github.com/carter-ya/go-ethereum@v0.0.0-20230628080049-d2309be3983b/trie/trie_test.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package trie 18 19 import ( 20 "bytes" 21 "encoding/binary" 22 "errors" 23 "fmt" 24 "hash" 25 "math/big" 26 "math/rand" 27 "reflect" 28 "testing" 29 "testing/quick" 30 31 "github.com/davecgh/go-spew/spew" 32 "github.com/ethereum/go-ethereum/common" 33 "github.com/ethereum/go-ethereum/core/rawdb" 34 "github.com/ethereum/go-ethereum/core/types" 35 "github.com/ethereum/go-ethereum/crypto" 36 "github.com/ethereum/go-ethereum/ethdb" 37 "github.com/ethereum/go-ethereum/ethdb/memorydb" 38 "github.com/ethereum/go-ethereum/rlp" 39 "golang.org/x/crypto/sha3" 40 ) 41 42 func init() { 43 spew.Config.Indent = " " 44 spew.Config.DisableMethods = false 45 } 46 47 func TestEmptyTrie(t *testing.T) { 48 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 49 res := trie.Hash() 50 exp := emptyRoot 51 if res != exp { 52 t.Errorf("expected %x got %x", exp, res) 53 } 54 } 55 56 func TestNull(t *testing.T) { 57 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 58 key := make([]byte, 32) 59 value := []byte("test") 60 trie.Update(key, value) 61 if !bytes.Equal(trie.Get(key), value) { 62 t.Fatal("wrong value") 63 } 64 } 65 66 func TestMissingRoot(t *testing.T) { 67 root := common.HexToHash("0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33") 68 trie, err := New(TrieID(root), NewDatabase(memorydb.New())) 69 if trie != nil { 70 t.Error("New returned non-nil trie for invalid root") 71 } 72 if _, ok := err.(*MissingNodeError); !ok { 73 t.Errorf("New returned wrong error: %v", err) 74 } 75 } 76 77 func TestMissingNodeDisk(t *testing.T) { testMissingNode(t, false) } 78 func TestMissingNodeMemonly(t *testing.T) { testMissingNode(t, true) } 79 80 func testMissingNode(t *testing.T, memonly bool) { 81 diskdb := memorydb.New() 82 triedb := NewDatabase(diskdb) 83 84 trie := NewEmpty(triedb) 85 updateString(trie, "120000", "qwerqwerqwerqwerqwerqwerqwerqwer") 86 updateString(trie, "123456", "asdfasdfasdfasdfasdfasdfasdfasdf") 87 root, nodes, _ := trie.Commit(false) 88 triedb.Update(NewWithNodeSet(nodes)) 89 if !memonly { 90 triedb.Commit(root, true, nil) 91 } 92 93 trie, _ = New(TrieID(root), triedb) 94 _, err := trie.TryGet([]byte("120000")) 95 if err != nil { 96 t.Errorf("Unexpected error: %v", err) 97 } 98 trie, _ = New(TrieID(root), triedb) 99 _, err = trie.TryGet([]byte("120099")) 100 if err != nil { 101 t.Errorf("Unexpected error: %v", err) 102 } 103 trie, _ = New(TrieID(root), triedb) 104 _, err = trie.TryGet([]byte("123456")) 105 if err != nil { 106 t.Errorf("Unexpected error: %v", err) 107 } 108 trie, _ = New(TrieID(root), triedb) 109 err = trie.TryUpdate([]byte("120099"), []byte("zxcvzxcvzxcvzxcvzxcvzxcvzxcvzxcv")) 110 if err != nil { 111 t.Errorf("Unexpected error: %v", err) 112 } 113 trie, _ = New(TrieID(root), triedb) 114 err = trie.TryDelete([]byte("123456")) 115 if err != nil { 116 t.Errorf("Unexpected error: %v", err) 117 } 118 119 hash := common.HexToHash("0xe1d943cc8f061a0c0b98162830b970395ac9315654824bf21b73b891365262f9") 120 if memonly { 121 delete(triedb.dirties, hash) 122 } else { 123 diskdb.Delete(hash[:]) 124 } 125 126 trie, _ = New(TrieID(root), triedb) 127 _, err = trie.TryGet([]byte("120000")) 128 if _, ok := err.(*MissingNodeError); !ok { 129 t.Errorf("Wrong error: %v", err) 130 } 131 trie, _ = New(TrieID(root), triedb) 132 _, err = trie.TryGet([]byte("120099")) 133 if _, ok := err.(*MissingNodeError); !ok { 134 t.Errorf("Wrong error: %v", err) 135 } 136 trie, _ = New(TrieID(root), triedb) 137 _, err = trie.TryGet([]byte("123456")) 138 if err != nil { 139 t.Errorf("Unexpected error: %v", err) 140 } 141 trie, _ = New(TrieID(root), triedb) 142 err = trie.TryUpdate([]byte("120099"), []byte("zxcv")) 143 if _, ok := err.(*MissingNodeError); !ok { 144 t.Errorf("Wrong error: %v", err) 145 } 146 trie, _ = New(TrieID(root), triedb) 147 err = trie.TryDelete([]byte("123456")) 148 if _, ok := err.(*MissingNodeError); !ok { 149 t.Errorf("Wrong error: %v", err) 150 } 151 } 152 153 func TestInsert(t *testing.T) { 154 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 155 156 updateString(trie, "doe", "reindeer") 157 updateString(trie, "dog", "puppy") 158 updateString(trie, "dogglesworth", "cat") 159 160 exp := common.HexToHash("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3") 161 root := trie.Hash() 162 if root != exp { 163 t.Errorf("case 1: exp %x got %x", exp, root) 164 } 165 166 trie = NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 167 updateString(trie, "A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") 168 169 exp = common.HexToHash("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab") 170 root, _, err := trie.Commit(false) 