github.com/ccccaoqing/test@v0.0.0-20220510085219-3985d23445c0/src/crypto/tls/conn.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // TLS low level connection and record layer 6 7 package tls 8 9 import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/subtle" 13 "crypto/x509" 14 "errors" 15 "fmt" 16 "io" 17 "net" 18 "sync" 19 "time" 20 ) 21 22 // A Conn represents a secured connection. 23 // It implements the net.Conn interface. 24 type Conn struct { 25 // constant 26 conn net.Conn 27 isClient bool 28 29 // constant after handshake; protected by handshakeMutex 30 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 31 handshakeErr error // error resulting from handshake 32 vers uint16 // TLS version 33 haveVers bool // version has been negotiated 34 config *Config // configuration passed to constructor 35 handshakeComplete bool 36 didResume bool // whether this connection was a session resumption 37 cipherSuite uint16 38 ocspResponse []byte // stapled OCSP response 39 peerCertificates []*x509.Certificate 40 // verifiedChains contains the certificate chains that we built, as 41 // opposed to the ones presented by the server. 42 verifiedChains [][]*x509.Certificate 43 // serverName contains the server name indicated by the client, if any. 44 serverName string 45 // firstFinished contains the first Finished hash sent during the 46 // handshake. This is the "tls-unique" channel binding value. 47 firstFinished [12]byte 48 49 clientProtocol string 50 clientProtocolFallback bool 51 52 // input/output 53 in, out halfConn // in.Mutex < out.Mutex 54 rawInput *block // raw input, right off the wire 55 input *block // application data waiting to be read 56 hand bytes.Buffer // handshake data waiting to be read 57 58 tmp [16]byte 59 } 60 61 // Access to net.Conn methods. 62 // Cannot just embed net.Conn because that would 63 // export the struct field too. 64 65 // LocalAddr returns the local network address. 66 func (c *Conn) LocalAddr() net.Addr { 67 return c.conn.LocalAddr() 68 } 69 70 // RemoteAddr returns the remote network address. 71 func (c *Conn) RemoteAddr() net.Addr { 72 return c.conn.RemoteAddr() 73 } 74 75 // SetDeadline sets the read and write deadlines associated with the connection. 76 // A zero value for t means Read and Write will not time out. 77 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 78 func (c *Conn) SetDeadline(t time.Time) error { 79 return c.conn.SetDeadline(t) 80 } 81 82 // SetReadDeadline sets the read deadline on the underlying connection. 83 // A zero value for t means Read will not time out. 84 func (c *Conn) SetReadDeadline(t time.Time) error { 85 return c.conn.SetReadDeadline(t) 86 } 87 88 // SetWriteDeadline sets the write deadline on the underlying connection. 89 // A zero value for t means Write will not time out. 90 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 91 func (c *Conn) SetWriteDeadline(t time.Time) error { 92 return c.conn.SetWriteDeadline(t) 93 } 94 95 // A halfConn represents one direction of the record layer 96 // connection, either sending or receiving. 97 type halfConn struct { 98 sync.Mutex 99 100 err error // first permanent error 101 version uint16 // protocol version 102 cipher interface{} // cipher algorithm 103 mac macFunction 104 seq [8]byte // 64-bit sequence number 105 bfree *block // list of free blocks 106 107 nextCipher interface{} // next encryption state 108 nextMac macFunction // next MAC algorithm 109 110 // used to save allocating a new buffer for each MAC. 111 inDigestBuf, outDigestBuf []byte 112 } 113 114 func (hc *halfConn) setErrorLocked(err error) error { 115 hc.err = err 116 return err 117 } 118 119 func (hc *halfConn) error() error { 120 hc.Lock() 121 err := hc.err 122 hc.Unlock() 123 return err 124 } 125 126 // prepareCipherSpec sets the encryption and MAC states 127 // that a subsequent changeCipherSpec will use. 128 func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 129 hc.version = version 130 hc.nextCipher = cipher 131 hc.nextMac = mac 132 } 133 134 // changeCipherSpec changes the encryption and MAC states 135 // to the ones previously passed to prepareCipherSpec. 