil, err 1029 } 1030 copy(fe[:48], c1) 1031 1032 // Initialize G2 1033 g := bls12381.NewG2() 1034 1035 // Compute mapping 1036 r, err := g.MapToCurve(fe) 1037 if err != nil { 1038 return nil, err 1039 } 1040 1041 // Encode the G2 point to 256 bytes 1042 return g.EncodePoint(r), nil 1043 }