github.com/ccccaoqing/test@v0.0.0-20220510085219-3985d23445c0/src/cmd/5g/gsubr.c (about)

     1  // Derived from Inferno utils/5c/txt.c
     2  // http://code.google.com/p/inferno-os/source/browse/utils/5c/txt.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors.  All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  #include <u.h>
    32  #include <libc.h>
    33  #include "gg.h"
    34  #include "../../runtime/funcdata.h"
    35  
    36  // TODO(rsc): Can make this bigger if we move
    37  // the text segment up higher in 5l for all GOOS.
    38  // At the same time, can raise StackBig in ../../runtime/stack.h.
    39  long unmappedzero = 4096;
    40  
    41  void
    42  clearp(Prog *p)
    43  {
    44  	p->as = AEND;
    45  	p->reg = NREG;
    46  	p->scond = C_SCOND_NONE;
    47  	p->from.type = D_NONE;
    48  	p->from.name = D_NONE;
    49  	p->from.reg = NREG;
    50  	p->to.type = D_NONE;
    51  	p->to.name = D_NONE;
    52  	p->to.reg = NREG;
    53  	p->pc = pcloc;
    54  	pcloc++;
    55  }
    56  
    57  static int ddumped;
    58  static Prog *dfirst;
    59  static Prog *dpc;
    60  
    61  /*
    62   * generate and return proc with p->as = as,
    63   * linked into program.  pc is next instruction.
    64   */
    65  Prog*
    66  prog(int as)
    67  {
    68  	Prog *p;
    69  
    70  	if(as == ADATA || as == AGLOBL) {
    71  		if(ddumped)
    72  			fatal("already dumped data");
    73  		if(dpc == nil) {
    74  			dpc = mal(sizeof(*dpc));
    75  			dfirst = dpc;
    76  		}
    77  		p = dpc;
    78  		dpc = mal(sizeof(*dpc));
    79  		p->link = dpc;
    80  		p->reg = 0;  // used for flags
    81  	} else {
    82  		p = pc;
    83  		pc = mal(sizeof(*pc));
    84  		clearp(pc);
    85  		p->link = pc;
    86  	}
    87  
    88  	if(lineno == 0) {
    89  		if(debug['K'])
    90  			warn("prog: line 0");
    91  	}
    92  
    93  	p->as = as;
    94  	p->lineno = lineno;
    95  	return p;
    96  }
    97  
    98  void
    99  dumpdata(void)
   100  {
   101  	ddumped = 1;
   102  	if(dfirst == nil)
   103  		return;
   104  	newplist();
   105  	*pc = *dfirst;
   106  	pc = dpc;
   107  	clearp(pc);
   108  }
   109  
   110  /*
   111   * generate a branch.
   112   * t is ignored.
   113   * likely values are for branch prediction:
   114   *	-1 unlikely
   115   *	0 no opinion
   116   *	+1 likely
   117   */
   118  Prog*
   119  gbranch(int as, Type *t, int likely)
   120  {
   121  	Prog *p;
   122  
   123  	USED(t);
   124  	USED(likely);  // TODO: record this for linker
   125  
   126  	p = prog(as);
   127  	p->to.type = D_BRANCH;
   128  	p->to.u.branch = P;
   129  	return p;
   130  }
   131  
   132  /*
   133   * patch previous branch to jump to to.
   134   */
   135  void
   136  patch(Prog *p, Prog *to)
   137  {
   138  	if(p->to.type != D_BRANCH)
   139  		fatal("patch: not a branch");
   140  	p->to.u.branch = to;
   141  	p->to.offset = to->pc;
   142  }
   143  
   144  Prog*
   145  unpatch(Prog *p)
   146  {
   147  	Prog *q;
   148  
   149  	if(p->to.type != D_BRANCH)
   150  		fatal("unpatch: not a branch");
   151  	q = p->to.u.branch;
   152  	p->to.u.branch = P;
   153  	p->to.offset = 0;
   154  	return q;
   155  }
   156  
   157  /*
   158   * start a new Prog list.
   159   */
   160  Plist*
   161  newplist(void)
   162  {
   163  	Plist *pl;
   164  
   165  	pl = linknewplist(ctxt);
   166  
   167  	pc = mal(sizeof(*pc));
   168  	clearp(pc);
   169  	pl->firstpc = pc;
   170  
   171  	return pl;
   172  }
   173  
   174  void
   175  gused(Node *n)
   176  {
   177  	gins(ANOP, n, N);	// used
   178  }
   179  
   180  Prog*
   181  gjmp(Prog *to)
   182  {
   183  	Prog *p;
   184  
   185  	p = gbranch(AB, T, 0);
   186  	if(to != P)
   187  		patch(p, to);
   188  	return p;
   189  }
   190  
   191  void
   192  ggloblnod(Node *nam)
   193  {
   194  	Prog *p;
   195  
   196  	p = gins(AGLOBL, nam, N);
   197  	p->lineno = nam->lineno;
   198  	p->from.sym->gotype = linksym(ngotype(nam));
   199  	p->to.sym = nil;
   200  	p->to.type = D_CONST;
   201  	p->to.offset = nam->type->width;
   202  	if(nam->readonly)
   203  		p->reg = RODATA;
   204  	if(nam->type != T && !haspointers(nam->type))
   205  		p->reg |= NOPTR;
   206  }
   207  
   208  void
   209  ggloblsym(Sym *s, int32 width, int8 flags)
   210  {
   211  	Prog *p;
   212  
   213  	p = gins(AGLOBL, N, N);
   214  	p->from.type = D_OREG;
   215  	p->from.name = D_EXTERN;
   216  	p->from.sym = linksym(s);
   217  	p->to.type = D_CONST;
   218  	p->to.name = D_NONE;
   219  	p->to.offset = width;
   220  	p->reg = flags;
   221  }
   222  
   223  void
   224  gtrack(Sym *s)
   225  {
   226  	Prog *p;
   227  	
   228  	p = gins(AUSEFIELD, N, N);
   229  	p->from.type = D_OREG;
   230  	p->from.name = D_EXTERN;
   231  	p->from.sym = linksym(s);
   232  }
   233  
   234  int
   235  isfat(Type *t)
   236  {
   237  	if(t != T)
   238  	switch(t->etype) {
   239  	case TSTRUCT:
   240  	case TARRAY:
   241  	case TSTRING:
   242  	case TINTER:	// maybe remove later
   243  		return 1;
   244  	}
   245  	return 0;
   246  }
   247  
   248  /*
   249   * naddr of func generates code for address of func.
   250   * if using opcode that can take address implicitly,
   251   * call afunclit to fix up the argument.
   252   * also fix up direct register references to be D_OREG.
   253   */
   254  void
   255  afunclit(Addr *a, Node *n)
   256  {
   257  	if(a->type == D_CONST && a->name == D_EXTERN || a->type == D_REG) {
   258  		a->type = D_OREG;
   259  		if(n->op == ONAME)
   260  			a->sym = linksym(n->sym);
   261  	}
   262  }
   263  
   264  static	int	resvd[] =
   265  {
   266  	9,     // reserved for m
   267  	10,    // reserved for g
   268  	REGSP, // reserved for SP
   269  };
   270  
   271  void
   272  ginit(void)
   273  {
   274  	int i;
   275  
   276  	for(i=0; i<nelem(reg); i++)
   277  		reg[i] = 0;
   278  	for(i=0; i<nelem(resvd); i++)
   279  		reg[resvd[i]]++;
   280  }
   281  
   282  void
   283  gclean(void)
   284  {
   285  	int i;
   286  
   287  	for(i=0; i<nelem(resvd); i++)
   288  		reg[resvd[i]]--;
   289  
   290  	for(i=0; i<nelem(reg); i++)
   291  		if(reg[i])
   292  			yyerror("reg %R left allocated\n", i);
   293  }
   294  
   295  int32
   296  anyregalloc(void)
   297  {
   298  	int i, j;
   299  
   300  	for(i=0; i<nelem(reg); i++) {
   301  		if(reg[i] == 0)
   302  			goto ok;
   303  		for(j=0; j<nelem(resvd); j++)
   304  			if(resvd[j] == i)
   305  				goto ok;
   306  		return 1;
   307  	ok:;
   308  	}
   309  	return 0;
   310  }
   311  
   312  uintptr regpc[REGALLOC_FMAX+1];
   313  
   314  /*
   315   * allocate register of type t, leave in n.
   316   * if o != N, o is desired fixed register.
   317   * caller must regfree(n).