136 func (hc *halfConn) changeCipherSpec() error { 137 if hc.nextCipher == nil { 138 return alertInternalError 139 } 140 hc.cipher = hc.nextCipher 141 hc.mac = hc.nextMac 142 hc.nextCipher = nil 143 hc.nextMac = nil 144 for i := range hc.seq { 145 hc.seq[i] = 0 146 } 147 return nil 148 } 149 150 // incSeq increments the sequence number. 151 func (hc *halfConn) incSeq() { 152 for i := 7; i >= 0; i-- { 153 hc.seq[i]++ 154 if hc.seq[i] != 0 { 155 return 156 } 157 } 158 159 // Not allowed to let sequence number wrap. 160 // Instead, must renegotiate before it does. 161 // Not likely enough to bother. 162 panic("TLS: sequence number wraparound") 163 } 164 165 // resetSeq resets the sequence number to zero. 166 func (hc *halfConn) resetSeq() { 167 for i := range hc.seq { 168 hc.seq[i] = 0 169 } 170 } 171 172 // removePadding returns an unpadded slice, in constant time, which is a prefix 173 // of the input. It also returns a byte which is equal to 255 if the padding 174 // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 175 func removePadding(payload []byte) ([]byte, byte) { 176 if len(payload) < 1 { 177 return payload, 0 178 } 179 180 paddingLen := payload[len(payload)-1] 181 t := uint(len(payload)-1) - uint(paddingLen) 182 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 183 good := byte(int32(^t) >> 31) 184 185 toCheck := 255 // the maximum possible padding length 186 // The length of the padded data is public, so we can use an if here 187 if toCheck+1 > len(payload) { 188 toCheck = len(payload) - 1 189 } 190 191 for i := 0; i < toCheck; i++ { 192 t := uint(paddingLen) - uint(i) 193 // if i <= paddingLen then the MSB of t is zero 194 mask := byte(int32(^t) >> 31) 195 b := payload[len(payload)-1-i] 196 good &^= mask&paddingLen ^ mask&b 197 } 198 199 // We AND together the bits of good and replicate the result across 200 // all the bits. 201 good &= good << 4 202 good &= good << 2 203 good &= good << 1 204 good = uint8(int8(good) >> 7) 205 206 toRemove := good&paddingLen + 1 207 return payload[:len(payload)-int(toRemove)], good 208 } 209 210 // removePaddingSSL30 is a replacement for removePadding in the case that the 211 // protocol version is SSLv3. In this version, the contents of the padding 212 // are random and cannot be checked. 213 func removePaddingSSL30(payload []byte) ([]byte, byte) { 214 if len(payload) < 1 { 215 return payload, 0 216 } 217 218 paddingLen := int(payload[len(payload)-1]) + 1 219 if paddingLen > len(payload) { 220 return payload, 0 221 } 222 223 return payload[:len(payload)-paddingLen], 255 224 } 225 226 func roundUp(a, b int) int { 227 return a + (b-a%b)%b 228 } 229 230 // cbcMode is an interface for block ciphers using cipher block chaining. 231 type cbcMode interface { 232 cipher.BlockMode 233 SetIV([]byte) 234 } 235 236 // decrypt checks and strips the mac and decrypts the data in b. Returns a 237 // success boolean, the number of bytes to skip from the start of the record in 238 // order to get the application payload, and an optional alert value. 239 func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { 240 // pull out payload 241 payload := b.data[recordHeaderLen:] 242 243 macSize := 0 244 if hc.mac != nil { 245 macSize = hc.mac.Size() 246 } 247 248 paddingGood := byte(255) 249 explicitIVLen := 0 250 251 // decrypt 252 if hc.cipher != nil { 253 switch c := hc.cipher.(type) { 254 case cipher.Stream: 255 c.XORKeyStream(payload, payload) 256 case cipher.AEAD: 257 explicitIVLen = 8 258 if len(payload) < explicitIVLen { 259 return false, 0, alertBadRecordMAC 260 } 261 nonce := payload[:8] 262 payload = payload[8:] 263 264 var additionalData [13]byte 265 copy(additionalData[:], hc.seq[:]) 266 copy(additionalData[8:], b.data[:3]) 267 n := len(payload) - c.Overhead() 268 additionalData[11] = byte(n >> 8) 269 additionalData[12] = byte(n) 270 var err error 271 payload, err = c.Open(payload[:0], nonce, payload, additionalData[:]) 272 if err != nil { 273 return false, 0, alertBadRecordMAC 274 } 275 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 276 case cbcMode: 277 blockSize := c.BlockSize() 278 if hc.version >= VersionTLS11 { 279 explicitIVLen = blockSize 280 } 281 282 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 283 return false, 0, alertBadRecordMAC 284 } 285 286 if explicitIVLen > 0 { 287 c.SetIV(payload[:explicitIVLen]) 288 payload = payload[explicitIVLen:] 289 } 290 c.CryptBlocks(payload, payload) 291 