github.com/castai/kvisor@v1.7.1-0.20240516114728-b3572a2607b5/pkg/ebpftracer/c/headers/bpf/bpf_helpers.h (about)

     1  /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
     2  #ifndef __BPF_HELPERS__
     3  #define __BPF_HELPERS__
     4  
     5  /*
     6   * Note that bpf programs need to include either
     7   * vmlinux.h (auto-generated from BTF) or linux/types.h
     8   * in advance since bpf_helper_defs.h uses such types
     9   * as __u64.
    10   */
    11  #include "bpf_helper_defs.h"
    12  
    13  #define __uint(name, val) int (*name)[val]
    14  #define __type(name, val) typeof(val) *name
    15  #define __array(name, val) typeof(val) *name[]
    16  
    17  /*
    18   * Helper macro to place programs, maps, license in
    19   * different sections in elf_bpf file. Section names
    20   * are interpreted by libbpf depending on the context (BPF programs, BPF maps,
    21   * extern variables, etc).
    22   * To allow use of SEC() with externs (e.g., for extern .maps declarations),
    23   * make sure __attribute__((unused)) doesn't trigger compilation warning.
    24   */
    25  #if __GNUC__ && !__clang__
    26  
    27  /*
    28   * Pragma macros are broken on GCC
    29   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=55578
    30   * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90400
    31   */
    32  #define SEC(name) __attribute__((section(name), used))
    33  
    34  #else
    35  
    36  #define SEC(name) \
    37  	_Pragma("GCC diagnostic push")					    \
    38  	_Pragma("GCC diagnostic ignored \"-Wignored-attributes\"")	    \
    39  	__attribute__((section(name), used))				    \
    40  	_Pragma("GCC diagnostic pop")					    \
    41  
    42  #endif
    43  
    44  /* Avoid 'linux/stddef.h' definition of '__always_inline'. */
    45  #undef __always_inline
    46  #define __always_inline inline __attribute__((always_inline))
    47  
    48  #ifndef __noinline
    49  #define __noinline __attribute__((noinline))
    50  #endif
    51  #ifndef __weak
    52  #define __weak __attribute__((weak))
    53  #endif
    54  
    55  /*
    56   * Use __hidden attribute to mark a non-static BPF subprogram effectively
    57   * static for BPF verifier's verification algorithm purposes, allowing more
    58   * extensive and permissive BPF verification process, taking into account
    59   * subprogram's caller context.
    60   */
    61  #define __hidden __attribute__((visibility("hidden")))
    62  
    63  /* When utilizing vmlinux.h with BPF CO-RE, user BPF programs can't include
    64   * any system-level headers (such as stddef.h, linux/version.h, etc), and
    65   * commonly-used macros like NULL and KERNEL_VERSION aren't available through
    66   * vmlinux.h. This just adds unnecessary hurdles and forces users to re-define
    67   * them on their own. So as a convenience, provide such definitions here.
    68   */
    69  #ifndef NULL
    70  #define NULL ((void *)0)
    71  #endif
    72  
    73  #ifndef KERNEL_VERSION
    74  #define KERNEL_VERSION(a, b, c) (((a) << 16) + ((b) << 8) + ((c) > 255 ? 255 : (c)))
    75  #endif
    76  
    77  /*
    78   * Helper macros to manipulate data structures
    79   */
    80  #ifndef offsetof
    81  #define offsetof(TYPE, MEMBER)	((unsigned long)&((TYPE *)0)->MEMBER)
    82  #endif
    83  #ifndef container_of
    84  #define container_of(ptr, type, member)				\
    85  	({							\
    86  		void *__mptr = (void *)(ptr);			\
    87  		((type *)(__mptr - offsetof(type, member)));	\
    88  	})
    89  #endif
    90  
    91  /*
    92   * Compiler (optimization) barrier.
    93   */
    94  #ifndef barrier
    95  #define barrier() asm volatile("" ::: "memory")
    96  #endif
    97  
    98  /* Variable-specific compiler (optimization) barrier. It's a no-op which makes
    99   * compiler believe that there is some black box modification of a given
   100   * variable and thus prevents compiler from making extra assumption about its
   101   * value and potential simplifications and optimizations on this variable.
   102   *
   103   * E.g., compiler might often delay or even omit 32-bit to 64-bit casting of
   104   * a variable, making some code patterns unverifiable. Putting barrier_var()
   105   * in place will ensure that cast is performed before the barrier_var()
   106   * invocation, because compiler has to pessimistically assume that embedded
   107   * asm section might perform some extra operations on that variable.
   108   *
   109   * This is a variable-specific variant of more global barrier().