   318   */
   319  void
   320  regalloc(Node *n, Type *t, Node *o)
   321  {
   322  	int i, et, fixfree, floatfree;
   323  
   324  	if(0 && debug['r']) {
   325  		fixfree = 0;
   326  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   327  			if(reg[i] == 0)
   328  				fixfree++;
   329  		floatfree = 0;
   330  		for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++)
   331  			if(reg[i] == 0)
   332  				floatfree++;
   333  		print("regalloc fix %d float %d\n", fixfree, floatfree);
   334  	}
   335  
   336  	if(t == T)
   337  		fatal("regalloc: t nil");
   338  	et = simtype[t->etype];
   339  	if(is64(t))
   340  		fatal("regalloc: 64 bit type %T");
   341  
   342  	switch(et) {
   343  	case TINT8:
   344  	case TUINT8:
   345  	case TINT16:
   346  	case TUINT16:
   347  	case TINT32:
   348  	case TUINT32:
   349  	case TPTR32:
   350  	case TBOOL:
   351  		if(o != N && o->op == OREGISTER) {
   352  			i = o->val.u.reg;
   353  			if(i >= REGALLOC_R0 && i <= REGALLOC_RMAX)
   354  				goto out;
   355  		}
   356  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   357  			if(reg[i] == 0) {
   358  				regpc[i] = (uintptr)getcallerpc(&n);
   359  				goto out;
   360  			}
   361  		print("registers allocated at\n");
   362  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   363  			print("%d %p\n", i, regpc[i]);
   364  		fatal("out of fixed registers");
   365  		goto err;
   366  
   367  	case TFLOAT32:
   368  	case TFLOAT64:
   369  		if(o != N && o->op == OREGISTER) {
   370  			i = o->val.u.reg;
   371  			if(i >= REGALLOC_F0 && i <= REGALLOC_FMAX)
   372  				goto out;
   373  		}
   374  		for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++)
   375  			if(reg[i] == 0)
   376  				goto out;
   377  		fatal("out of floating point registers");
   378  		goto err;
   379  
   380  	case TCOMPLEX64:
   381  	case TCOMPLEX128:
   382  		tempname(n, t);
   383  		return;
   384  	}
   385  	yyerror("regalloc: unknown type %T", t);
   386  
   387  err:
   388  	nodreg(n, t, 0);
   389  	return;
   390  
   391  out:
   392  	reg[i]++;
   393  	nodreg(n, t, i);
   394  }
   395  
   396  void
   397  regfree(Node *n)
   398  {
   399  	int i, fixfree, floatfree;
   400  
   401  	if(0 && debug['r']) {
   402  		fixfree = 0;
   403  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   404  			if(reg[i] == 0)
   405  				fixfree++;
   406  		floatfree = 0;
   407  		for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++)
   408  			if(reg[i] == 0)
   409  				floatfree++;
   410  		print("regalloc fix %d float %d\n", fixfree, floatfree);
   411  	}
   412  
   413  	if(n->op == ONAME)
   414  		return;
   415  	if(n->op != OREGISTER && n->op != OINDREG)
   416  		fatal("regfree: not a register");
   417  	i = n->val.u.reg;
   418  	if(i == REGSP)
   419  		return;
   420  	if(i < 0 || i >= nelem(reg) || i >= nelem(regpc))
   421  		fatal("regfree: reg out of range");
   422  	if(reg[i] <= 0)
   423  		fatal("regfree: reg %R not allocated", i);
   424  	reg[i]--;
   425  	if(reg[i] == 0)
   426  		regpc[i] = 0;
   427  }
   428  
   429  /*
   430   * initialize n to be register r of type t.
   431   */
   432  void
   433  nodreg(Node *n, Type *t, int r)
   434  {
   435  	if(t == T)
   436  		fatal("nodreg: t nil");
   437  
   438  	memset(n, 0, sizeof(*n));
   439  	n->op = OREGISTER;
   440  	n->addable = 1;
   441  	ullmancalc(n);
   442  	n->val.u.reg = r;
   443  	n->type = t;
   444  }
   445  
   446  /*
   447   * initialize n to be indirect of register r; n is type t.
   448   */
   449  void
   450  nodindreg(Node *n, Type *t, int r)
   451  {
   452  	nodreg(n, t, r);
   453  	n->op = OINDREG;
   454  }
   455  
   456  Node*
   457  nodarg(Type *t, int fp)
   458  {
   459  	Node *n;
   460  	NodeList *l;
   461  	Type *first;
   462  	Iter savet;
   463  
   464  	// entire argument struct, not just one arg
   465  	if(t->etype == TSTRUCT && t->funarg) {
   466  		n = nod(ONAME, N, N);
   467  		n->sym = lookup(".args");
   468  		n->type = t;
   469  		first = structfirst(&savet, &t);
   470  		if(first == nil)
   471  			fatal("nodarg: bad struct");
   472  		if(first->width == BADWIDTH)
   473  			fatal("nodarg: offset not computed for %T", t);
   474  		n->xoffset = first->width;
   475  		n->addable = 1;
   476  		goto fp;
   477  	}
   478  
   479  	if(t->etype != TFIELD)
   480  		fatal("nodarg: not field %T", t);
   481  
   482  	if(fp == 1) {
   483  		for(l=curfn->dcl; l; l=l->next) {
   484  			n = l->n;
   485  			if((n->class == PPARAM || n->class == PPARAMOUT) && !isblanksym(t->sym) && n->sym == t->sym)
   486  				return n;
   487  		}
   488  	}
   489  
   490  	n = nod(ONAME, N, N);
   491  	n->type = t->type;
   492  	n->sym = t->sym;
   493  	if(t->width == BADWIDTH)
   494  		fatal("nodarg: offset not computed for %T", t);
   495  	n->xoffset = t->width;
   496  	n->addable = 1;
   497  	n->orig = t->nname;
   498  
   499  fp:
   500  	// Rewrite argument named _ to __,
   501  	// or else the assignment to _ will be
   502  	// discarded during code generation.
   503  	if(isblank(n))
   504  		n->sym = lookup("__");
   505  
   506  	switch(fp) {
   507  	default:
   508  		fatal("nodarg %T %d", t, fp);
   509  
   510  	case 0:		// output arg for calling another function
   511  		n->op = OINDREG;
   512  		n->val.u.reg = REGSP;
   513  		n->xoffset += 4;
   514  		break;
   515  
   516  	case 1:		// input arg to current function
   517  		n->class = PPARAM;
   518  		break;
   519  	}
   520  	n->typecheck = 1;
   521  	return n;
   522  }
   523  
   524  /*
   525   * return constant i node.
   526   * overwritten by next call, but useful in calls to gins.
   527   */
   528  Node*
   529  ncon(uint32 i)
   530  {
   531  	static Node n;
   532  
   533  	if(n.type == T)
   534  		nodconst(&n, types[TUINT32], 0);
   535  	mpmovecfix(n.val.u.xval, i);
   536  	return &n;
   537  }
   538  
   539  /*
   540   * Is this node a memory operand?
   541   */
   542  int
   543  ismem(Node *n)
   544  {
   545  	switch(n->op) {
   546  	case OINDREG:
   547  	case ONAME:
   548  	case OPARAM:
   549  	case OCLOSUREVAR:
   550  		return 1;
   551  	}
   552  	return 0;
   553  }
   554  
   555  Node sclean[10];
   556  int nsclean;
   557  
   558  /*
   559   * n is a 64-bit value.  fill in lo and hi to refer to its 32-bit halves.
   560   */
   561  void
   562  split64(Node *n, Node *lo, Node *hi)
   563  {
   564  	Node n1;
   565  	int64 i;
   566  
   567  	if(!is64(n->type))
   568  		fatal("split64 %T", n->type);
   569  
   570  	if(nsclean >= nelem(sclean))
   571  		fatal("split64 clean");
   572  	sclean[nsclean].op = OEMPTY;
   573  	nsclean++;
   574  	switch(n->op) {
   575  	default:
   576  		if(!dotaddable(n, &n1)) {
   577  			igen(n, &n1, N);
   578  			sclean[nsclean-1] = n1;
   579  		}
   580  		n = &n1;
   581  		goto common;
   582  	case ONAME:
   583  		if(n->class == PPARAMREF) {
   584  			cgen(n->heapaddr, &n1);
   585  			sclean[nsclean-1] = n1;
   586  			// fall through.
   587  			n = &n1;
   588  		}
   589  		goto common;
   590  	case OINDREG:
   591  	common:
   592  		*lo = *n;
   593  		*hi = *n;
   594  		lo->type = types[TUINT32];
   595  		if(n->type->etype == TINT64)
   596  			hi->type = types[TINT32];
   597  		else
   598  			hi->type = types[TUINT32];
   599  		hi->xoffset += 4;
   600  		break;
   601  
   602  	case OLITERAL:
   603  		convconst(&n1, n->type, &n->val);
   604  		i = mpgetfix(n1.val.u.xval);
   605  		nodconst(lo, types[TUINT32], (uint32)i);
   606  		i >>= 32;
   607  		if(n->type->etype == TINT64)
   608  			nodconst(hi, types[TINT32], (int32)i);
   609  		else
   610  			nodconst(hi, types[TUINT32], (uint32)i);
   611  		break;
   612  	}
   613  }
   614  
   615  void
   616  splitclean(void)
   617  {
   618  	if(nsclean <= 0)
   619  		fatal("splitclean");
   620  	nsclean--;
   621  	if(sclean[nsclean].op != OEMPTY)
   622  		regfree(&sclean[nsclean]);
   623  }
   624  
   625  #define	CASE(a,b)	(((a)<<16)|((b)<<0))
   626  /*c2go int CASE(int, int); */
   627  
   628  void
   629  gmove(Node *f, Node *t)
   630  {
   631  	int a, ft, tt, fa, ta;
   632  	Type *cvt;
   633  	Node r1, r2, flo, fhi, tlo, thi, con;
   634  	Prog *p1;
   635  
   636  	if(debug['M'])
   637  		print("gmove %N -> %N\n", f, t);
   638  
   639  	ft = simsimtype(f->type);
   640  	tt = simsimtype(t->type);
   641  	cvt = t->type;
   642  
   643  	if(iscomplex[ft] || iscomplex[tt]) {
   644  		complexmove(f, t);
   645  		return;
   646  	}
   647  
   648  	// cannot have two memory operands;
   649  	// except 64-bit, which always copies via registers anyway.
