github.com/carter-ya/go-ethereum@v0.0.0-20230628080049-d2309be3983b/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  
    25  	"github.com/ethereum/go-ethereum/common"
    26  	"github.com/ethereum/go-ethereum/crypto"
    27  	"github.com/ethereum/go-ethereum/log"
    28  )
    29  
    30  var (
    31  	// emptyRoot is the known root hash of an empty trie.
    32  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    33  
    34  	// emptyState is the known hash of an empty state trie entry.
    35  	emptyState = crypto.Keccak256Hash(nil)
    36  )
    37  
    38  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    39  // node.
    40  //
    41  // The keys is a path tuple identifying a particular trie node either in a single
    42  // trie (account) or a layered trie (account -> storage). Each key in the tuple
    43  // is in the raw format(32 bytes).
    44  //
    45  // The path is a composite hexary path identifying the trie node. All the key
    46  // bytes are converted to the hexary nibbles and composited with the parent path
    47  // if the trie node is in a layered trie.
    48  //
    49  // It's used by state sync and commit to allow handling external references
    50  // between account and storage tries. And also it's used in the state healing
    51  // for extracting the raw states(leaf nodes) with corresponding paths.
    52  type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error
    53  
    54  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    55  // top of a database. Whenever trie performs a commit operation, the generated
    56  // nodes will be gathered and returned in a set. Once the trie is committed,
    57  // it's not usable anymore. Callers have to re-create the trie with new root
    58  // based on the updated trie database.
    59  //
    60  // Trie is not safe for concurrent use.
    61  type Trie struct {
    62  	root  node
    63  	owner common.Hash
    64  
    65  	// Keep track of the number leaves which have been inserted since the last
    66  	// hashing operation. This number will not directly map to the number of
    67  	// actually unhashed nodes.
    68  	unhashed int
    69  
    70  	// reader is the handler trie can retrieve nodes from.
    71  	reader *trieReader
    72  
    73  	// tracer is the tool to track the trie changes.
    74  	// It will be reset after each commit operation.
    75  	tracer *tracer
    76  }
    77  
    78  // newFlag returns the cache flag value for a newly created node.
    79  func (t *Trie) newFlag() nodeFlag {
    80  	return nodeFlag{dirty: true}
    81  }
    82  
    83  // Copy returns a copy of Trie.
    84  func (t *Trie) Copy() *Trie {
    85  	return &Trie{
    86  		root:     t.root,
    87  		owner:    t.owner,
    88  		unhashed: t.unhashed,
    89  		reader:   t.reader,
    90  		tracer:   t.tracer.copy(),
    91  	}
    92  }
    93  
    94  // New creates the trie instance with provided trie id and the read-only
    95  // database. The state specified by trie id must be available, otherwise
    96  // an error will be returned. The trie root specified by trie id can be
    97  // zero hash or the sha3 hash of an empty string, then trie is initially
    98  // empty, otherwise, the root node must be present in database or returns
    99  // a MissingNodeError if not.
   100  func New(id *ID, db NodeReader) (*Trie, error) {
   101  	reader, err := newTrieReader(id.StateRoot, id.Owner, db)
   102  	if err != nil {
   103  		return nil, err
   104  	}
   105  	trie := &Trie{
   106  		owner:  id.Owner,
   107  		reader: reader,
   108  		//tracer: newTracer(),
   109  	}
   110  	if id.Root != (common.Hash{}) && id.Root != emptyRoot {
   111  		rootnode, err := trie.resolveAndTrack(id.Root[:], nil)
   112  		if err != nil {
   113  			return nil, err
   114  		}
   115  		trie.root = rootnode
   116  	}
   117  	return trie, nil
   118  }
   119  
   120  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   121  func NewEmpty(db *Database) *Trie {
   122  	tr, _ := New(TrieID(common.Hash{}), db)
   123  	return tr
   124  }
   125  
   126  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   127  // the key after the given start key.
   128  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   129  	return newNodeIterator(t, start)
   130  }
   131  
   132  // Get returns the value for key stored in the trie.
   133  // The value bytes must not be modified by the caller.
   134  func (t *Trie) Get(key []byte) []byte {
   135  	res, err := t.TryGet(key)
   136  	if err != nil {
   137  		log.Error("Unhandled trie error in Trie.Get", "err", err)
   138  	}
   139  	return res
   140  }
   141  
   142  // TryGet returns the value for key stored in the trie.