171 if err != nil { 172 t.Fatalf("commit error: %v", err) 173 } 174 if root != exp { 175 t.Errorf("case 2: exp %x got %x", exp, root) 176 } 177 } 178 179 func TestGet(t *testing.T) { 180 db := NewDatabase(rawdb.NewMemoryDatabase()) 181 trie := NewEmpty(db) 182 updateString(trie, "doe", "reindeer") 183 updateString(trie, "dog", "puppy") 184 updateString(trie, "dogglesworth", "cat") 185 186 for i := 0; i < 2; i++ { 187 res := getString(trie, "dog") 188 if !bytes.Equal(res, []byte("puppy")) { 189 t.Errorf("expected puppy got %x", res) 190 } 191 unknown := getString(trie, "unknown") 192 if unknown != nil { 193 t.Errorf("expected nil got %x", unknown) 194 } 195 if i == 1 { 196 return 197 } 198 root, nodes, _ := trie.Commit(false) 199 db.Update(NewWithNodeSet(nodes)) 200 trie, _ = New(TrieID(root), db) 201 } 202 } 203 204 func TestDelete(t *testing.T) { 205 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 206 vals := []struct{ k, v string }{ 207 {"do", "verb"}, 208 {"ether", "wookiedoo"}, 209 {"horse", "stallion"}, 210 {"shaman", "horse"}, 211 {"doge", "coin"}, 212 {"ether", ""}, 213 {"dog", "puppy"}, 214 {"shaman", ""}, 215 } 216 for _, val := range vals { 217 if val.v != "" { 218 updateString(trie, val.k, val.v) 219 } else { 220 deleteString(trie, val.k) 221 } 222 } 223 224 hash := trie.Hash() 225 exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84") 226 if hash != exp { 227 t.Errorf("expected %x got %x", exp, hash) 228 } 229 } 230 231 func TestEmptyValues(t *testing.T) { 232 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 233 234 vals := []struct{ k, v string }{ 235 {"do", "verb"}, 236 {"ether", "wookiedoo"}, 237 {"horse", "stallion"}, 238 {"shaman", "horse"}, 239 {"doge", "coin"}, 240 {"ether", ""}, 241 {"dog", "puppy"}, 242 {"shaman", ""}, 243 } 244 for _, val := range vals { 245 updateString(trie, val.k, val.v) 246 } 247 248 hash := trie.Hash() 249 exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84") 250 if hash != exp { 251 t.Errorf("expected %x got %x", exp, hash) 252 } 253 } 254 255 func TestReplication(t *testing.T) { 256 triedb := NewDatabase(rawdb.NewMemoryDatabase()) 257 trie := NewEmpty(triedb) 258 vals := []struct{ k, v string }{ 259 {"do", "verb"}, 260 {"ether", "wookiedoo"}, 261 {"horse", "stallion"}, 262 {"shaman", "horse"}, 263 {"doge", "coin"}, 264 {"dog", "puppy"}, 265 {"somethingveryoddindeedthis is", "myothernodedata"}, 266 } 267 for _, val := range vals { 268 updateString(trie, val.k, val.v) 269 } 270 exp, nodes, err := trie.Commit(false) 271 if err != nil { 272 t.Fatalf("commit error: %v", err) 273 } 274 triedb.Update(NewWithNodeSet(nodes)) 275 276 // create a new trie on top of the database and check that lookups work. 277 trie2, err := New(TrieID(exp), triedb) 278 if err != nil { 279 t.Fatalf("can't recreate trie at %x: %v", exp, err) 280 } 281 for _, kv := range vals { 282 if string(getString(trie2, kv.k)) != kv.v { 283 t.Errorf("trie2 doesn't have %q => %q", kv.k, kv.v) 284 } 285 } 286 hash, nodes, err := trie2.Commit(false) 287 if err != nil { 288 t.Fatalf("commit error: %v", err) 289 } 290 if hash != exp { 291 t.Errorf("root failure. expected %x got %x", exp, hash) 292 } 293 294 // recreate the trie after commit 295 if nodes != nil { 296 triedb.Update(NewWithNodeSet(nodes)) 297 } 298 trie2, err = New(TrieID(hash), triedb) 299 if err != nil { 300 t.Fatalf("can't recreate trie at %x: %v", exp, err) 301 } 302 // perform some insertions on the new trie. 303 vals2 := []struct{ k, v string }{ 304 {"do", "verb"}, 305 {"ether", "wookiedoo"}, 306 {"horse", "stallion"}, 307 // {"shaman", "horse"}, 308 // {"doge", "coin"}, 309 // {"ether", ""}, 310 // {"dog", "puppy"}, 311 // {"somethingveryoddindeedthis is", "myothernodedata"}, 312 // {"shaman", ""}, 313 } 314 for _, val := range vals2 { 315 updateString(trie2, val.k, val.v) 316 } 317 if hash := trie2.Hash(); hash != exp { 318 t.Errorf("root failure. expected %x got %x", exp, hash) 319 } 320 } 321 322 func TestLargeValue(t *testing.T) { 323 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 324 trie.Update([]byte("key1"), []byte{99, 99, 99, 99}) 325 trie.Update([]byte("key2"), bytes.Repeat([]byte{1}, 32)) 326 trie.Hash() 327 } 328 329 // TestRandomCases tests som cases that were found via random fuzzing 330 func TestRandomCases(t *testing.T) { 331 var rt = []randTestStep{ 332 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 0 333 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 1 334 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000002")}, // step 2 335 {op: 2, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 3 336 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 4 337 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 5 338 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 