   650  	if(!is64(f->type) && !is64(t->type) && ismem(f) && ismem(t))
   651  		goto hard;
   652  
   653  	// convert constant to desired type
   654  	if(f->op == OLITERAL) {
   655  		switch(tt) {
   656  		default:
   657  			convconst(&con, t->type, &f->val);
   658  			break;
   659  
   660  		case TINT16:
   661  		case TINT8:
   662  			convconst(&con, types[TINT32], &f->val);
   663  			regalloc(&r1, con.type, t);
   664  			gins(AMOVW, &con, &r1);
   665  			gmove(&r1, t);
   666  			regfree(&r1);
   667  			return;
   668  
   669  		case TUINT16:
   670  		case TUINT8:
   671  			convconst(&con, types[TUINT32], &f->val);
   672  			regalloc(&r1, con.type, t);
   673  			gins(AMOVW, &con, &r1);
   674  			gmove(&r1, t);
   675  			regfree(&r1);
   676  			return;
   677  		}
   678  
   679  		f = &con;
   680  		ft = simsimtype(con.type);
   681  
   682  		// constants can't move directly to memory
   683  		if(ismem(t) && !is64(t->type)) goto hard;
   684  	}
   685  
   686  	// value -> value copy, only one memory operand.
   687  	// figure out the instruction to use.
   688  	// break out of switch for one-instruction gins.
   689  	// goto rdst for "destination must be register".
   690  	// goto hard for "convert to cvt type first".
   691  	// otherwise handle and return.
   692  
   693  	switch(CASE(ft, tt)) {
   694  	default:
   695  		goto fatal;
   696  
   697  	/*
   698  	 * integer copy and truncate
   699  	 */
   700  	case CASE(TINT8, TINT8):	// same size
   701  		if(!ismem(f)) {
   702  			a = AMOVB;
   703  			break;
   704  		}
   705  	case CASE(TUINT8, TINT8):
   706  	case CASE(TINT16, TINT8):	// truncate
   707  	case CASE(TUINT16, TINT8):
   708  	case CASE(TINT32, TINT8):
   709  	case CASE(TUINT32, TINT8):
   710  		a = AMOVBS;
   711  		break;
   712  
   713  	case CASE(TUINT8, TUINT8):
   714  		if(!ismem(f)) {
   715  			a = AMOVB;
   716  			break;
   717  		}
   718  	case CASE(TINT8, TUINT8):
   719  	case CASE(TINT16, TUINT8):
   720  	case CASE(TUINT16, TUINT8):
   721  	case CASE(TINT32, TUINT8):
   722  	case CASE(TUINT32, TUINT8):
   723  		a = AMOVBU;
   724  		break;
   725  
   726  	case CASE(TINT64, TINT8):	// truncate low word
   727  	case CASE(TUINT64, TINT8):
   728  		a = AMOVBS;
   729  		goto trunc64;
   730  
   731  	case CASE(TINT64, TUINT8):
   732  	case CASE(TUINT64, TUINT8):
   733  		a = AMOVBU;
   734  		goto trunc64;
   735  
   736  	case CASE(TINT16, TINT16):	// same size
   737  		if(!ismem(f)) {
   738  			a = AMOVH;
   739  			break;
   740  		}
   741  	case CASE(TUINT16, TINT16):
   742  	case CASE(TINT32, TINT16):	// truncate
   743  	case CASE(TUINT32, TINT16):
   744  		a = AMOVHS;
   745  		break;
   746  
   747  	case CASE(TUINT16, TUINT16):
   748  		if(!ismem(f)) {
   749  			a = AMOVH;
   750  			break;
   751  		}
   752  	case CASE(TINT16, TUINT16):
   753  	case CASE(TINT32, TUINT16):
   754  	case CASE(TUINT32, TUINT16):
   755  		a = AMOVHU;
   756  		break;
   757  
   758  	case CASE(TINT64, TINT16):	// truncate low word
   759  	case CASE(TUINT64, TINT16):
   760  		a = AMOVHS;
   761  		goto trunc64;
   762  
   763  	case CASE(TINT64, TUINT16):
   764  	case CASE(TUINT64, TUINT16):
   765  		a = AMOVHU;
   766  		goto trunc64;
   767  
   768  	case CASE(TINT32, TINT32):	// same size
   769  	case CASE(TINT32, TUINT32):
   770  	case CASE(TUINT32, TINT32):
   771  	case CASE(TUINT32, TUINT32):
   772  		a = AMOVW;
   773  		break;
   774  
   775  	case CASE(TINT64, TINT32):	// truncate
   776  	case CASE(TUINT64, TINT32):
   777  	case CASE(TINT64, TUINT32):
   778  	case CASE(TUINT64, TUINT32):
   779  		split64(f, &flo, &fhi);
   780  		regalloc(&r1, t->type, N);
   781  		gins(AMOVW, &flo, &r1);
   782  		gins(AMOVW, &r1, t);
   783  		regfree(&r1);
   784  		splitclean();
   785  		return;
   786  
   787  	case CASE(TINT64, TINT64):	// same size
   788  	case CASE(TINT64, TUINT64):
   789  	case CASE(TUINT64, TINT64):
   790  	case CASE(TUINT64, TUINT64):
   791  		split64(f, &flo, &fhi);
   792  		split64(t, &tlo, &thi);
   793  		regalloc(&r1, flo.type, N);
   794  		regalloc(&r2, fhi.type, N);
   795  		gins(AMOVW, &flo, &r1);
   796  		gins(AMOVW, &fhi, &r2);
   797  		gins(AMOVW, &r1, &tlo);
   798  		gins(AMOVW, &r2, &thi);
   799  		regfree(&r1);
   800  		regfree(&r2);
   801  		splitclean();
   802  		splitclean();
   803  		return;
   804  
   805  	/*
   806  	 * integer up-conversions
   807  	 */
   808  	case CASE(TINT8, TINT16):	// sign extend int8
   809  	case CASE(TINT8, TUINT16):
   810  	case CASE(TINT8, TINT32):
   811  	case CASE(TINT8, TUINT32):
   812  		a = AMOVBS;
   813  		goto rdst;
   814  	case CASE(TINT8, TINT64):	// convert via int32
   815  	case CASE(TINT8, TUINT64):
   816  		cvt = types[TINT32];
   817  		goto hard;
   818  
   819  	case CASE(TUINT8, TINT16):	// zero extend uint8
   820  	case CASE(TUINT8, TUINT16):
   821  	case CASE(TUINT8, TINT32):
   822  	case CASE(TUINT8, TUINT32):
   823  		a = AMOVBU;
   824  		goto rdst;
   825  	case CASE(TUINT8, TINT64):	// convert via uint32
   826  	case CASE(TUINT8, TUINT64):
   827  		cvt = types[TUINT32];
   828  		goto hard;
   829  
   830  	case CASE(TINT16, TINT32):	// sign extend int16
   831  	case CASE(TINT16, TUINT32):
   832  		a = AMOVHS;
   833  		goto rdst;
   834  	case CASE(TINT16, TINT64):	// convert via int32
   835  	case CASE(TINT16, TUINT64):
   836  		cvt = types[TINT32];
   837  		goto hard;
   838  
   839  	case CASE(TUINT16, TINT32):	// zero extend uint16
   840  	case CASE(TUINT16, TUINT32):
   841  		a = AMOVHU;
   842  		goto rdst;
   843  	case CASE(TUINT16, TINT64):	// convert via uint32
   844  	case CASE(TUINT16, TUINT64):
   845  		cvt = types[TUINT32];
   846  		goto hard;
   847  
   848  	case CASE(TINT32, TINT64):	// sign extend int32
   849  	case CASE(TINT32, TUINT64):
   850  		split64(t, &tlo, &thi);
   851  		regalloc(&r1, tlo.type, N);
   852  		regalloc(&r2, thi.type, N);
   853  		gmove(f, &r1);
   854  		p1 = gins(AMOVW, &r1, &r2);
   855  		p1->from.type = D_SHIFT;
   856  		p1->from.offset = 2 << 5 | 31 << 7 | r1.val.u.reg; // r1->31
   857  		p1->from.reg = NREG;
   858  //print("gmove: %P\n", p1);
   859  		gins(AMOVW, &r1, &tlo);
   860  		gins(AMOVW, &r2, &thi);
   861  		regfree(&r1);
   862  		regfree(&r2);
   863  		splitclean();
   864  		return;
   865  
   866  	case CASE(TUINT32, TINT64):	// zero extend uint32
   867  	case CASE(TUINT32, TUINT64):
   868  		split64(t, &tlo, &thi);
   869  		gmove(f, &tlo);
   870  		regalloc(&r1, thi.type, N);
   871  		gins(AMOVW, ncon(0), &r1);
   872  		gins(AMOVW, &r1, &thi);