   110   */
   111  #ifndef barrier_var
   112  #define barrier_var(var) asm volatile("" : "+r"(var))
   113  #endif
   114  
   115  /*
   116   * Helper macro to throw a compilation error if __bpf_unreachable() gets
   117   * built into the resulting code. This works given BPF back end does not
   118   * implement __builtin_trap(). This is useful to assert that certain paths
   119   * of the program code are never used and hence eliminated by the compiler.
   120   *
   121   * For example, consider a switch statement that covers known cases used by
   122   * the program. __bpf_unreachable() can then reside in the default case. If
   123   * the program gets extended such that a case is not covered in the switch
   124   * statement, then it will throw a build error due to the default case not
   125   * being compiled out.
   126   */
   127  #ifndef __bpf_unreachable
   128  # define __bpf_unreachable()	__builtin_trap()
   129  #endif
   130  
   131  /*
   132   * Helper function to perform a tail call with a constant/immediate map slot.
   133   */
   134  #if __clang_major__ >= 8 && defined(__bpf__)
   135  static __always_inline void
   136  bpf_tail_call_static(void *ctx, const void *map, const __u32 slot)
   137  {
   138  	if (!__builtin_constant_p(slot))
   139  		__bpf_unreachable();
   140  
   141  	/*
   142  	 * Provide a hard guarantee that LLVM won't optimize setting r2 (map
   143  	 * pointer) and r3 (constant map index) from _different paths_ ending
   144  	 * up at the _same_ call insn as otherwise we won't be able to use the
   145  	 * jmpq/nopl retpoline-free patching by the x86-64 JIT in the kernel
   146  	 * given they mismatch. See also d2e4c1e6c294 ("bpf: Constant map key
   147  	 * tracking for prog array pokes") for details on verifier tracking.
   148  	 *
   149  	 * Note on clobber list: we need to stay in-line with BPF calling
   150  	 * convention, so even if we don't end up using r0, r4, r5, we need
   151  	 * to mark them as clobber so that LLVM doesn't end up using them
   152  	 * before / after the call.
   153  	 */
   154  	asm volatile("r1 = %[ctx]\n\t"
   155  		     "r2 = %[map]\n\t"
   156  		     "r3 = %[slot]\n\t"
   157  		     "call 12"
   158  		     :: [ctx]"r"(ctx), [map]"r"(map), [slot]"i"(slot)
   159  		     : "r0", "r1", "r2", "r3", "r4", "r5");
   160  }
   161  #endif
   162  
   163  enum libbpf_pin_type {
   164  	LIBBPF_PIN_NONE,
   165  	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
   166  	LIBBPF_PIN_BY_NAME,
   167  };
   168  
   169  enum libbpf_tristate {
   170  	TRI_NO = 0,
   171  	TRI_YES = 1,
   172  	TRI_MODULE = 2,
   173  };
   174  
   175  #define __kconfig __attribute__((section(".kconfig")))
   176  #define __ksym __attribute__((section(".ksyms")))
   177  #define __kptr_untrusted __attribute__((btf_type_tag("kptr_untrusted")))
   178  #define __kptr __attribute__((btf_type_tag("kptr")))
   179  
   180  #define bpf_ksym_exists(sym) ({									\
   181  	_Static_assert(!__builtin_constant_p(!!sym), #sym " should be marked as __weak");	\
   182  	!!sym;											\
   183  })
   184  
   185  #ifndef ___bpf_concat
   186  #define ___bpf_concat(a, b) a ## b
   187  #endif
   188  #ifndef ___bpf_apply
   189  #define ___bpf_apply(fn, n) ___bpf_concat(fn, n)
   190  #endif
   191  #ifndef ___bpf_nth
   192  #define ___bpf_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _a, _b, _c, N, ...) N
   193  #endif
   194  #ifndef ___bpf_narg
   195  #define ___bpf_narg(...) \
   196  	___bpf_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
   197  #endif
   198  
   199  #define ___bpf_fill0(arr, p, x) do {} while (0)
   200  #define ___bpf_fill1(arr, p, x) arr[p] = x
   201  #define ___bpf_fill2(arr, p, x, args...) arr[p] = x; ___bpf_fill1(arr, p + 1, args)
   202  #define ___bpf_fill3(arr, p, x, args...) arr[p] = x; ___bpf_fill2(arr, p + 1, args)
   203  #define ___bpf_fill4(arr, p, x, args...) arr[p] = x; ___bpf_fill3(arr, p + 1, args)
   204  #define ___bpf_fill5(arr, p, x, args...) arr[p] = x; ___bpf_fill4(arr, p + 1, args)
   205  #define ___bpf_fill6(arr, p, x, args...) arr[p] = x; ___bpf_fill5(arr, p + 1, args)
   206  #define ___bpf_fill7(arr, p, x, args...) arr[p] = x; ___bpf_fill6(arr, p + 1, args)
   207  #define ___bpf_fill8(arr, p, x, args...) arr[p] = x; ___bpf_fill7(arr, p + 1, args)
   208  #define ___bpf_fill9(arr, p, x, args...) arr[p] = x; ___bpf_fill8(arr, p + 1, args)
   209  #define ___bpf_fill10(arr, p, x, args...) arr[p] = x; ___bpf_fill9(arr, p + 1, args)
   210  #define ___bpf_fill11(arr, p, x, args...) arr[p] = x; ___bpf_fill10(arr, p + 1, args)
   211  #define ___bpf_fill12(arr, p, x, args...) arr[p] = x; ___bpf_fill11(arr, p + 1, args)
   212  #define ___bpf_fill(arr, args...) \
   213  	___bpf_apply(___bpf_fill, ___bpf_narg(args))(arr, 0, args)
   214  
   215  /*
   216   * BPF_SEQ_PRINTF to wrap bpf_seq_printf to-be-printed values
   217   * in a structure.