if hc.version == VersionSSL30 { 292 payload, paddingGood = removePaddingSSL30(payload) 293 } else { 294 payload, paddingGood = removePadding(payload) 295 } 296 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 297 298 // note that we still have a timing side-channel in the 299 // MAC check, below. An attacker can align the record 300 // so that a correct padding will cause one less hash 301 // block to be calculated. Then they can iteratively 302 // decrypt a record by breaking each byte. See 303 // "Password Interception in a SSL/TLS Channel", Brice 304 // Canvel et al. 305 // 306 // However, our behavior matches OpenSSL, so we leak 307 // only as much as they do. 308 default: 309 panic("unknown cipher type") 310 } 311 } 312 313 // check, strip mac 314 if hc.mac != nil { 315 if len(payload) < macSize { 316 return false, 0, alertBadRecordMAC 317 } 318 319 // strip mac off payload, b.data 320 n := len(payload) - macSize 321 b.data[3] = byte(n >> 8) 322 b.data[4] = byte(n) 323 b.resize(recordHeaderLen + explicitIVLen + n) 324 remoteMAC := payload[n:] 325 localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n]) 326 327 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 328 return false, 0, alertBadRecordMAC 329 } 330 hc.inDigestBuf = localMAC 331 } 332 hc.incSeq() 333 334 return true, recordHeaderLen + explicitIVLen, 0 335 } 336 337 // padToBlockSize calculates the needed padding block, if any, for a payload. 338 // On exit, prefix aliases payload and extends to the end of the last full 339 // block of payload. finalBlock is a fresh slice which contains the contents of 340 // any suffix of payload as well as the needed padding to make finalBlock a 341 // full block. 342 func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { 343 overrun := len(payload) % blockSize 344 paddingLen := blockSize - overrun 345 prefix = payload[:len(payload)-overrun] 346 finalBlock = make([]byte, blockSize) 347 copy(finalBlock, payload[len(payload)-overrun:]) 348 for i := overrun; i < blockSize; i++ { 349 finalBlock[i] = byte(paddingLen - 1) 350 } 351 return 352 } 353 354 // encrypt encrypts and macs the data in b. 355 func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { 356 // mac 357 if hc.mac != nil { 358 mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:]) 359 360 n := len(b.data) 361 b.resize(n + len(mac)) 362 copy(b.data[n:], mac) 363 hc.outDigestBuf = mac 364 } 365 366 payload := b.data[recordHeaderLen:] 367 368 // encrypt 369 if hc.cipher != nil { 370 switch c := hc.cipher.(type) { 371 case cipher.Stream: 372 c.XORKeyStream(payload, payload) 373 case cipher.AEAD: 374 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 375 b.resize(len(b.data) + c.Overhead()) 376 nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 377 payload := b.data[recordHeaderLen+explicitIVLen:] 378 payload = payload[:payloadLen] 379 380 var additionalData [13]byte 381 copy(additionalData[:], hc.seq[:]) 382 copy(additionalData[8:], b.data[:3]) 383 additionalData[11] = byte(payloadLen >> 8) 384 additionalData[12] = byte(payloadLen) 385 386 c.Seal(payload[:0], nonce, payload, additionalData[:]) 387 case cbcMode: 388 blockSize := c.BlockSize() 389 if explicitIVLen > 0 { 390 c.SetIV(payload[:explicitIVLen]) 391 payload = payload[explicitIVLen:] 392 } 393 prefix, finalBlock := padToBlockSize(payload, blockSize) 394 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 395 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 396 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 397 default: 398 panic("unknown cipher type") 399 } 400 } 401 402 // update length to include MAC and any block padding needed. 403 n := len(b.data) - recordHeaderLen 404 b.data[3] = byte(n >> 8) 405 b.data[4] = byte(n) 406 hc.incSeq() 407 408 return true, 0 409 } 410 411 // A block is a simple data buffer. 412 type block struct { 413 data []byte 414 off int // index for Read 415 link *block 416 } 417 418 // resize resizes block to be n bytes, growing if necessary. 419 func (b *block) resize(n int) { 420 if n > cap(b.data) { 421 b.reserve(n) 422 } 423 b.data = b.data[0:n] 424 } 425 426 // reserve makes sure that block contains a capacity of at least n bytes. 