   873  		regfree(&r1);
   874  		splitclean();
   875  		return;
   876  
   877  	/*
   878  	* float to integer
   879  	*/
   880  	case CASE(TFLOAT32, TINT8):
   881  	case CASE(TFLOAT32, TUINT8):
   882  	case CASE(TFLOAT32, TINT16):
   883  	case CASE(TFLOAT32, TUINT16):
   884  	case CASE(TFLOAT32, TINT32):
   885  	case CASE(TFLOAT32, TUINT32):
   886  //	case CASE(TFLOAT32, TUINT64):
   887  
   888  	case CASE(TFLOAT64, TINT8):
   889  	case CASE(TFLOAT64, TUINT8):
   890  	case CASE(TFLOAT64, TINT16):
   891  	case CASE(TFLOAT64, TUINT16):
   892  	case CASE(TFLOAT64, TINT32):
   893  	case CASE(TFLOAT64, TUINT32):
   894  //	case CASE(TFLOAT64, TUINT64):
   895  		fa = AMOVF;
   896  		a = AMOVFW;
   897  		if(ft == TFLOAT64) {
   898  			fa = AMOVD;
   899  			a = AMOVDW;
   900  		}
   901  		ta = AMOVW;
   902  		switch(tt) {
   903  		case TINT8:
   904  			ta = AMOVBS;
   905  			break;
   906  		case TUINT8:
   907  			ta = AMOVBU;
   908  			break;
   909  		case TINT16:
   910  			ta = AMOVHS;
   911  			break;
   912  		case TUINT16:
   913  			ta = AMOVHU;
   914  			break;
   915  		}
   916  
   917  		regalloc(&r1, types[ft], f);
   918  		regalloc(&r2, types[tt], t);
   919  		gins(fa, f, &r1);	// load to fpu
   920  		p1 = gins(a, &r1, &r1);	// convert to w
   921  		switch(tt) {
   922  		case TUINT8:
   923  		case TUINT16:
   924  		case TUINT32:
   925  			p1->scond |= C_UBIT;
   926  		}
   927  		gins(AMOVW, &r1, &r2);	// copy to cpu
   928  		gins(ta, &r2, t);	// store
   929  		regfree(&r1);
   930  		regfree(&r2);
   931  		return;
   932  
   933  	/*
   934  	 * integer to float
   935  	 */
   936  	case CASE(TINT8, TFLOAT32):
   937  	case CASE(TUINT8, TFLOAT32):
   938  	case CASE(TINT16, TFLOAT32):
   939  	case CASE(TUINT16, TFLOAT32):
   940  	case CASE(TINT32, TFLOAT32):
   941  	case CASE(TUINT32, TFLOAT32):
   942  	case CASE(TINT8, TFLOAT64):
   943  	case CASE(TUINT8, TFLOAT64):
   944  	case CASE(TINT16, TFLOAT64):
   945  	case CASE(TUINT16, TFLOAT64):
   946  	case CASE(TINT32, TFLOAT64):
   947  	case CASE(TUINT32, TFLOAT64):
   948  		fa = AMOVW;
   949  		switch(ft) {
   950  		case TINT8:
   951  			fa = AMOVBS;
   952  			break;
   953  		case TUINT8:
   954  			fa = AMOVBU;
   955  			break;
   956  		case TINT16:
   957  			fa = AMOVHS;
   958  			break;
   959  		case TUINT16:
   960  			fa = AMOVHU;
   961  			break;
   962  		}
   963  		a = AMOVWF;
   964  		ta = AMOVF;
   965  		if(tt == TFLOAT64) {
   966  			a = AMOVWD;
   967  			ta = AMOVD;
   968  		}
   969  		regalloc(&r1, types[ft], f);
   970  		regalloc(&r2, types[tt], t);
   971  		gins(fa, f, &r1);	// load to cpu
   972  		gins(AMOVW, &r1, &r2);	// copy to fpu
   973  		p1 = gins(a, &r2, &r2);	// convert
   974  		switch(ft) {
   975  		case TUINT8:
   976  		case TUINT16:
   977  		case TUINT32:
   978  			p1->scond |= C_UBIT;
   979  		}
   980  		gins(ta, &r2, t);	// store
   981  		regfree(&r1);
   982  		regfree(&r2);
   983  		return;
   984  
   985  	case CASE(TUINT64, TFLOAT32):
   986  	case CASE(TUINT64, TFLOAT64):
   987  		fatal("gmove UINT64, TFLOAT not implemented");
   988  		return;
   989  
   990  
   991  	/*
   992  	 * float to float
   993  	 */
   994  	case CASE(TFLOAT32, TFLOAT32):
   995  		a = AMOVF;
   996  		break;
   997  
   998  	case CASE(TFLOAT64, TFLOAT64):
   999  		a = AMOVD;
  1000  		break;
  1001  
  1002  	case CASE(TFLOAT32, TFLOAT64):
  1003  		regalloc(&r1, types[TFLOAT64], t);
  1004  		gins(AMOVF, f, &r1);
  1005  		gins(AMOVFD, &r1, &r1);
  1006  		gins(AMOVD, &r1, t);
  1007  		regfree(&r1);
  1008  		return;
  1009  
  1010  	case CASE(TFLOAT64, TFLOAT32):
  1011  		regalloc(&r1, types[TFLOAT64], t);
  1012  		gins(AMOVD, f, &r1);
  1013  		gins(AMOVDF, &r1, &r1);
  1014  		gins(AMOVF, &r1, t);
  1015  		regfree(&r1);
  1016  		return;
  1017  	}
  1018  
  1019  	gins(a, f, t);
  1020  	return;
  1021  
  1022  rdst:
  1023  	// TODO(kaib): we almost always require a register dest anyway, this can probably be
  1024  	// removed.
  1025  	// requires register destination
  1026  	regalloc(&r1, t->type, t);
  1027  	gins(a, f, &r1);
  1028  	gmove(&r1, t);
  1029  	regfree(&r1);
  1030  	return;
  1031  
  1032  hard:
  1033  	// requires register intermediate
  1034  	regalloc(&r1, cvt, t);
  1035  	gmove(f, &r1);
  1036  	gmove(&r1, t);
  1037  	regfree(&r1);
  1038  	return;
  1039  
  1040  trunc64:
  1041  	// truncate 64 bit integer
  1042  	split64(f, &flo, &fhi);
  1043  	regalloc(&r1, t->type, N);
  1044  	gins(a, &flo, &r1);
  1045  	gins(a, &r1, t);
  1046  	regfree(&r1);
  1047  	splitclean();
  1048  	return;
  1049  
  1050  fatal:
  1051  	// should not happen
  1052  	fatal("gmove %N -> %N", f, t);
  1053  }
  1054  
  1055  int
  1056  samaddr(Node *f, Node *t)
  1057  {
  1058  
  1059  	if(f->op != t->op)
  1060  		return 0;
  1061  
  1062  	switch(f->op) {
  1063  	case OREGISTER:
  1064  		if(f->val.u.reg != t->val.u.reg)
  1065  			break;
  1066  		return 1;
  1067  	}
  1068  	return 0;
  1069  }
  1070  
  1071  /*
  1072   * generate one instruction:
  1073   *	as f, t
  1074   */
  1075  Prog*
  1076  gins(int as, Node *f, Node *t)
  1077  {
  1078  //	Node nod;
  1079  //	int32 v;
  1080  	Prog *p;
  1081  	Addr af, at;
  1082  
  1083  	if(f != N && f->op == OINDEX) {
  1084  		fatal("gins OINDEX not implemented");
  1085  //		regalloc(&nod, &regnode, Z);
  1086  //		v = constnode.vconst;
  1087  //		cgen(f->right, &nod);
  1088  //		constnode.vconst = v;
  1089  //		idx.reg = nod.reg;
  1090  //		regfree(&nod);
  1091  	}
  1092  	if(t != N && t->op == OINDEX) {
  1093  		fatal("gins OINDEX not implemented");
  1094  //		regalloc(&nod, &regnode, Z);
  1095  //		v = constnode.vconst;
  1096  //		cgen(t->right, &nod);
  1097  //		constnode.vconst = v;
  1098  //		idx.reg = nod.reg;
  1099  //		regfree(&nod);
  1100  	}
  1101  
  1102  	memset(&af, 0, sizeof af);
  1103  	memset(&at, 0, sizeof at);
  1104  	if(f != N)
  1105  		naddr(f, &af, 1);
  1106  	if(t != N)
  1107  		naddr(t, &at, 1);
  1108  	p = prog(as);
  1109  	if(f != N)
  1110  		p->from = af;
  1111  	if(t != N)
  1112  		p->to = at;
  1113  	if(debug['g'])
  1114  		print("%P\n", p);
  1115  	return p;
  1116  }
  1117  
  1118  /*
  1119   * insert n into reg slot of p
  1120   */
  1121  void
  1122  raddr(Node *n, Prog *p)
  1123  {
  1124  	Addr a;
  1125  
  1126  	naddr(n, &a, 1);
  1127  	if(a.type != D_REG && a.type != D_FREG) {
  1128  		if(n)
  1129  			fatal("bad in raddr: %O", n->op);
  1130  		else
  1131  			fatal("bad in raddr: <null>");
  1132  		p->reg = NREG;
  1133  	} else
  1134  		p->reg = a.reg;