   218   */
   219  #define BPF_SEQ_PRINTF(seq, fmt, args...)			\
   220  ({								\
   221  	static const char ___fmt[] = fmt;			\
   222  	unsigned long long ___param[___bpf_narg(args)];		\
   223  								\
   224  	_Pragma("GCC diagnostic push")				\
   225  	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
   226  	___bpf_fill(___param, args);				\
   227  	_Pragma("GCC diagnostic pop")				\
   228  								\
   229  	bpf_seq_printf(seq, ___fmt, sizeof(___fmt),		\
   230  		       ___param, sizeof(___param));		\
   231  })
   232  
   233  /*
   234   * BPF_SNPRINTF wraps the bpf_snprintf helper with variadic arguments instead of
   235   * an array of u64.
   236   */
   237  #define BPF_SNPRINTF(out, out_size, fmt, args...)		\
   238  ({								\
   239  	static const char ___fmt[] = fmt;			\
   240  	unsigned long long ___param[___bpf_narg(args)];		\
   241  								\
   242  	_Pragma("GCC diagnostic push")				\
   243  	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
   244  	___bpf_fill(___param, args);				\
   245  	_Pragma("GCC diagnostic pop")				\
   246  								\
   247  	bpf_snprintf(out, out_size, ___fmt,			\
   248  		     ___param, sizeof(___param));		\
   249  })
   250  
   251  #ifdef BPF_NO_GLOBAL_DATA
   252  #define BPF_PRINTK_FMT_MOD
   253  #else
   254  #define BPF_PRINTK_FMT_MOD static const
   255  #endif
   256  
   257  #define __bpf_printk(fmt, ...)				\
   258  ({							\
   259  	BPF_PRINTK_FMT_MOD char ____fmt[] = fmt;	\
   260  	bpf_trace_printk(____fmt, sizeof(____fmt),	\
   261  			 ##__VA_ARGS__);		\
   262  })
   263  
   264  /*
   265   * __bpf_vprintk wraps the bpf_trace_vprintk helper with variadic arguments
   266   * instead of an array of u64.
   267   */
   268  #define __bpf_vprintk(fmt, args...)				\
   269  ({								\
   270  	static const char ___fmt[] = fmt;			\
   271  	unsigned long long ___param[___bpf_narg(args)];		\
   272  								\
   273  	_Pragma("GCC diagnostic push")				\
   274  	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
   275  	___bpf_fill(___param, args);				\
   276  	_Pragma("GCC diagnostic pop")				\
   277  								\
   278  	bpf_trace_vprintk(___fmt, sizeof(___fmt),		\
   279  			  ___param, sizeof(___param));		\
   280  })
   281  
   282  /* Use __bpf_printk when bpf_printk call has 3 or fewer fmt args
   283   * Otherwise use __bpf_vprintk
   284   */
   285  #define ___bpf_pick_printk(...) \
   286  	___bpf_nth(_, ##__VA_ARGS__, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk,	\
   287  		   __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk,		\
   288  		   __bpf_vprintk, __bpf_vprintk, __bpf_printk /*3*/, __bpf_printk /*2*/,\
   289  		   __bpf_printk /*1*/, __bpf_printk /*0*/)
   290  
   291  /* Helper macro to print out debug messages */
   292  #define bpf_printk(fmt, args...) ___bpf_pick_printk(args)(fmt, ##args)
   293  
   294  struct bpf_iter_num;
   295  
   296  extern int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) __weak __ksym;
   297  extern int *bpf_iter_num_next(struct bpf_iter_num *it) __weak __ksym;
   298  extern void bpf_iter_num_destroy(struct bpf_iter_num *it) __weak __ksym;
   299  
   300  #ifndef bpf_for_each
   301  /* bpf_for_each(iter_type, cur_elem, args...) provides generic construct for
   302   * using BPF open-coded iterators without having to write mundane explicit
   303   * low-level loop logic. Instead, it provides for()-like generic construct
   304   * that can be used pretty naturally. E.g., for some hypothetical cgroup
   305   * iterator, you'd write:
   306   *
   307   * struct cgroup *cg, *parent_cg = <...>;
   308   *
   309   * bpf_for_each(cgroup, cg, parent_cg, CG_ITER_CHILDREN) {
   310   *     bpf_printk("Child cgroup id = %d", cg->cgroup_id);
   311   *     if (cg->cgroup_id == 123)
   312   *         break;
   313   * }
   314   *
   315   * I.e., it looks almost like high-level for each loop in other languages,
   316   * supports continue/break, and is verifiable by BPF verifier.