6 339 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 7 340 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000008")}, // step 8 341 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000009")}, // step 9 342 {op: 2, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 10 343 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 11 344 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 12 345 {op: 0, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("000000000000000d")}, // step 13 346 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 14 347 {op: 1, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 15 348 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 16 349 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000011")}, // step 17 350 {op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 18 351 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 19 352 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000014")}, // step 20 353 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000015")}, // step 21 354 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000016")}, // step 22 355 {op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 23 356 {op: 1, key: common.Hex2Bytes("980c393656413a15c8da01978ed9f89feb80b502f58f2d640e3a2f5f7a99a7018f1b573befd92053ac6f78fca4a87268"), value: common.Hex2Bytes("")}, // step 24 357 {op: 1, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 25 358 } 359 runRandTest(rt) 360 } 361 362 // randTest performs random trie operations. 363 // Instances of this test are created by Generate. 364 type randTest []randTestStep 365 366 type randTestStep struct { 367 op int 368 key []byte // for opUpdate, opDelete, opGet 369 value []byte // for opUpdate 370 err error // for debugging 371 } 372 373 const ( 374 opUpdate = iota 375 opDelete 376 opGet 377 opHash 378 opCommit 379 opItercheckhash 380 opNodeDiff 381 opProve 382 opMax // boundary value, not an actual op 383 ) 384 385 func (randTest) Generate(r *rand.Rand, size int) reflect.Value { 386 var allKeys [][]byte 387 genKey := func() []byte { 388 if len(allKeys) < 2 || r.Intn(100) < 10 { 389 // new key 390 key := make([]byte, r.Intn(50)) 391 r.Read(key) 392 allKeys = append(allKeys, key) 393 return key 394 } 395 // use existing key 396 return allKeys[r.Intn(len(allKeys))] 397 } 398 399 var steps randTest 400 for i := 0; i < size; i++ { 401 step := randTestStep{op: r.Intn(opMax)} 402 switch step.op { 403 case opUpdate: 404 step.key = genKey() 405 step.value = make([]byte, 8) 406 binary.BigEndian.PutUint64(step.value, uint64(i)) 407 case opGet, opDelete, opProve: 408 step.key = genKey() 409 } 410 steps = append(steps, step) 411 } 412 return reflect.ValueOf(steps) 413 } 414 415 func runRandTest(rt randTest) bool { 416 var ( 417 triedb = NewDatabase(memorydb.New()) 418 tr = NewEmpty(triedb) 419 values = make(map[string]string) // tracks content of the trie 420 origTrie = NewEmpty(triedb) 421 ) 422 tr.tracer = newTracer() 423 424 for i, step := range rt { 425 // fmt.Printf("{op: %d, key: common.Hex2Bytes(\"%x\"), value: common.Hex2Bytes(\"%x\")}, // step %d\n", 426 // step.op, step.key, step.value, i) 427 428 switch step.op { 429 case opUpdate: 430 tr.Update(step.key, step.value) 431 values[string(step.key)] = string(step.value) 432 case opDelete: 433 tr.Delete(step.key) 434 delete(values, string(step.key)) 435 case opGet: 436 v := tr.Get(step.key) 437 want := values[string(step.key)] 438 if string(v) != want { 439 rt[i].err = fmt.Errorf("mismatch for key %#x, got %#x want %#x", step.key, v, want) 440 } 441 case opProve: 442 hash := tr.Hash() 443 if hash == emptyRoot { 444 continue 445 } 446 proofDb := rawdb.NewMemoryDatabase() 447 err := tr.Prove(step.key, 0, proofDb) 448 if err != nil { 449 rt[i].err = fmt.Errorf("failed for proving key %#x, %v", step.key, err) 450 } 451 _, err = VerifyProof(hash, step.key, proofDb) 452 if err != nil { 453 rt[i].err = fmt.Errorf("failed for verifying key %#x, %v", step.key, err) 454 } 455 case opHash: 456 tr.Hash() 457 case opCommit: 458 root, nodes, err := tr.Commit(true) 459 if err != nil { 460 rt[i].err = err 461 return false 462 } 463 // Validity the returned nodeset 464 if nodes != nil { 465 for path, node := range nodes.updates.nodes { 466 blob, _, _ := origTrie.TryGetNode(hexToCompact([]byte(path))) 467 got := node.prev 468 if !bytes.Equal(blob, got) { 469 rt[i].err = fmt.Errorf("prevalue mismatch for 0x%x, got 0x%x want 0x%x", path, got, blob) 470 panic(rt[i].err) 471 } 472 } 473 for path, prev := range nodes.deletes { 474 blob, _, _ := origTrie.TryGetNode(hexToCompact([]byte(path))) 475 if !bytes.Equal(blob, prev) { 476 rt[i].err = fmt.Errorf("prevalue mismatch for 0x%x, got 0x%x want 0x%x", path, prev, blob) 477 return false 478 } 479 } 480 } 481 if nodes != nil { 482 triedb.Update(NewWithNodeSet(nodes)) 483 } 484 newtr, err := New(TrieID(root), triedb) 485 if err != nil { 486 rt[i].err = err 487 return false 488 } 489 tr = newtr 490 491 // Enable node tracing. Resolve the root node again explicitly 492 // since it's not captured at the beginning. 