   143  // The value bytes must not be modified by the caller.
   144  // If a node was not found in the database, a MissingNodeError is returned.
   145  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   146  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   147  	if err == nil && didResolve {
   148  		t.root = newroot
   149  	}
   150  	return value, err
   151  }
   152  
   153  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   154  	switch n := (origNode).(type) {
   155  	case nil:
   156  		return nil, nil, false, nil
   157  	case valueNode:
   158  		return n, n, false, nil
   159  	case *shortNode:
   160  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   161  			// key not found in trie
   162  			return nil, n, false, nil
   163  		}
   164  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   165  		if err == nil && didResolve {
   166  			n = n.copy()
   167  			n.Val = newnode
   168  		}
   169  		return value, n, didResolve, err
   170  	case *fullNode:
   171  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   172  		if err == nil && didResolve {
   173  			n = n.copy()
   174  			n.Children[key[pos]] = newnode
   175  		}
   176  		return value, n, didResolve, err
   177  	case hashNode:
   178  		child, err := t.resolveAndTrack(n, key[:pos])
   179  		if err != nil {
   180  			return nil, n, true, err
   181  		}
   182  		value, newnode, _, err := t.tryGet(child, key, pos)
   183  		return value, newnode, true, err
   184  	default:
   185  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   186  	}
   187  }
   188  
   189  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   190  // possible to use keybyte-encoding as the path might contain odd nibbles.
   191  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   192  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   193  	if err != nil {
   194  		return nil, resolved, err
   195  	}
   196  	if resolved > 0 {
   197  		t.root = newroot
   198  	}
   199  	if item == nil {
   200  		return nil, resolved, nil
   201  	}
   202  	return item, resolved, err
   203  }
   204  
   205  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   206  	// If non-existent path requested, abort
   207  	if origNode == nil {
   208  		return nil, nil, 0, nil
   209  	}
   210  	// If we reached the requested path, return the current node
   211  	if pos >= len(path) {
   212  		// Although we most probably have the original node expanded, encoding
   213  		// that into consensus form can be nasty (needs to cascade down) and
   214  		// time consuming. Instead, just pull the hash up from disk directly.
   215  		var hash hashNode
   216  		if node, ok := origNode.(hashNode); ok {
   217  			hash = node
   218  		} else {
   219  			hash, _ = origNode.cache()
   220  		}
   221  		if hash == nil {
   222  			return nil, origNode, 0, errors.New("non-consensus node")
   223  		}
   224  		blob, err := t.reader.nodeBlob(path, common.BytesToHash(hash))
   225  		return blob, origNode, 1, err
   226  	}
   227  	// Path still needs to be traversed, descend into children
   228  	switch n := (origNode).(type) {
   229  	case valueNode:
   230  		// Path prematurely ended, abort
   231  		return nil, nil, 0, nil
   232  
   233  	case *shortNode:
   234  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   235  			// Path branches off from short node
   236  			return nil, n, 0, nil
   237  		}
   238  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   239  		if err == nil && resolved > 0 {
   240  			n = n.copy()
   241  			n.Val = newnode
   242  		}
   243  		return item, n, resolved, err
   244  
   245  	case *fullNode:
   246  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   247  		if err == nil && resolved > 0 {
   248  			n = n.copy()
   249  			n.Children[path[pos]] = newnode
   250  		}
   251  		return item, n, resolved, err
   252  
   253  	case hashNode:
   254  		child, err := t.resolveAndTrack(n, path[:pos])
   255  		if err != nil {
   256  			return nil, n, 1, err
   257  		}
   258  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   259  		return item, newnode, resolved + 1, err
   260  
   261  	default:
   262  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   263  	}
   264  }
   265  
   266  // Update associates key with value in the trie. Subsequent calls to
   267  // Get will return value. If value has length zero, any existing value
   268  // is deleted from the trie and calls to Get will return nil.
   269  //
   270  // The value bytes must not be modified by the caller while they are
   271  // stored in the trie.
   272  func (t *Trie) Update(key, value []byte) {
   273  	if err := t.TryUpdate(key, value); err != nil {
   274  		log.Error("Unhandled trie error in Trie.Update", "err", err)
   275  	}
   276  }
   277  
   278  // TryUpdate associates key with value in the trie. Subsequent calls to
   279  // Get will return value. If value has length zero, any existing value
   280  // is deleted from the trie and calls to Get will return nil.