  1135  }
  1136  
  1137  /* generate a comparison
  1138  TODO(kaib): one of the args can actually be a small constant. relax the constraint and fix call sites.
  1139   */
  1140  Prog*
  1141  gcmp(int as, Node *lhs, Node *rhs)
  1142  {
  1143  	Prog *p;
  1144  
  1145  	if(lhs->op != OREGISTER)
  1146  		fatal("bad operands to gcmp: %O %O", lhs->op, rhs->op);
  1147  
  1148  	p = gins(as, rhs, N);
  1149  	raddr(lhs, p);
  1150  	return p;
  1151  }
  1152  
  1153  /* generate a constant shift
  1154   * arm encodes a shift by 32 as 0, thus asking for 0 shift is illegal.
  1155  */
  1156  Prog*
  1157  gshift(int as, Node *lhs, int32 stype, int32 sval, Node *rhs)
  1158  {
  1159  	Prog *p;
  1160  
  1161  	if(sval <= 0 || sval > 32)
  1162  		fatal("bad shift value: %d", sval);
  1163  
  1164  	sval = sval&0x1f;
  1165  
  1166  	p = gins(as, N, rhs);
  1167  	p->from.type = D_SHIFT;
  1168  	p->from.offset = stype | sval<<7 | lhs->val.u.reg;
  1169  	return p;
  1170  }
  1171  
  1172  /* generate a register shift
  1173  */
  1174  Prog *
  1175  gregshift(int as, Node *lhs, int32 stype, Node *reg, Node *rhs)
  1176  {
  1177  	Prog *p;
  1178  	p = gins(as, N, rhs);
  1179  	p->from.type = D_SHIFT;
  1180  	p->from.offset = stype | reg->val.u.reg << 8 | 1<<4 | lhs->val.u.reg;
  1181  	return p;
  1182  }
  1183  
  1184  /*
  1185   * generate code to compute n;
  1186   * make a refer to result.
  1187   */
  1188  void
  1189  naddr(Node *n, Addr *a, int canemitcode)
  1190  {
  1191  	Sym *s;
  1192  
  1193  	a->type = D_NONE;
  1194  	a->name = D_NONE;
  1195  	a->reg = NREG;
  1196  	a->gotype = nil;
  1197  	a->node = N;
  1198  	a->etype = 0;
  1199  	if(n == N)
  1200  		return;
  1201  
  1202  	if(n->type != T && n->type->etype != TIDEAL) {
  1203  		dowidth(n->type);
  1204  		a->width = n->type->width;
  1205  	}
  1206  
  1207  	switch(n->op) {
  1208  	default:
  1209  		fatal("naddr: bad %O %D", n->op, a);
  1210  		break;
  1211  
  1212  	case OREGISTER:
  1213  		if(n->val.u.reg <= REGALLOC_RMAX) {
  1214  			a->type = D_REG;
  1215  			a->reg = n->val.u.reg;
  1216  		} else {
  1217  			a->type = D_FREG;
  1218  			a->reg = n->val.u.reg - REGALLOC_F0;
  1219  		}
  1220  		a->sym = nil;
  1221  		break;
  1222  
  1223  	case OINDEX:
  1224  	case OIND:
  1225  		fatal("naddr: OINDEX");
  1226  //		naddr(n->left, a);
  1227  //		if(a->type >= D_AX && a->type <= D_DI)
  1228  //			a->type += D_INDIR;
  1229  //		else
  1230  //		if(a->type == D_CONST)
  1231  //			a->type = D_NONE+D_INDIR;
  1232  //		else
  1233  //		if(a->type == D_ADDR) {
  1234  //			a->type = a->index;
  1235  //			a->index = D_NONE;
  1236  //		} else
  1237  //			goto bad;
  1238  //		if(n->op == OINDEX) {
  1239  //			a->index = idx.reg;
  1240  //			a->scale = n->scale;
  1241  //		}
  1242  //		break;
  1243  
  1244  	case OINDREG:
  1245  		a->type = D_OREG;
  1246  		a->reg = n->val.u.reg;
  1247  		a->sym = linksym(n->sym);
  1248  		a->offset = n->xoffset;
  1249  		break;
  1250  
  1251  	case OPARAM:
  1252  		// n->left is PHEAP ONAME for stack parameter.
  1253  		// compute address of actual parameter on stack.
  1254  		a->etype = simtype[n->left->type->etype];
  1255  		a->width = n->left->type->width;
  1256  		a->offset = n->xoffset;
  1257  		a->sym = linksym(n->left->sym);
  1258  		a->type = D_OREG;
  1259  		a->name = D_PARAM;
  1260  		a->node = n->left->orig;
  1261  		break;
  1262  	
  1263  	case OCLOSUREVAR:
  1264  		if(!curfn->needctxt)
  1265  			fatal("closurevar without needctxt");
  1266  		a->type = D_OREG;
  1267  		a->reg = 7;
  1268  		a->offset = n->xoffset;
  1269  		a->sym = nil;
  1270  		break;		
  1271  
  1272  	case OCFUNC:
  1273  		naddr(n->left, a, canemitcode);
  1274  		a->sym = linksym(n->left->sym);
  1275  		break;
  1276  
  1277  	case ONAME:
  1278  		a->etype = 0;
  1279  		a->width = 0;
  1280  		a->reg = NREG;
  1281  		if(n->type != T) {
  1282  			a->etype = simtype[n->type->etype];
  1283  			a->width = n->type->width;
  1284  		}
  1285  		a->offset = n->xoffset;
  1286  		s = n->sym;
  1287  		a->node = n->orig;
  1288  		//if(a->node >= (Node*)&n)
  1289  		//	fatal("stack node");
  1290  		if(s == S)
  1291  			s = lookup(".noname");
  1292  		if(n->method) {
  1293  			if(n->type != T)
  1294  			if(n->type->sym != S)
  1295  			if(n->type->sym->pkg != nil)
  1296  				s = pkglookup(s->name, n->type->sym->pkg);
  1297  		}
  1298  
  1299  		a->type = D_OREG;
  1300  		switch(n->class) {
  1301  		default:
  1302  			fatal("naddr: ONAME class %S %d\n", n->sym, n->class);
  1303  		case PEXTERN:
  1304  			a->name = D_EXTERN;
  1305  			break;
  1306  		case PAUTO:
  1307  			a->name = D_AUTO;
  1308  			break;
  1309  		case PPARAM:
  1310  		case PPARAMOUT:
  1311  			a->name = D_PARAM;
  1312  			break;
  1313  		case PFUNC:
  1314  			a->name = D_EXTERN;
  1315  			a->type = D_CONST;
  1316  			s = funcsym(s);
  1317  			break;
  1318  		}
  1319  		a->sym = linksym(s);
  1320  		break;
  1321  
  1322  	case OLITERAL:
  1323  		switch(n->val.ctype) {
  1324  		default:
  1325  			fatal("naddr: const %lT", n->type);
  1326  			break;
  1327  		case CTFLT:
  1328  			a->type = D_FCONST;
  1329  			a->u.dval = mpgetflt(n->val.u.fval);
  1330  			break;
  1331  		case CTINT:
  1332  		case CTRUNE:
  1333  			a->sym = nil;
  1334  			a->type = D_CONST;
  1335  			a->offset = mpgetfix(n->val.u.xval);
  1336  			break;
  1337  		case CTSTR:
  1338  			datagostring(n->val.u.sval, a);
  1339  			break;
  1340  		case CTBOOL:
  1341  			a->sym = nil;
  1342  			a->type = D_CONST;
  1343  			a->offset = n->val.u.bval;
  1344  			break;
  1345  		case CTNIL:
  1346  			a->sym = nil;
  1347  			a->type = D_CONST;
  1348  			a->offset = 0;
  1349  			break;
  1350  		}
  1351  		break;
  1352  
  1353  	case OITAB:
  1354  		// itable of interface value
  1355  		naddr(n->left, a, canemitcode);
  1356  		a->etype = TINT32;
  1357  		if(a->type == D_CONST && a->offset == 0)
  1358  			break;	// len(nil)
  1359  		break;
  1360  
  1361  	case OSPTR:
  1362  		// pointer in a string or slice
  1363  		naddr(n->left, a, canemitcode);
  1364  		if(a->type == D_CONST && a->offset == 0)
  1365  			break;	// ptr(nil)
  1366  		a->etype = simtype[tptr];
  1367  		a->offset += Array_array;
  1368  		a->width = widthptr;
  1369  		break;
  1370  
  1371  	case OLEN:
  1372  		// len of string or slice
  1373  		naddr(n->left, a, canemitcode);
  1374  		a->etype = TINT32;
  1375  		if(a->type == D_CONST && a->offset == 0)
  1376  			break;	// len(nil)
  1377  		a->offset += Array_nel;
  1378  		break;
  1379  
  1380  	case OCAP:
  1381  		// cap of string or slice
  1382  		naddr(n->left, a, canemitcode);
  1383  		a->etype = TINT32;
  1384  		if(a->type == D_CONST && a->offset == 0)
  1385  			break;	// cap(nil)
  1386  		a->offset += Array_cap;
  1387  		break;
  1388  
  1389  	case OADDR:
  1390  		naddr(n->left, a, canemitcode);
  1391  		a->etype = tptr;
  1392  		switch(a->type) {
  1393  		case D_OREG:
  1394  			a->type = D_CONST;
  1395  			break;
  1396  
  1397  		case D_REG:
  1398  		case D_CONST:
  1399  			break;
  1400  		
  1401  		default:
  1402  			fatal("naddr: OADDR %d\n", a->type);
  1403  		}
  1404  	}
  1405  	
  1406  	if(a->width < 0)
  1407  		fatal("naddr: bad width for %N -> %D", n, a);
  1408  }
  1409  
  1410  /*
  1411   * return Axxx for Oxxx on type t.