493 tr.tracer = newTracer() 494 tr.resolveAndTrack(root.Bytes(), nil) 495 496 origTrie = tr.Copy() 497 case opItercheckhash: 498 checktr := NewEmpty(triedb) 499 it := NewIterator(tr.NodeIterator(nil)) 500 for it.Next() { 501 checktr.Update(it.Key, it.Value) 502 } 503 if tr.Hash() != checktr.Hash() { 504 rt[i].err = fmt.Errorf("hash mismatch in opItercheckhash") 505 } 506 case opNodeDiff: 507 var ( 508 inserted = tr.tracer.insertList() 509 deleted = tr.tracer.deleteList() 510 origIter = origTrie.NodeIterator(nil) 511 curIter = tr.NodeIterator(nil) 512 origSeen = make(map[string]struct{}) 513 curSeen = make(map[string]struct{}) 514 ) 515 for origIter.Next(true) { 516 if origIter.Leaf() { 517 continue 518 } 519 origSeen[string(origIter.Path())] = struct{}{} 520 } 521 for curIter.Next(true) { 522 if curIter.Leaf() { 523 continue 524 } 525 curSeen[string(curIter.Path())] = struct{}{} 526 } 527 var ( 528 insertExp = make(map[string]struct{}) 529 deleteExp = make(map[string]struct{}) 530 ) 531 for path := range curSeen { 532 _, present := origSeen[path] 533 if !present { 534 insertExp[path] = struct{}{} 535 } 536 } 537 for path := range origSeen { 538 _, present := curSeen[path] 539 if !present { 540 deleteExp[path] = struct{}{} 541 } 542 } 543 if len(insertExp) != len(inserted) { 544 rt[i].err = fmt.Errorf("insert set mismatch") 545 } 546 if len(deleteExp) != len(deleted) { 547 rt[i].err = fmt.Errorf("delete set mismatch") 548 } 549 for _, insert := range inserted { 550 if _, present := insertExp[string(insert)]; !present { 551 rt[i].err = fmt.Errorf("missing inserted node") 552 } 553 } 554 for _, del := range deleted { 555 if _, present := deleteExp[string(del)]; !present { 556 rt[i].err = fmt.Errorf("missing deleted node") 557 } 558 } 559 } 560 // Abort the test on error. 561 if rt[i].err != nil { 562 return false 563 } 564 } 565 return true 566 } 567 568 func TestRandom(t *testing.T) { 569 if err := quick.Check(runRandTest, nil); err != nil { 570 if cerr, ok := err.(*quick.CheckError); ok { 571 t.Fatalf("random test iteration %d failed: %s", cerr.Count, spew.Sdump(cerr.In)) 572 } 573 t.Fatal(err) 574 } 575 } 576 577 func BenchmarkGet(b *testing.B) { benchGet(b) } 578 func BenchmarkUpdateBE(b *testing.B) { benchUpdate(b, binary.BigEndian) } 579 func BenchmarkUpdateLE(b *testing.B) { benchUpdate(b, binary.LittleEndian) } 580 581 const benchElemCount = 20000 582 583 func benchGet(b *testing.B) { 584 triedb := NewDatabase(rawdb.NewMemoryDatabase()) 585 trie := NewEmpty(triedb) 586 k := make([]byte, 32) 587 for i := 0; i < benchElemCount; i++ { 588 binary.LittleEndian.PutUint64(k, uint64(i)) 589 trie.Update(k, k) 590 } 591 binary.LittleEndian.PutUint64(k, benchElemCount/2) 592 593 b.ResetTimer() 594 for i := 0; i < b.N; i++ { 595 trie.Get(k) 596 } 597 b.StopTimer() 598 } 599 600 func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie { 601 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 602 k := make([]byte, 32) 603 b.ReportAllocs() 604 for i := 0; i < b.N; i++ { 605 e.PutUint64(k, uint64(i)) 606 trie.Update(k, k) 607 } 608 return trie 609 } 610 611 // Benchmarks the trie hashing. Since the trie caches the result of any operation, 612 // we cannot use b.N as the number of hashing rouns, since all rounds apart from 613 // the first one will be NOOP. As such, we'll use b.N as the number of account to 614 // insert into the trie before measuring the hashing. 615 // BenchmarkHash-6 288680 4561 ns/op 682 B/op 9 allocs/op 616 // BenchmarkHash-6 275095 4800 ns/op 685 B/op 9 allocs/op 617 // pure hasher: 618 // BenchmarkHash-6 319362 4230 ns/op 675 B/op 9 allocs/op 619 // BenchmarkHash-6 257460 4674 ns/op 689 B/op 9 allocs/op 620 // With hashing in-between and pure hasher: 621 // BenchmarkHash-6 225417 7150 ns/op 982 B/op 12 allocs/op 622 // BenchmarkHash-6 220378 6197 ns/op 983 B/op 12 allocs/op 623 // same with old hasher 624 // BenchmarkHash-6 229758 6437 ns/op 981 B/op 12 allocs/op 625 // BenchmarkHash-6 212610 7137 ns/op 986 B/op 12 allocs/op 626 func BenchmarkHash(b *testing.B) { 627 // Create a realistic account trie to hash. We're first adding and hashing N 628 // entries, then adding N more. 629 addresses, accounts := makeAccounts(2 * b.N) 630 // Insert the accounts into the trie and hash it 631 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 632 i := 0 633 for ; i < len(addresses)/2; i++ { 634 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 635 } 636 trie.Hash() 637 for ; i < len(addresses); i++ { 638 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 639 } 640 b.ResetTimer() 641 b.ReportAllocs() 642 //trie.hashRoot(nil, nil) 643 trie.Hash() 644 } 645 646 // Benchmarks the trie Commit following a Hash. Since the trie caches the result of any operation, 647 // we cannot use b.N as the number of hashing rouns, since all rounds apart from 648 // the first one will be NOOP. As such, we'll use b.N as the number of account to 649 // insert into the trie before measuring the hashing. 