   281  //
   282  // The value bytes must not be modified by the caller while they are
   283  // stored in the trie.
   284  //
   285  // If a node was not found in the database, a MissingNodeError is returned.
   286  func (t *Trie) TryUpdate(key, value []byte) error {
   287  	return t.tryUpdate(key, value)
   288  }
   289  
   290  // tryUpdate expects an RLP-encoded value and performs the core function
   291  // for TryUpdate and TryUpdateAccount.
   292  func (t *Trie) tryUpdate(key, value []byte) error {
   293  	t.unhashed++
   294  	k := keybytesToHex(key)
   295  	if len(value) != 0 {
   296  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   297  		if err != nil {
   298  			return err
   299  		}
   300  		t.root = n
   301  	} else {
   302  		_, n, err := t.delete(t.root, nil, k)
   303  		if err != nil {
   304  			return err
   305  		}
   306  		t.root = n
   307  	}
   308  	return nil
   309  }
   310  
   311  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   312  	if len(key) == 0 {
   313  		if v, ok := n.(valueNode); ok {
   314  			return !bytes.Equal(v, value.(valueNode)), value, nil
   315  		}
   316  		return true, value, nil
   317  	}
   318  	switch n := n.(type) {
   319  	case *shortNode:
   320  		matchlen := prefixLen(key, n.Key)
   321  		// If the whole key matches, keep this short node as is
   322  		// and only update the value.
   323  		if matchlen == len(n.Key) {
   324  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   325  			if !dirty || err != nil {
   326  				return false, n, err
   327  			}
   328  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   329  		}
   330  		// Otherwise branch out at the index where they differ.
   331  		branch := &fullNode{flags: t.newFlag()}
   332  		var err error
   333  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   334  		if err != nil {
   335  			return false, nil, err
   336  		}
   337  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   338  		if err != nil {
   339  			return false, nil, err
   340  		}
   341  		// Replace this shortNode with the branch if it occurs at index 0.
   342  		if matchlen == 0 {
   343  			return true, branch, nil
   344  		}
   345  		// New branch node is created as a child of the original short node.
   346  		// Track the newly inserted node in the tracer. The node identifier
   347  		// passed is the path from the root node.
   348  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   349  
   350  		// Replace it with a short node leading up to the branch.
   351  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   352  
   353  	case *fullNode:
   354  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   355  		if !dirty || err != nil {
   356  			return false, n, err
   357  		}
   358  		n = n.copy()
   359  		n.flags = t.newFlag()
   360  		n.Children[key[0]] = nn
   361  		return true, n, nil
   362  
   363  	case nil:
   364  		// New short node is created and track it in the tracer. The node identifier
   365  		// passed is the path from the root node. Note the valueNode won't be tracked
   366  		// since it's always embedded in its parent.
   367  		t.tracer.onInsert(prefix)
   368  
   369  		return true, &shortNode{key, value, t.newFlag()}, nil
   370  
   371  	case hashNode:
   372  		// We've hit a part of the trie that isn't loaded yet. Load
   373  		// the node and insert into it. This leaves all child nodes on
   374  		// the path to the value in the trie.
   375  		rn, err := t.resolveAndTrack(n, prefix)
   376  		if err != nil {
   377  			return false, nil, err
   378  		}
   379  		dirty, nn, err := t.insert(rn, prefix, key, value)
   380  		if !dirty || err != nil {
   381  			return false, rn, err
   382  		}
   383  		return true, nn, nil
   384  
   385  	default:
   386  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   387  	}
   388  }
   389  
   390  // Delete removes any existing value for key from the trie.
   391  func (t *Trie) Delete(key []byte) {
   392  	if err := t.TryDelete(key); err != nil {
   393  		log.Error("Unhandled trie error in Trie.Delete", "err", err)
   394  	}
   395  }
   396  
   397  // TryDelete removes any existing value for key from the trie.
   398  // If a node was not found in the database, a MissingNodeError is returned.
   399  func (t *Trie) TryDelete(key []byte) error {
   400  	t.unhashed++
   401  	k := keybytesToHex(key)
   402  	_, n, err := t.delete(t.root, nil, k)
   403  	if err != nil {
   404  		return err
   405  	}
   406  	t.root = n
   407  	return nil
   408  }
   409  
   410  // delete returns the new root of the trie with key deleted.