  1412   */
  1413  int
  1414  optoas(int op, Type *t)
  1415  {
  1416  	int a;
  1417  
  1418  	if(t == T)
  1419  		fatal("optoas: t is nil");
  1420  
  1421  	a = AGOK;
  1422  	switch(CASE(op, simtype[t->etype])) {
  1423  	default:
  1424  		fatal("optoas: no entry %O-%T etype %T simtype %T", op, t, types[t->etype], types[simtype[t->etype]]);
  1425  		break;
  1426  
  1427  /*	case CASE(OADDR, TPTR32):
  1428  		a = ALEAL;
  1429  		break;
  1430  
  1431  	case CASE(OADDR, TPTR64):
  1432  		a = ALEAQ;
  1433  		break;
  1434  */
  1435  	// TODO(kaib): make sure the conditional branches work on all edge cases
  1436  	case CASE(OEQ, TBOOL):
  1437  	case CASE(OEQ, TINT8):
  1438  	case CASE(OEQ, TUINT8):
  1439  	case CASE(OEQ, TINT16):
  1440  	case CASE(OEQ, TUINT16):
  1441  	case CASE(OEQ, TINT32):
  1442  	case CASE(OEQ, TUINT32):
  1443  	case CASE(OEQ, TINT64):
  1444  	case CASE(OEQ, TUINT64):
  1445  	case CASE(OEQ, TPTR32):
  1446  	case CASE(OEQ, TPTR64):
  1447  	case CASE(OEQ, TFLOAT32):
  1448  	case CASE(OEQ, TFLOAT64):
  1449  		a = ABEQ;
  1450  		break;
  1451  
  1452  	case CASE(ONE, TBOOL):
  1453  	case CASE(ONE, TINT8):
  1454  	case CASE(ONE, TUINT8):
  1455  	case CASE(ONE, TINT16):
  1456  	case CASE(ONE, TUINT16):
  1457  	case CASE(ONE, TINT32):
  1458  	case CASE(ONE, TUINT32):
  1459  	case CASE(ONE, TINT64):
  1460  	case CASE(ONE, TUINT64):
  1461  	case CASE(ONE, TPTR32):
  1462  	case CASE(ONE, TPTR64):
  1463  	case CASE(ONE, TFLOAT32):
  1464  	case CASE(ONE, TFLOAT64):
  1465  		a = ABNE;
  1466  		break;
  1467  
  1468  	case CASE(OLT, TINT8):
  1469  	case CASE(OLT, TINT16):
  1470  	case CASE(OLT, TINT32):
  1471  	case CASE(OLT, TINT64):
  1472  	case CASE(OLT, TFLOAT32):
  1473  	case CASE(OLT, TFLOAT64):
  1474  		a = ABLT;
  1475  		break;
  1476  
  1477  	case CASE(OLT, TUINT8):
  1478  	case CASE(OLT, TUINT16):
  1479  	case CASE(OLT, TUINT32):
  1480  	case CASE(OLT, TUINT64):
  1481  		a = ABLO;
  1482  		break;
  1483  
  1484  	case CASE(OLE, TINT8):
  1485  	case CASE(OLE, TINT16):
  1486  	case CASE(OLE, TINT32):
  1487  	case CASE(OLE, TINT64):
  1488  	case CASE(OLE, TFLOAT32):
  1489  	case CASE(OLE, TFLOAT64):
  1490  		a = ABLE;
  1491  		break;
  1492  
  1493  	case CASE(OLE, TUINT8):
  1494  	case CASE(OLE, TUINT16):
  1495  	case CASE(OLE, TUINT32):
  1496  	case CASE(OLE, TUINT64):
  1497  		a = ABLS;
  1498  		break;
  1499  
  1500  	case CASE(OGT, TINT8):
  1501  	case CASE(OGT, TINT16):
  1502  	case CASE(OGT, TINT32):
  1503  	case CASE(OGT, TINT64):
  1504  	case CASE(OGT, TFLOAT32):
  1505  	case CASE(OGT, TFLOAT64):
  1506  		a = ABGT;
  1507  		break;
  1508  
  1509  	case CASE(OGT, TUINT8):
  1510  	case CASE(OGT, TUINT16):
  1511  	case CASE(OGT, TUINT32):
  1512  	case CASE(OGT, TUINT64):
  1513  		a = ABHI;
  1514  		break;
  1515  
  1516  	case CASE(OGE, TINT8):
  1517  	case CASE(OGE, TINT16):
  1518  	case CASE(OGE, TINT32):
  1519  	case CASE(OGE, TINT64):
  1520  	case CASE(OGE, TFLOAT32):
  1521  	case CASE(OGE, TFLOAT64):
  1522  		a = ABGE;
  1523  		break;
  1524  
  1525  	case CASE(OGE, TUINT8):
  1526  	case CASE(OGE, TUINT16):
  1527  	case CASE(OGE, TUINT32):
  1528  	case CASE(OGE, TUINT64):
  1529  		a = ABHS;
  1530  		break;
  1531  
  1532  	case CASE(OCMP, TBOOL):
  1533  	case CASE(OCMP, TINT8):
  1534  	case CASE(OCMP, TUINT8):
  1535  	case CASE(OCMP, TINT16):
  1536  	case CASE(OCMP, TUINT16):
  1537  	case CASE(OCMP, TINT32):
  1538  	case CASE(OCMP, TUINT32):
  1539  	case CASE(OCMP, TPTR32):
  1540  		a = ACMP;
  1541  		break;
  1542  
  1543  	case CASE(OCMP, TFLOAT32):
  1544  		a = ACMPF;
  1545  		break;
  1546  
  1547  	case CASE(OCMP, TFLOAT64):
  1548  		a = ACMPD;
  1549  		break;
  1550  
  1551  	case CASE(OAS, TBOOL):
  1552  		a = AMOVB;
  1553  		break;
  1554  
  1555  	case CASE(OAS, TINT8):
  1556  		a = AMOVBS;
  1557  		break;
  1558  
  1559  	case CASE(OAS, TUINT8):
  1560  		a = AMOVBU;
  1561  		break;
  1562  
  1563  	case CASE(OAS, TINT16):
  1564  		a = AMOVHS;
  1565  		break;
  1566  
  1567  	case CASE(OAS, TUINT16):
  1568  		a = AMOVHU;
  1569  		break;
  1570  
  1571  	case CASE(OAS, TINT32):
  1572  	case CASE(OAS, TUINT32):
  1573  	case CASE(OAS, TPTR32):
  1574  		a = AMOVW;
  1575  		break;
  1576  
  1577  	case CASE(OAS, TFLOAT32):
  1578  		a = AMOVF;
  1579  		break;
  1580  
  1581  	case CASE(OAS, TFLOAT64):
  1582  		a = AMOVD;
  1583  		break;
  1584  
  1585  	case CASE(OADD, TINT8):
  1586  	case CASE(OADD, TUINT8):
  1587  	case CASE(OADD, TINT16):
  1588  	case CASE(OADD, TUINT16):
  1589  	case CASE(OADD, TINT32):
  1590  	case CASE(OADD, TUINT32):
  1591  	case CASE(OADD, TPTR32):
  1592  		a = AADD;
  1593  		break;
  1594  
  1595  	case CASE(OADD, TFLOAT32):
  1596  		a = AADDF;
  1597  		break;
  1598  
  1599  	case CASE(OADD, TFLOAT64):
  1600  		a = AADDD;
  1601  		break;
  1602  
  1603  	case CASE(OSUB, TINT8):
  1604  	case CASE(OSUB, TUINT8):
  1605  	case CASE(OSUB, TINT16):
  1606  	case CASE(OSUB, TUINT16):
  1607  	case CASE(OSUB, TINT32):
  1608  	case CASE(OSUB, TUINT32):
  1609  	case CASE(OSUB, TPTR32):
  1610  		a = ASUB;
  1611  		break;
  1612  
  1613  	case CASE(OSUB, TFLOAT32):
  1614  		a = ASUBF;
  1615  		break;
  1616  
  1617  	case CASE(OSUB, TFLOAT64):
  1618  		a = ASUBD;
  1619  		break;
  1620  
  1621  	case CASE(OMINUS, TINT8):
  1622  	case CASE(OMINUS, TUINT8):
  1623  	case CASE(OMINUS, TINT16):