427 func (b *block) reserve(n int) { 428 if cap(b.data) >= n { 429 return 430 } 431 m := cap(b.data) 432 if m == 0 { 433 m = 1024 434 } 435 for m < n { 436 m *= 2 437 } 438 data := make([]byte, len(b.data), m) 439 copy(data, b.data) 440 b.data = data 441 } 442 443 // readFromUntil reads from r into b until b contains at least n bytes 444 // or else returns an error. 445 func (b *block) readFromUntil(r io.Reader, n int) error { 446 // quick case 447 if len(b.data) >= n { 448 return nil 449 } 450 451 // read until have enough. 452 b.reserve(n) 453 for { 454 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 455 b.data = b.data[0 : len(b.data)+m] 456 if len(b.data) >= n { 457 // TODO(bradfitz,agl): slightly suspicious 458 // that we're throwing away r.Read's err here. 459 break 460 } 461 if err != nil { 462 return err 463 } 464 } 465 return nil 466 } 467 468 func (b *block) Read(p []byte) (n int, err error) { 469 n = copy(p, b.data[b.off:]) 470 b.off += n 471 return 472 } 473 474 // newBlock allocates a new block, from hc's free list if possible. 475 func (hc *halfConn) newBlock() *block { 476 b := hc.bfree 477 if b == nil { 478 return new(block) 479 } 480 hc.bfree = b.link 481 b.link = nil 482 b.resize(0) 483 return b 484 } 485 486 // freeBlock returns a block to hc's free list. 487 // The protocol is such that each side only has a block or two on 488 // its free list at a time, so there's no need to worry about 489 // trimming the list, etc. 490 func (hc *halfConn) freeBlock(b *block) { 491 b.link = hc.bfree 492 hc.bfree = b 493 } 494 495 // splitBlock splits a block after the first n bytes, 496 // returning a block with those n bytes and a 497 // block with the remainder. the latter may be nil. 498 func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 499 if len(b.data) <= n { 500 return b, nil 501 } 502 bb := hc.newBlock() 503 bb.resize(len(b.data) - n) 504 copy(bb.data, b.data[n:]) 505 b.data = b.data[0:n] 506 return b, bb 507 } 508 509 // readRecord reads the next TLS record from the connection 510 // and updates the record layer state. 511 // c.in.Mutex <= L; c.input == nil. 512 func (c *Conn) readRecord(want recordType) error { 513 // Caller must be in sync with connection: 514 // handshake data if handshake not yet completed, 515 // else application data. (We don't support renegotiation.) 516 switch want { 517 default: 518 c.sendAlert(alertInternalError) 519 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 520 case recordTypeHandshake, recordTypeChangeCipherSpec: 521 if c.handshakeComplete { 522 c.sendAlert(alertInternalError) 523 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete")) 524 } 525 case recordTypeApplicationData: 526 if !c.handshakeComplete { 527 c.sendAlert(alertInternalError) 528 return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete")) 529 } 530 } 531 532 Again: 533 if c.rawInput == nil { 534 c.rawInput = c.in.newBlock() 535 } 536 b := c.rawInput 537 538 // Read header, payload. 539 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 540 // RFC suggests that EOF without an alertCloseNotify is 541 // an error, but popular web sites seem to do this, 542 // so we can't make it an error. 543 // if err == io.EOF { 544 // err = io.ErrUnexpectedEOF 545 // } 546 if e, ok := err.(net.Error); !ok || !e.Temporary() { 547 c.in.setErrorLocked(err) 548 } 549 return err 550 } 551 typ := recordType(b.data[0]) 552 553 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 554 // start with a uint16 length where the MSB is set and the first record 555 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 556 // an SSLv2 client. 557 if want == recordTypeHandshake && typ == 0x80 { 558 c.sendAlert(alertProtocolVersion) 559 return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received")) 560 } 561 562 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 563 n := int(b.data[3])<<8 | int(b.data[4]) 564 if c.haveVers && vers != c.vers { 565 c.sendAlert(alertProtocolVersion) 566 return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers)) 567 } 568 if n > maxCiphertext { 569 c.sendAlert(alertRecordOverflow) 570 return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n)) 571 } 572 if !c.haveVers { 573 // First message, be extra suspicious: 574 // this might not be a TLS client. 575 // Bail out before reading a full 'body', if possible. 576 // The current max version is 3.1. 