   317   *
   318   * For iterating integers, the difference betwen bpf_for_each(num, i, N, M)
   319   * and bpf_for(i, N, M) is in that bpf_for() provides additional proof to
   320   * verifier that i is in [N, M) range, and in bpf_for_each() case i is `int
   321   * *`, not just `int`. So for integers bpf_for() is more convenient.
   322   *
   323   * Note: this macro relies on C99 feature of allowing to declare variables
   324   * inside for() loop, bound to for() loop lifetime. It also utilizes GCC
   325   * extension: __attribute__((cleanup(<func>))), supported by both GCC and
   326   * Clang.
   327   */
   328  #define bpf_for_each(type, cur, args...) for (							\
   329  	/* initialize and define destructor */							\
   330  	struct bpf_iter_##type ___it __attribute__((aligned(8), /* enforce, just in case */,	\
   331  						    cleanup(bpf_iter_##type##_destroy))),	\
   332  	/* ___p pointer is just to call bpf_iter_##type##_new() *once* to init ___it */		\
   333  			       *___p __attribute__((unused)) = (				\
   334  					bpf_iter_##type##_new(&___it, ##args),			\
   335  	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
   336  	/* for bpf_iter_##type##_destroy() when used from cleanup() attribute */		\
   337  					(void)bpf_iter_##type##_destroy, (void *)0);		\
   338  	/* iteration and termination check */							\
   339  	(((cur) = bpf_iter_##type##_next(&___it)));						\
   340  )
   341  #endif /* bpf_for_each */
   342  
   343  #ifndef bpf_for
   344  /* bpf_for(i, start, end) implements a for()-like looping construct that sets
   345   * provided integer variable *i* to values starting from *start* through,
   346   * but not including, *end*. It also proves to BPF verifier that *i* belongs
   347   * to range [start, end), so this can be used for accessing arrays without
   348   * extra checks.
   349   *
   350   * Note: *start* and *end* are assumed to be expressions with no side effects
   351   * and whose values do not change throughout bpf_for() loop execution. They do
   352   * not have to be statically known or constant, though.
   353   *
   354   * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
   355   * loop bound variables and cleanup attribute, supported by GCC and Clang.
   356   */
   357  #define bpf_for(i, start, end) for (								\
   358  	/* initialize and define destructor */							\
   359  	struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */	\
   360  						 cleanup(bpf_iter_num_destroy))),		\
   361  	/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */		\
   362  			    *___p __attribute__((unused)) = (					\
   363  				bpf_iter_num_new(&___it, (start), (end)),			\
   364  	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
   365  	/* for bpf_iter_num_destroy() when used from cleanup() attribute */			\
   366  				(void)bpf_iter_num_destroy, (void *)0);				\
   367  	({											\
   368  		/* iteration step */								\
   369  		int *___t = bpf_iter_num_next(&___it);						\
   370  		/* termination and bounds check */						\
   371  		(___t && ((i) = *___t, (i) >= (start) && (i) < (end)));				\
   372  	});											\
   373  )
   374  #endif /* bpf_for */
   375  
   376  #ifndef bpf_repeat
   377  /* bpf_repeat(N) performs N iterations without exposing iteration number
   378   *
   379   * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
   380   * loop bound variables and cleanup attribute, supported by GCC and Clang.
   381   */
   382  #define bpf_repeat(N) for (									\
   383  	/* initialize and define destructor */							\
   384  	struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */	\
   385  						 cleanup(bpf_iter_num_destroy))),		\
   386  	/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */		\
   387  			    *___p __attribute__((unused)) = (					\
   388  				bpf_iter_num_new(&___it, 0, (N)),				\
   389  	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
   390  	/* for bpf_iter_num_destroy() when used from cleanup() attribute */			\
   391  				(void)bpf_iter_num_destroy, (void *)0);				\
   392  	bpf_iter_num_next(&___it);								\
   393  	/* nothing here  */									\
   394  )
   395  #endif /* bpf_repeat */
   396  
   397  #endif