  1624  	case CASE(OMINUS, TUINT16):
  1625  	case CASE(OMINUS, TINT32):
  1626  	case CASE(OMINUS, TUINT32):
  1627  	case CASE(OMINUS, TPTR32):
  1628  		a = ARSB;
  1629  		break;
  1630  
  1631  	case CASE(OAND, TINT8):
  1632  	case CASE(OAND, TUINT8):
  1633  	case CASE(OAND, TINT16):
  1634  	case CASE(OAND, TUINT16):
  1635  	case CASE(OAND, TINT32):
  1636  	case CASE(OAND, TUINT32):
  1637  	case CASE(OAND, TPTR32):
  1638  		a = AAND;
  1639  		break;
  1640  
  1641  	case CASE(OOR, TINT8):
  1642  	case CASE(OOR, TUINT8):
  1643  	case CASE(OOR, TINT16):
  1644  	case CASE(OOR, TUINT16):
  1645  	case CASE(OOR, TINT32):
  1646  	case CASE(OOR, TUINT32):
  1647  	case CASE(OOR, TPTR32):
  1648  		a = AORR;
  1649  		break;
  1650  
  1651  	case CASE(OXOR, TINT8):
  1652  	case CASE(OXOR, TUINT8):
  1653  	case CASE(OXOR, TINT16):
  1654  	case CASE(OXOR, TUINT16):
  1655  	case CASE(OXOR, TINT32):
  1656  	case CASE(OXOR, TUINT32):
  1657  	case CASE(OXOR, TPTR32):
  1658  		a = AEOR;
  1659  		break;
  1660  
  1661  	case CASE(OLSH, TINT8):
  1662  	case CASE(OLSH, TUINT8):
  1663  	case CASE(OLSH, TINT16):
  1664  	case CASE(OLSH, TUINT16):
  1665  	case CASE(OLSH, TINT32):
  1666  	case CASE(OLSH, TUINT32):
  1667  	case CASE(OLSH, TPTR32):
  1668  		a = ASLL;
  1669  		break;
  1670  
  1671  	case CASE(ORSH, TUINT8):
  1672  	case CASE(ORSH, TUINT16):
  1673  	case CASE(ORSH, TUINT32):
  1674  	case CASE(ORSH, TPTR32):
  1675  		a = ASRL;
  1676  		break;
  1677  
  1678  	case CASE(ORSH, TINT8):
  1679  	case CASE(ORSH, TINT16):
  1680  	case CASE(ORSH, TINT32):
  1681  		a = ASRA;
  1682  		break;
  1683  
  1684  	case CASE(OMUL, TUINT8):
  1685  	case CASE(OMUL, TUINT16):
  1686  	case CASE(OMUL, TUINT32):
  1687  	case CASE(OMUL, TPTR32):
  1688  		a = AMULU;
  1689  		break;
  1690  
  1691  	case CASE(OMUL, TINT8):
  1692  	case CASE(OMUL, TINT16):
  1693  	case CASE(OMUL, TINT32):
  1694  		a = AMUL;
  1695  		break;
  1696  
  1697  	case CASE(OMUL, TFLOAT32):
  1698  		a = AMULF;
  1699  		break;
  1700  
  1701  	case CASE(OMUL, TFLOAT64):
  1702  		a = AMULD;
  1703  		break;
  1704  
  1705  	case CASE(ODIV, TUINT8):
  1706  	case CASE(ODIV, TUINT16):
  1707  	case CASE(ODIV, TUINT32):
  1708  	case CASE(ODIV, TPTR32):
  1709  		a = ADIVU;
  1710  		break;
  1711  
  1712  	case CASE(ODIV, TINT8):
  1713  	case CASE(ODIV, TINT16):
  1714  	case CASE(ODIV, TINT32):
  1715  		a = ADIV;
  1716  		break;
  1717  
  1718  	case CASE(OMOD, TUINT8):
  1719  	case CASE(OMOD, TUINT16):
  1720  	case CASE(OMOD, TUINT32):
  1721  	case CASE(OMOD, TPTR32):
  1722  		a = AMODU;
  1723  		break;
  1724  
  1725  	case CASE(OMOD, TINT8):
  1726  	case CASE(OMOD, TINT16):
  1727  	case CASE(OMOD, TINT32):
  1728  		a = AMOD;
  1729  		break;
  1730  
  1731  //	case CASE(OEXTEND, TINT16):
  1732  //		a = ACWD;
  1733  //		break;
  1734  
  1735  //	case CASE(OEXTEND, TINT32):
  1736  //		a = ACDQ;
  1737  //		break;
  1738  
  1739  //	case CASE(OEXTEND, TINT64):
  1740  //		a = ACQO;
  1741  //		break;
  1742  
  1743  	case CASE(ODIV, TFLOAT32):
  1744  		a = ADIVF;
  1745  		break;
  1746  
  1747  	case CASE(ODIV, TFLOAT64):
  1748  		a = ADIVD;
  1749  		break;
  1750  
  1751  	}
  1752  	return a;
  1753  }
  1754  
  1755  enum
  1756  {
  1757  	ODynam	= 1<<0,
  1758  	OPtrto	= 1<<1,
  1759  };
  1760  
  1761  static	Node	clean[20];
  1762  static	int	cleani = 0;
  1763  
  1764  void
  1765  sudoclean(void)
  1766  {
  1767  	if(clean[cleani-1].op != OEMPTY)
  1768  		regfree(&clean[cleani-1]);
  1769  	if(clean[cleani-2].op != OEMPTY)
  1770  		regfree(&clean[cleani-2]);
  1771  	cleani -= 2;
  1772  }
  1773  
  1774  int
  1775  dotaddable(Node *n, Node *n1)
  1776  {
  1777  	int o;
  1778  	int64 oary[10];
  1779  	Node *nn;
  1780  
  1781  	if(n->op != ODOT)
  1782  		return 0;
  1783  
  1784  	o = dotoffset(n, oary, &nn);
  1785  	if(nn != N && nn->addable && o == 1 && oary[0] >= 0) {
  1786  		*n1 = *nn;
  1787  		n1->type = n->type;
  1788  		n1->xoffset += oary[0];
  1789  		return 1;
  1790  	}
  1791  	return 0;
  1792  }
  1793  
  1794  /*
  1795   * generate code to compute address of n,
  1796   * a reference to a (perhaps nested) field inside
  1797   * an array or struct.
  1798   * return 0 on failure, 1 on success.
  1799   * on success, leaves usable address in a.
  1800   *
  1801   * caller is responsible for calling sudoclean
  1802   * after successful sudoaddable,
  1803   * to release the register used for a.
  1804   */
  1805  int
  1806  sudoaddable(int as, Node *n, Addr *a, int *w)
  1807  {
  1808  	int o, i;
  1809  	int64 oary[10];
  1810  	int64 v;
  1811  	Node n1, n2, n3, n4, *nn, *l, *r;
  1812  	Node *reg, *reg1;
  1813  	Prog *p1, *p2;
  1814  	Type *t;
  1815  
  1816  	if(n->type == T)
  1817  		return 0;
  1818  
  1819  	switch(n->op) {
  1820  	case OLITERAL:
  1821  		if(!isconst(n, CTINT))
  1822  			break;
  1823  		v = mpgetfix(n->val.u.xval);
  1824  		if(v >= 32000 || v <= -32000)
  1825  			break;
  1826  		goto lit;
  1827  
  1828  	case ODOT:
  1829  	case ODOTPTR:
  1830  		cleani += 2;
  1831  		reg = &clean[cleani-1];
  1832  		reg1 = &clean[cleani-2];
  1833  		reg->op = OEMPTY;
  1834  		reg1->op = OEMPTY;
  1835  		goto odot;
  1836  
  1837  	case OINDEX:
  1838  		return 0;
  1839  		// disabled: OINDEX case is now covered by agenr
  1840  		// for a more suitable register allocation pattern.