650 func BenchmarkCommitAfterHash(b *testing.B) { 651 b.Run("no-onleaf", func(b *testing.B) { 652 benchmarkCommitAfterHash(b, false) 653 }) 654 b.Run("with-onleaf", func(b *testing.B) { 655 benchmarkCommitAfterHash(b, true) 656 }) 657 } 658 659 func benchmarkCommitAfterHash(b *testing.B, collectLeaf bool) { 660 // Make the random benchmark deterministic 661 addresses, accounts := makeAccounts(b.N) 662 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 663 for i := 0; i < len(addresses); i++ { 664 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 665 } 666 // Insert the accounts into the trie and hash it 667 trie.Hash() 668 b.ResetTimer() 669 b.ReportAllocs() 670 trie.Commit(collectLeaf) 671 } 672 673 func TestTinyTrie(t *testing.T) { 674 // Create a realistic account trie to hash 675 _, accounts := makeAccounts(5) 676 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 677 trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001337"), accounts[3]) 678 if exp, root := common.HexToHash("8c6a85a4d9fda98feff88450299e574e5378e32391f75a055d470ac0653f1005"), trie.Hash(); exp != root { 679 t.Errorf("1: got %x, exp %x", root, exp) 680 } 681 trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001338"), accounts[4]) 682 if exp, root := common.HexToHash("ec63b967e98a5720e7f720482151963982890d82c9093c0d486b7eb8883a66b1"), trie.Hash(); exp != root { 683 t.Errorf("2: got %x, exp %x", root, exp) 684 } 685 trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001339"), accounts[4]) 686 if exp, root := common.HexToHash("0608c1d1dc3905fa22204c7a0e43644831c3b6d3def0f274be623a948197e64a"), trie.Hash(); exp != root { 687 t.Errorf("3: got %x, exp %x", root, exp) 688 } 689 checktr := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 690 it := NewIterator(trie.NodeIterator(nil)) 691 for it.Next() { 692 checktr.Update(it.Key, it.Value) 693 } 694 if troot, itroot := trie.Hash(), checktr.Hash(); troot != itroot { 695 t.Fatalf("hash mismatch in opItercheckhash, trie: %x, check: %x", troot, itroot) 696 } 697 } 698 699 func TestCommitAfterHash(t *testing.T) { 700 // Create a realistic account trie to hash 701 addresses, accounts := makeAccounts(1000) 702 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 703 for i := 0; i < len(addresses); i++ { 704 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 705 } 706 // Insert the accounts into the trie and hash it 707 trie.Hash() 708 trie.Commit(false) 709 root := trie.Hash() 710 exp := common.HexToHash("72f9d3f3fe1e1dd7b8936442e7642aef76371472d94319900790053c493f3fe6") 711 if exp != root { 712 t.Errorf("got %x, exp %x", root, exp) 713 } 714 root, _, _ = trie.Commit(false) 715 if exp != root { 716 t.Errorf("got %x, exp %x", root, exp) 717 } 718 } 719 720 func makeAccounts(size int) (addresses [][20]byte, accounts [][]byte) { 721 // Make the random benchmark deterministic 722 random := rand.New(rand.NewSource(0)) 723 // Create a realistic account trie to hash 724 addresses = make([][20]byte, size) 725 for i := 0; i < len(addresses); i++ { 726 data := make([]byte, 20) 727 random.Read(data) 728 copy(addresses[i][:], data) 729 } 730 accounts = make([][]byte, len(addresses)) 731 for i := 0; i < len(accounts); i++ { 732 var ( 733 nonce = uint64(random.Int63()) 734 root = emptyRoot 735 code = crypto.Keccak256(nil) 736 ) 737 // The big.Rand function is not deterministic with regards to 64 vs 32 bit systems, 738 // and will consume different amount of data from the rand source. 