   411  // It reduces the trie to minimal form by simplifying
   412  // nodes on the way up after deleting recursively.
   413  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   414  	switch n := n.(type) {
   415  	case *shortNode:
   416  		matchlen := prefixLen(key, n.Key)
   417  		if matchlen < len(n.Key) {
   418  			return false, n, nil // don't replace n on mismatch
   419  		}
   420  		if matchlen == len(key) {
   421  			// The matched short node is deleted entirely and track
   422  			// it in the deletion set. The same the valueNode doesn't
   423  			// need to be tracked at all since it's always embedded.
   424  			t.tracer.onDelete(prefix)
   425  
   426  			return true, nil, nil // remove n entirely for whole matches
   427  		}
   428  		// The key is longer than n.Key. Remove the remaining suffix
   429  		// from the subtrie. Child can never be nil here since the
   430  		// subtrie must contain at least two other values with keys
   431  		// longer than n.Key.
   432  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   433  		if !dirty || err != nil {
   434  			return false, n, err
   435  		}
   436  		switch child := child.(type) {
   437  		case *shortNode:
   438  			// The child shortNode is merged into its parent, track
   439  			// is deleted as well.
   440  			t.tracer.onDelete(append(prefix, n.Key...))
   441  
   442  			// Deleting from the subtrie reduced it to another
   443  			// short node. Merge the nodes to avoid creating a
   444  			// shortNode{..., shortNode{...}}. Use concat (which
   445  			// always creates a new slice) instead of append to
   446  			// avoid modifying n.Key since it might be shared with
   447  			// other nodes.
   448  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   449  		default:
   450  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   451  		}
   452  
   453  	case *fullNode:
   454  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   455  		if !dirty || err != nil {
   456  			return false, n, err
   457  		}
   458  		n = n.copy()
   459  		n.flags = t.newFlag()
   460  		n.Children[key[0]] = nn
   461  
   462  		// Because n is a full node, it must've contained at least two children
   463  		// before the delete operation. If the new child value is non-nil, n still
   464  		// has at least two children after the deletion, and cannot be reduced to
   465  		// a short node.
   466  		if nn != nil {
   467  			return true, n, nil
   468  		}
   469  		// Reduction:
   470  		// Check how many non-nil entries are left after deleting and
   471  		// reduce the full node to a short node if only one entry is
   472  		// left. Since n must've contained at least two children
   473  		// before deletion (otherwise it would not be a full node) n
   474  		// can never be reduced to nil.
   475  		//
   476  		// When the loop is done, pos contains the index of the single
   477  		// value that is left in n or -2 if n contains at least two
   478  		// values.
   479  		pos := -1
   480  		for i, cld := range &n.Children {
   481  			if cld != nil {
   482  				if pos == -1 {
   483  					pos = i
   484  				} else {
   485  					pos = -2
   486  					break
   487  				}
   488  			}
   489  		}
   490  		if pos >= 0 {
   491  			if pos != 16 {
   492  				// If the remaining entry is a short node, it replaces
   493  				// n and its key gets the missing nibble tacked to the
   494  				// front. This avoids creating an invalid
   495  				// shortNode{..., shortNode{...}}.  Since the entry
   496  				// might not be loaded yet, resolve it just for this
   497  				// check.
   498  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   499  				if err != nil {
   500  					return false, nil, err
   501  				}
   502  				if cnode, ok := cnode.(*shortNode); ok {
   503  					// Replace the entire full node with the short node.
   504  					// Mark the original short node as deleted since the
   505  					// value is embedded into the parent now.
   506  					t.tracer.onDelete(append(prefix, byte(pos)))
   507  
   508  					k := append([]byte{byte(pos)}, cnode.Key...)
   509  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   510  				}
   511  			}
   512  			// Otherwise, n is replaced by a one-nibble short node
   513  			// containing the child.
   514  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   515  		}
   516  		// n still contains at least two values and cannot be reduced.
   517  		return true, n, nil
   518  
   519  	case valueNode:
   520  		return true, nil, nil
   521  
   522  	case nil:
   523  		return false, nil, nil
   524  
   525  	case hashNode:
   526  		// We've hit a part of the trie that isn't loaded yet. Load
   527  		// the node and delete from it. This leaves all child nodes on
   528  		// the path to the value in the trie.