  1841  		if(n->left->type->etype == TSTRING)
  1842  			return 0;
  1843  		cleani += 2;
  1844  		reg = &clean[cleani-1];
  1845  		reg1 = &clean[cleani-2];
  1846  		reg->op = OEMPTY;
  1847  		reg1->op = OEMPTY;
  1848  		goto oindex;
  1849  	}
  1850  	return 0;
  1851  
  1852  lit:
  1853  	switch(as) {
  1854  	default:
  1855  		return 0;
  1856  	case AADD: case ASUB: case AAND: case AORR: case AEOR:
  1857  	case AMOVB: case AMOVBS: case AMOVBU:
  1858  	case AMOVH: case AMOVHS: case AMOVHU:
  1859  	case AMOVW:
  1860  		break;
  1861  	}
  1862  
  1863  	cleani += 2;
  1864  	reg = &clean[cleani-1];
  1865  	reg1 = &clean[cleani-2];
  1866  	reg->op = OEMPTY;
  1867  	reg1->op = OEMPTY;
  1868  	naddr(n, a, 1);
  1869  	goto yes;
  1870  
  1871  odot:
  1872  	o = dotoffset(n, oary, &nn);
  1873  	if(nn == N)
  1874  		goto no;
  1875  
  1876  	if(nn->addable && o == 1 && oary[0] >= 0) {
  1877  		// directly addressable set of DOTs
  1878  		n1 = *nn;
  1879  		n1.type = n->type;
  1880  		n1.xoffset += oary[0];
  1881  		naddr(&n1, a, 1);
  1882  		goto yes;
  1883  	}
  1884  
  1885  	regalloc(reg, types[tptr], N);
  1886  	n1 = *reg;
  1887  	n1.op = OINDREG;
  1888  	if(oary[0] >= 0) {
  1889  		agen(nn, reg);
  1890  		n1.xoffset = oary[0];
  1891  	} else {
  1892  		cgen(nn, reg);
  1893  		cgen_checknil(reg);
  1894  		n1.xoffset = -(oary[0]+1);
  1895  	}
  1896  
  1897  	for(i=1; i<o; i++) {
  1898  		if(oary[i] >= 0)
  1899  			fatal("can't happen");
  1900  		gins(AMOVW, &n1, reg);
  1901  		cgen_checknil(reg);
  1902  		n1.xoffset = -(oary[i]+1);
  1903  	}
  1904  
  1905  	a->type = D_NONE;
  1906  	a->name = D_NONE;
  1907  	n1.type = n->type;
  1908  	naddr(&n1, a, 1);
  1909  	goto yes;
  1910  
  1911  oindex:
  1912  	l = n->left;
  1913  	r = n->right;
  1914  	if(l->ullman >= UINF && r->ullman >= UINF)
  1915  		goto no;
  1916  
  1917  	// set o to type of array
  1918  	o = 0;
  1919  	if(isptr[l->type->etype]) {
  1920  		o += OPtrto;
  1921  		if(l->type->type->etype != TARRAY)
  1922  			fatal("not ptr ary");
  1923  		if(l->type->type->bound < 0)
  1924  			o += ODynam;
  1925  	} else {
  1926  		if(l->type->etype != TARRAY)
  1927  			fatal("not ary");
  1928  		if(l->type->bound < 0)
  1929  			o += ODynam;
  1930  	}
  1931  
  1932  	*w = n->type->width;
  1933  	if(isconst(r, CTINT))
  1934  		goto oindex_const;
  1935  
  1936  	switch(*w) {
  1937  	default:
  1938  		goto no;
  1939  	case 1:
  1940  	case 2:
  1941  	case 4:
  1942  	case 8:
  1943  		break;
  1944  	}
  1945  
  1946  	// load the array (reg)
  1947  	if(l->ullman > r->ullman) {
  1948  		regalloc(reg, types[tptr], N);
  1949  		if(o & OPtrto) {
  1950  			cgen(l, reg);
  1951  			cgen_checknil(reg);
  1952  		} else
  1953  			agen(l, reg);
  1954  	}
  1955  
  1956  	// load the index (reg1)
  1957  	t = types[TUINT32];
  1958  	if(issigned[r->type->etype])
  1959  		t = types[TINT32];
  1960  	regalloc(reg1, t, N);
  1961  	regalloc(&n3, types[TINT32], reg1);
  1962  	p2 = cgenindex(r, &n3, debug['B'] || n->bounded);
  1963  	gmove(&n3, reg1);
  1964  	regfree(&n3);
  1965  
  1966  	// load the array (reg)
  1967  	if(l->ullman <= r->ullman) {
  1968  		regalloc(reg, types[tptr], N);
  1969  		if(o & OPtrto) {
  1970  			cgen(l, reg);
  1971  			cgen_checknil(reg);
  1972  		} else
  1973  			agen(l, reg);
  1974  	}
  1975  
  1976  	// check bounds
  1977  	if(!debug['B']) {
  1978  		if(o & ODynam) {
  1979  			n2 = *reg;
  1980  			n2.op = OINDREG;
  1981  			n2.type = types[tptr];
  1982  			n2.xoffset = Array_nel;
  1983  		} else {
  1984  			if(o & OPtrto)
  1985  				nodconst(&n2, types[TUINT32], l->type->type->bound);
  1986  			else
  1987  				nodconst(&n2, types[TUINT32], l->type->bound);
  1988  		}
  1989  		regalloc(&n3, n2.type, N);
  1990  		cgen(&n2, &n3);
  1991  		gcmp(optoas(OCMP, types[TUINT32]), reg1, &n3);
  1992  		regfree(&n3);
  1993  		p1 = gbranch(optoas(OLT, types[TUINT32]), T, +1);
  1994  		if(p2)
  1995  			patch(p2, pc);
  1996  		ginscall(panicindex, 0);
  1997  		patch(p1, pc);
  1998  	}
  1999  
  2000  	if(o & ODynam) {
  2001  		n2 = *reg;
  2002  		n2.op = OINDREG;
  2003  		n2.type = types[tptr];
  2004  		n2.xoffset = Array_array;
  2005  		gmove(&n2, reg);
  2006  	}
  2007  
  2008  	switch(*w) {
  2009  	case 1:
  2010  		gins(AADD, reg1, reg);
  2011  		break;
  2012  	case 2:
  2013  		gshift(AADD, reg1, SHIFT_LL, 1, reg);
  2014  		break;
  2015  	case 4:
  2016  		gshift(AADD, reg1, SHIFT_LL, 2, reg);
  2017  		break;
  2018  	case 8:
  2019  		gshift(AADD, reg1, SHIFT_LL, 3, reg);
  2020  		break;
  2021  	}
  2022  
  2023  	naddr(reg1, a, 1);
  2024  	a->type = D_OREG;
  2025  	a->reg = reg->val.u.reg;
  2026  	a->offset = 0;
  2027  	goto yes;
  2028  
  2029  oindex_const:
  2030  	// index is constant
  2031  	// can check statically and
  2032  	// can multiply by width statically
  2033  
  2034  	regalloc(reg, types[tptr], N);
  2035  	if(o & OPtrto) {
  2036  		cgen(l, reg);
  2037  		cgen_checknil(reg);
  2038  	} else
  2039  		agen(l, reg);
  2040  
  2041  	v = mpgetfix(r->val.u.xval);
  2042  	if(o & ODynam) {
  2043  		if(!debug['B'] && !n->bounded) {
  2044  			n1 = *reg;
  2045  			n1.op = OINDREG;
  2046  			n1.type = types[tptr];
  2047  			n1.xoffset = Array_nel;
  2048  			nodconst(&n2, types[TUINT32], v);
  2049  			regalloc(&n3, types[TUINT32], N);
  2050  			cgen(&n2, &n3);
  2051  			regalloc(&n4, n1.type, N);
  2052  			cgen(&n1, &n4);
  2053  			gcmp(optoas(OCMP, types[TUINT32]), &n4, &n3);
  2054  			regfree(&n4);
  2055  			regfree(&n3);
  2056  			p1 = gbranch(optoas(OGT, types[TUINT32]), T, +1);
  2057  			ginscall(panicindex, 0);
  2058  			patch(p1, pc);
  2059  		}
  2060  
  2061  		n1 = *reg;
  2062  		n1.op = OINDREG;
  2063  		n1.type = types[tptr];
  2064  		n1.xoffset = Array_array;
  2065  		gmove(&n1, reg);
  2066  	}
  2067  
  2068  	n2 = *reg;
  2069  	n2.op = OINDREG;
  2070  	n2.xoffset = v * (*w);
  2071  	a->type = D_NONE;
  2072  	a->name = D_NONE;
  2073  	naddr(&n2, a, 1);
  2074  	goto yes;
  2075  
  2076  yes:
  2077  	return 1;
  2078  
  2079  no:
  2080  	sudoclean();
  2081  	return 0;
  2082  }