739 //balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil)) 740 // Therefore, we instead just read via byte buffer 741 numBytes := random.Uint32() % 33 // [0, 32] bytes 742 balanceBytes := make([]byte, numBytes) 743 random.Read(balanceBytes) 744 balance := new(big.Int).SetBytes(balanceBytes) 745 data, _ := rlp.EncodeToBytes(&types.StateAccount{Nonce: nonce, Balance: balance, Root: root, CodeHash: code}) 746 accounts[i] = data 747 } 748 return addresses, accounts 749 } 750 751 // spongeDb is a dummy db backend which accumulates writes in a sponge 752 type spongeDb struct { 753 sponge hash.Hash 754 id string 755 journal []string 756 } 757 758 func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") } 759 func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") } 760 func (s *spongeDb) Delete(key []byte) error { panic("implement me") } 761 func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} } 762 func (s *spongeDb) NewBatchWithSize(size int) ethdb.Batch { return &spongeBatch{s} } 763 func (s *spongeDb) NewSnapshot() (ethdb.Snapshot, error) { panic("implement me") } 764 func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") } 765 func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") } 766 func (s *spongeDb) Close() error { return nil } 767 func (s *spongeDb) Put(key []byte, value []byte) error { 768 valbrief := value 769 if len(valbrief) > 8 { 770 valbrief = valbrief[:8] 771 } 772 s.journal = append(s.journal, fmt.Sprintf("%v: PUT([%x...], [%d bytes] %x...)\n", s.id, key[:8], len(value), valbrief)) 773 s.sponge.Write(key) 774 s.sponge.Write(value) 775 return nil 776 } 777 func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") } 778 779 // spongeBatch is a dummy batch which immediately writes to the underlying spongedb 780 type spongeBatch struct { 781 db *spongeDb 782 } 783 784 func (b *spongeBatch) Put(key, value []byte) error { 785 b.db.Put(key, value) 786 return nil 787 } 788 func (b *spongeBatch) Delete(key []byte) error { panic("implement me") } 789 func (b *spongeBatch) ValueSize() int { return 100 } 790 func (b *spongeBatch) Write() error { return nil } 791 func (b *spongeBatch) Reset() {} 792 func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil } 793 794 // TestCommitSequence tests that the trie.Commit operation writes the elements of the trie 795 // in the expected order, and calls the callbacks in the expected order. 796 // The test data was based on the 'master' code, and is basically random. It can be used 797 // to check whether changes to the trie modifies the write order or data in any way. 798 func TestCommitSequence(t *testing.T) { 799 for i, tc := range []struct { 800 count int 801 expWriteSeqHash []byte 802 expCallbackSeqHash []byte 803 }{ 804 {20, common.FromHex("873c78df73d60e59d4a2bcf3716e8bfe14554549fea2fc147cb54129382a8066"), 805 common.FromHex("ff00f91ac05df53b82d7f178d77ada54fd0dca64526f537034a5dbe41b17df2a")}, 806 {200, common.FromHex("ba03d891bb15408c940eea5ee3d54d419595102648d02774a0268d892add9c8e"), 807 common.FromHex("f3cd509064c8d319bbdd1c68f511850a902ad275e6ed5bea11547e23d492a926")}, 808 {2000, common.FromHex("f7a184f20df01c94f09537401d11e68d97ad0c00115233107f51b9c287ce60c7"), 809 common.FromHex("ff795ea898ba1e4cfed4a33b4cf5535a347a02cf931f88d88719faf810f9a1c9")}, 810 } { 811 addresses, accounts := makeAccounts(tc.count) 812 // This spongeDb is used to check the sequence of disk-db-writes 813 s := &spongeDb{sponge: sha3.NewLegacyKeccak256()} 814 db := NewDatabase(s) 815 trie := NewEmpty(db) 816 // Another sponge is used to check the callback-sequence 817 callbackSponge := sha3.NewLegacyKeccak256() 818 // Fill the trie with elements 819 for i := 0; i < tc.count; i++ { 820 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 821 } 822 // Flush trie -> database 823 root, nodes, _ := trie.Commit(false) 824 db.Update(NewWithNodeSet(nodes)) 825 // Flush memdb -> disk (sponge) 826 db.Commit(root, false, func(c common.Hash) { 827 // And spongify the callback-order 828 callbackSponge.Write(c[:]) 829 }) 830 if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) { 831 t.Errorf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp) 832 } 833 if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) { 834 t.Errorf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp) 835 } 836 } 837 } 838 839 // TestCommitSequenceRandomBlobs is identical to TestCommitSequence 840 // but uses random blobs instead of 'accounts' 841 func TestCommitSequenceRandomBlobs(t *testing.T) { 842 for i, tc := range []struct { 843 count int 844 expWriteSeqHash []byte 845 expCallbackSeqHash []byte 846 }{ 847 {20, common.FromHex("8e4a01548551d139fa9e833ebc4e66fc1ba40a4b9b7259d80db32cff7b64ebbc"), 848 common.FromHex("450238d73bc36dc6cc6f926987e5428535e64be403877c4560e238a52749ba24")}, 849 {200, common.FromHex("6869b4e7b95f3097a19ddb30ff735f922b915314047e041614df06958fc50554"), 850 common.FromHex("0ace0b03d6cb8c0b82f6289ef5b1a1838306b455a62dafc63cada8e2924f2550")}, 851 {2000, common.FromHex("444200e6f4e2df49f77752f629a96ccf7445d4698c164f962bbd85a0526ef424"), 852 common.FromHex("117d30dafaa62a1eed498c3dfd70982b377ba2b46dd3e725ed6120c80829e518")}, 853 } { 854 prng := rand.New(rand.NewSource(int64(i))) 855 // This spongeDb is used to check the sequence of disk-db-writes 856 s := &spongeDb{sponge: sha3.NewLegacyKeccak256()} 857 db := NewDatabase(s) 858 trie := NewEmpty(db) 859 // Another sponge is used to check the callback-sequence 860 callbackSponge := sha3.NewLegacyKeccak256() 861 // Fill the trie with elements 862 for i := 0; i < tc.count; i++ { 863 key := make([]byte, 32) 864 var val []byte 865 // 50% short elements, 50% large elements 866 if prng.Intn(2) == 0 { 867 val = make([]byte, 1+prng.Intn(32)) 868 } else { 869 val = make([]byte, 1+prng.Intn(4096)) 870 } 871 prng.Read(key) 872 prng.Read(val) 873 trie.Update(key, val) 874 } 875 // Flush trie -> database 876 root, nodes, _ := trie.Commit(false) 877 db.Update(NewWithNodeSet(nodes)) 878 // Flush memdb -> disk (sponge) 879 db.Commit(root, false, func(c common.Hash) { 880 // And spongify the callback-order 881 callbackSponge.Write(c[:]) 882 }) 883 if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) { 884 t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp) 885 } 886 if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) { 887 t.Fatalf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp) 888 } 889 } 890 } 891 892 func TestCommitSequenceStackTrie(t *testing.T) { 893 for count := 1; count < 200; count++ { 894 prng := rand.New(rand.NewSource(int64(count))) 895 // This spongeDb is used to check the sequence of disk-db-writes 896 s := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "a"} 897 db := NewDatabase(s) 898 trie := NewEmpty(db) 899 // Another sponge is used for the stacktrie commits 900 stackTrieSponge := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "b"} 901 stTrie := NewStackTrie(stackTrieSponge) 902 // Fill the trie with elements 903 for i := 0; i < count; i++ { 904 // For the stack trie, we need to do inserts in proper order 905 key := make([]byte, 32) 906 binary.BigEndian.PutUint64(key, uint64(i)) 907 var val []byte 908 // 50% short elements, 50% large elements 909 if prng.Intn(2) == 0 { 910 val = make([]byte, 1+prng.Intn(32)) 911 } else { 912 val = make([]byte, 1+prng.Intn(1024)) 913 } 914 prng.Read(val) 915 trie.TryUpdate(key, val) 916 stTrie.TryUpdate(key, val) 917 } 918 // Flush trie -> database 919 root, nodes, _ := trie.Commit(false) 920 // Flush memdb -> disk (sponge) 921 db.Update(NewWithNodeSet(nodes)) 922 db.Commit(root, false, nil) 923 // And flush stacktrie -> disk 924 stRoot, err := stTrie.Commit() 925 if err != nil { 926 t.Fatalf("Failed to commit stack trie %v", err) 927 } 928 if stRoot != root { 929 t.Fatalf("root wrong, got %x exp %x", stRoot, root) 930 } 931 if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) { 932 // Show the journal 933 t.Logf("Expected:") 934 for i, v := range s.journal { 935 t.Logf("op %d: %v", i, v) 936 } 937 t.Logf("Stacktrie:") 938 for i, v := range stackTrieSponge.journal { 939 t.Logf("op %d: %v", i, v) 940 } 941 t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", count, got, exp) 942 } 943 } 944 } 945 946 // TestCommitSequenceSmallRoot tests that a trie which is essentially only a 947 // small (<32 byte) shortnode with an included value is properly committed to a 948 // database. 949 // This case might not matter, since in practice, all keys are 32 bytes, which means 950 // that even a small trie which contains a leaf will have an extension making it 951 // not fit into 32 bytes, rlp-encoded. However, it's still the correct thing to do. 952 func TestCommitSequenceSmallRoot(t *testing.T) { 953 s := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "a"} 954 db := NewDatabase(s) 955 trie := NewEmpty(db) 956 // Another sponge is used for the stacktrie commits 957 stackTrieSponge := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "b"} 958 stTrie := NewStackTrie(stackTrieSponge) 959 // Add a single small-element to the trie(s) 960 key := make([]byte, 5) 961 key[0] = 1 962 trie.TryUpdate(key, []byte{0x1}) 963 stTrie.TryUpdate(key, []byte{0x1}) 964 // Flush trie -> database 965 root, nodes, _ := trie.Commit(false) 966 // Flush memdb -> disk (sponge) 967 db.Update(NewWithNodeSet(nodes)) 968 db.Commit(root, false, nil) 969 // And flush stacktrie -> disk 970 stRoot, err := stTrie.Commit() 971 if err != nil { 972 t.Fatalf("Failed to commit stack trie %v", err) 973 } 974 if stRoot != root { 975 t.Fatalf("root wrong, got %x exp %x", stRoot, root) 976 } 977 978 t.Logf("root: %x\n", stRoot) 979 if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) { 980 t.Fatalf("test, disk write sequence wrong:\ngot %x exp %x\n", got, exp) 981 } 982 } 983 984 // BenchmarkCommitAfterHashFixedSize benchmarks the Commit (after Hash) of a fixed number of updates to a trie. 985 // This benchmark is meant to capture the difference on efficiency of small versus large changes. Typically, 986 // storage tries are small (a couple of entries), whereas the full post-block account trie update is large (a couple 987 // of thousand entries) 988 func BenchmarkHashFixedSize(b *testing.B) { 989 b.Run("10", func(b *testing.B) { 