   529  		rn, err := t.resolveAndTrack(n, prefix)
   530  		if err != nil {
   531  			return false, nil, err
   532  		}
   533  		dirty, nn, err := t.delete(rn, prefix, key)
   534  		if !dirty || err != nil {
   535  			return false, rn, err
   536  		}
   537  		return true, nn, nil
   538  
   539  	default:
   540  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   541  	}
   542  }
   543  
   544  func concat(s1 []byte, s2 ...byte) []byte {
   545  	r := make([]byte, len(s1)+len(s2))
   546  	copy(r, s1)
   547  	copy(r[len(s1):], s2)
   548  	return r
   549  }
   550  
   551  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   552  	if n, ok := n.(hashNode); ok {
   553  		return t.resolveAndTrack(n, prefix)
   554  	}
   555  	return n, nil
   556  }
   557  
   558  // resolveAndTrack loads node from the underlying store with the given node hash
   559  // and path prefix and also tracks the loaded node blob in tracer treated as the
   560  // node's original value. The rlp-encoded blob is preferred to be loaded from
   561  // database because it's easy to decode node while complex to encode node to blob.
   562  func (t *Trie) resolveAndTrack(n hashNode, prefix []byte) (node, error) {
   563  	blob, err := t.reader.nodeBlob(prefix, common.BytesToHash(n))
   564  	if err != nil {
   565  		return nil, err
   566  	}
   567  	t.tracer.onRead(prefix, blob)
   568  	return mustDecodeNode(n, blob), nil
   569  }
   570  
   571  // Hash returns the root hash of the trie. It does not write to the
   572  // database and can be used even if the trie doesn't have one.
   573  func (t *Trie) Hash() common.Hash {
   574  	hash, cached, _ := t.hashRoot()
   575  	t.root = cached
   576  	return common.BytesToHash(hash.(hashNode))
   577  }
   578  
   579  // Commit collects all dirty nodes in the trie and replaces them with the
   580  // corresponding node hash. All collected nodes (including dirty leaves if
   581  // collectLeaf is true) will be encapsulated into a nodeset for return.
   582  // The returned nodeset can be nil if the trie is clean (nothing to commit).
   583  // Once the trie is committed, it's not usable anymore. A new trie must
   584  // be created with new root and updated trie database for following usage
   585  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *NodeSet, error) {
   586  	defer t.tracer.reset()
   587  
   588  	if t.root == nil {
   589  		return emptyRoot, nil, nil
   590  	}
   591  	// Derive the hash for all dirty nodes first. We hold the assumption
   592  	// in the following procedure that all nodes are hashed.
   593  	rootHash := t.Hash()
   594  
   595  	// Do a quick check if we really need to commit. This can happen e.g.
   596  	// if we load a trie for reading storage values, but don't write to it.
   597  	if hashedNode, dirty := t.root.cache(); !dirty {
   598  		// Replace the root node with the origin hash in order to
   599  		// ensure all resolved nodes are dropped after the commit.
   600  		t.root = hashedNode
   601  		return rootHash, nil, nil
   602  	}
   603  	h := newCommitter(t.owner, t.tracer, collectLeaf)
   604  	newRoot, nodes, err := h.Commit(t.root)
   605  	if err != nil {
   606  		return common.Hash{}, nil, err
   607  	}
   608  	t.root = newRoot
   609  	return rootHash, nodes, nil
   610  }
   611  
   612  // hashRoot calculates the root hash of the given trie
   613  func (t *Trie) hashRoot() (node, node, error) {
   614  	if t.root == nil {
   615  		return hashNode(emptyRoot.Bytes()), nil, nil
   616  	}
   617  	// If the number of changes is below 100, we let one thread handle it
   618  	h := newHasher(t.unhashed >= 100)
   619  	defer returnHasherToPool(h)
   620  	hashed, cached := h.hash(t.root, true)
   621  	t.unhashed = 0
   622  	return hashed, cached, nil
   623  }
   624  
   625  // Reset drops the referenced root node and cleans all internal state.
   626  func (t *Trie) Reset() {
   627  	t.root = nil
   628  	t.owner = common.Hash{}
   629  	t.unhashed = 0
   630  	t.tracer.reset()
   631  }