990 b.StopTimer() 991 acc, add := makeAccounts(20) 992 for i := 0; i < b.N; i++ { 993 benchmarkHashFixedSize(b, acc, add) 994 } 995 }) 996 b.Run("100", func(b *testing.B) { 997 b.StopTimer() 998 acc, add := makeAccounts(100) 999 for i := 0; i < b.N; i++ { 1000 benchmarkHashFixedSize(b, acc, add) 1001 } 1002 }) 1003 1004 b.Run("1K", func(b *testing.B) { 1005 b.StopTimer() 1006 acc, add := makeAccounts(1000) 1007 for i := 0; i < b.N; i++ { 1008 benchmarkHashFixedSize(b, acc, add) 1009 } 1010 }) 1011 b.Run("10K", func(b *testing.B) { 1012 b.StopTimer() 1013 acc, add := makeAccounts(10000) 1014 for i := 0; i < b.N; i++ { 1015 benchmarkHashFixedSize(b, acc, add) 1016 } 1017 }) 1018 b.Run("100K", func(b *testing.B) { 1019 b.StopTimer() 1020 acc, add := makeAccounts(100000) 1021 for i := 0; i < b.N; i++ { 1022 benchmarkHashFixedSize(b, acc, add) 1023 } 1024 }) 1025 } 1026 1027 func benchmarkHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { 1028 b.ReportAllocs() 1029 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1030 for i := 0; i < len(addresses); i++ { 1031 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 1032 } 1033 // Insert the accounts into the trie and hash it 1034 b.StartTimer() 1035 trie.Hash() 1036 b.StopTimer() 1037 } 1038 1039 func BenchmarkCommitAfterHashFixedSize(b *testing.B) { 1040 b.Run("10", func(b *testing.B) { 1041 b.StopTimer() 1042 acc, add := makeAccounts(20) 1043 for i := 0; i < b.N; i++ { 1044 benchmarkCommitAfterHashFixedSize(b, acc, add) 1045 } 1046 }) 1047 b.Run("100", func(b *testing.B) { 1048 b.StopTimer() 1049 acc, add := makeAccounts(100) 1050 for i := 0; i < b.N; i++ { 1051 benchmarkCommitAfterHashFixedSize(b, acc, add) 1052 } 1053 }) 1054 1055 b.Run("1K", func(b *testing.B) { 1056 b.StopTimer() 1057 acc, add := makeAccounts(1000) 1058 for i := 0; i < b.N; i++ { 1059 benchmarkCommitAfterHashFixedSize(b, acc, add) 1060 } 1061 }) 1062 b.Run("10K", func(b *testing.B) { 1063 b.StopTimer() 1064 acc, add := makeAccounts(10000) 1065 for i := 0; i < b.N; i++ { 1066 benchmarkCommitAfterHashFixedSize(b, acc, add) 1067 } 1068 }) 1069 b.Run("100K", func(b *testing.B) { 1070 b.StopTimer() 1071 acc, add := makeAccounts(100000) 1072 for i := 0; i < b.N; i++ { 1073 benchmarkCommitAfterHashFixedSize(b, acc, add) 1074 } 1075 }) 1076 } 1077 1078 func benchmarkCommitAfterHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { 1079 b.ReportAllocs() 1080 trie := NewEmpty(NewDatabase(rawdb.NewMemoryDatabase())) 1081 for i := 0; i < len(addresses); i++ { 1082 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 1083 } 1084 // Insert the accounts into the trie and hash it 1085 trie.Hash() 1086 b.StartTimer() 1087 trie.Commit(false) 1088 b.StopTimer() 1089 } 1090 1091 func BenchmarkDerefRootFixedSize(b *testing.B) { 1092 b.Run("10", func(b *testing.B) { 1093 b.StopTimer() 1094 acc, add := makeAccounts(20) 1095 for i := 0; i < b.N; i++ { 1096 benchmarkDerefRootFixedSize(b, acc, add) 1097 } 1098 }) 1099 b.Run("100", func(b *testing.B) { 1100 b.StopTimer() 1101 acc, add := makeAccounts(100) 1102 for i := 0; i < b.N; i++ { 1103 benchmarkDerefRootFixedSize(b, acc, add) 1104 } 1105 }) 1106 1107 b.Run("1K", func(b *testing.B) { 1108 b.StopTimer() 1109 acc, add := makeAccounts(1000) 1110 for i := 0; i < b.N; i++ { 1111 benchmarkDerefRootFixedSize(b, acc, add) 1112 } 1113 }) 1114 b.Run("10K", func(b *testing.B) { 1115 b.StopTimer() 1116 acc, add := makeAccounts(10000) 1117 for i := 0; i < b.N; i++ { 1118 benchmarkDerefRootFixedSize(b, acc, add) 1119 } 1120 }) 1121 b.Run("100K", func(b *testing.B) { 1122 b.StopTimer() 1123 acc, add := makeAccounts(100000) 1124 for i := 0; i < b.N; i++ { 1125 benchmarkDerefRootFixedSize(b, acc, add) 1126 } 1127 }) 1128 } 1129 1130 func benchmarkDerefRootFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { 1131 b.ReportAllocs() 1132 triedb := NewDatabase(rawdb.NewMemoryDatabase()) 1133 trie := NewEmpty(triedb) 1134 for i := 0; i < len(addresses); i++ { 1135 trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) 1136 } 1137 h := trie.Hash() 1138 _, nodes, _ := trie.Commit(false) 1139 triedb.Update(NewWithNodeSet(nodes)) 1140 b.StartTimer() 1141 triedb.Dereference(h) 1142 b.StopTimer() 1143 } 1144 1145 func getString(trie *Trie, k string) []byte { 1146 return trie.Get([]byte(k)) 1147 } 1148 1149 func updateString(trie *Trie, k, v string) { 1150 trie.Update([]byte(k), []byte(v)) 1151 } 1152 1153 func deleteString(trie *Trie, k string) { 1154 trie.Delete([]byte(k)) 1155 } 1156 1157 func TestDecodeNode(t *testing.T) { 1158 t.Parallel() 1159 var ( 1160 hash = make([]byte, 20) 1161 elems = make([]byte, 20) 1162 ) 1163 for i := 0; i < 5000000; i++ { 1164 rand.Read(hash) 1165 rand.Read(elems) 1166 decodeNode(hash, elems) 1167 } 1168 }