577 // If the version is >= 16.0, it's probably not real. 578 // Similarly, a clientHello message encodes in 579 // well under a kilobyte. If the length is >= 12 kB, 580 // it's probably not real. 581 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 { 582 c.sendAlert(alertUnexpectedMessage) 583 return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake")) 584 } 585 } 586 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 587 if err == io.EOF { 588 err = io.ErrUnexpectedEOF 589 } 590 if e, ok := err.(net.Error); !ok || !e.Temporary() { 591 c.in.setErrorLocked(err) 592 } 593 return err 594 } 595 596 // Process message. 597 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 598 ok, off, err := c.in.decrypt(b) 599 if !ok { 600 c.in.setErrorLocked(c.sendAlert(err)) 601 } 602 b.off = off 603 data := b.data[b.off:] 604 if len(data) > maxPlaintext { 605 err := c.sendAlert(alertRecordOverflow) 606 c.in.freeBlock(b) 607 return c.in.setErrorLocked(err) 608 } 609 610 switch typ { 611 default: 612 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 613 614 case recordTypeAlert: 615 if len(data) != 2 { 616 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 617 break 618 } 619 if alert(data[1]) == alertCloseNotify { 620 c.in.setErrorLocked(io.EOF) 621 break 622 } 623 switch data[0] { 624 case alertLevelWarning: 625 // drop on the floor 626 c.in.freeBlock(b) 627 goto Again 628 case alertLevelError: 629 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 630 default: 631 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 632 } 633 634 case recordTypeChangeCipherSpec: 635 if typ != want || len(data) != 1 || data[0] != 1 { 636 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 637 break 638 } 639 err := c.in.changeCipherSpec() 640 if err != nil { 641 c.in.setErrorLocked(c.sendAlert(err.(alert))) 642 } 643 644 case recordTypeApplicationData: 645 if typ != want { 646 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 647 break 648 } 649 c.input = b 650 b = nil 651 652 case recordTypeHandshake: 653 // TODO(rsc): Should at least pick off connection close. 654 if typ != want { 655 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 656 } 657 c.hand.Write(data) 658 } 659 660 if b != nil { 661 c.in.freeBlock(b) 662 } 663 return c.in.err 664 } 665 666 // sendAlert sends a TLS alert message. 667 // c.out.Mutex <= L. 668 func (c *Conn) sendAlertLocked(err alert) error { 669 switch err { 670 case alertNoRenegotiation, alertCloseNotify: 671 c.tmp[0] = alertLevelWarning 672 default: 673 c.tmp[0] = alertLevelError 674 } 675 c.tmp[1] = byte(err) 676 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 677 // closeNotify is a special case in that it isn't an error: 678 if err != alertCloseNotify { 679 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 680 } 681 return nil 682 } 683 684 // sendAlert sends a TLS alert message. 685 // L < c.out.Mutex. 686 func (c *Conn) sendAlert(err alert) error { 687 c.out.Lock() 688 defer c.out.Unlock() 689 return c.sendAlertLocked(err) 690 } 691 692 // writeRecord writes a TLS record with the given type and payload 693 // to the connection and updates the record layer state. 694 // c.out.Mutex <= L. 695 func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) { 696 b := c.out.newBlock() 697 for len(data) > 0 { 698 m := len(data) 699 if m > maxPlaintext { 700 m = maxPlaintext 701 } 702 explicitIVLen := 0 703 explicitIVIsSeq := false 704 705 var cbc cbcMode 706 if c.out.version >= VersionTLS11 { 707 var ok bool 708 if cbc, ok = c.out.cipher.(cbcMode); ok { 709 explicitIVLen = cbc.BlockSize() 710 } 711 } 712 if explicitIVLen == 0 { 713 if _, ok := c.out.cipher.(cipher.AEAD); ok { 714 explicitIVLen = 8 715 // The AES-GCM construction in TLS has an 716 // explicit nonce so that the nonce can be 717 // random. However, the nonce is only 8 bytes 718 // which is too small for a secure, random 719 // nonce. Therefore we use the sequence number 720 // as the nonce. 721 explicitIVIsSeq = true 722 } 723 } 724 b.resize(recordHeaderLen + explicitIVLen + m) 725 b.data[0] = byte(typ) 726 vers := c.vers 727 if vers == 0 { 728 // Some TLS servers fail if the record version is 729 // greater than TLS 1.0 for the initial ClientHello. 730 vers = VersionTLS10 731 } 732 b.data[1] = byte(vers >> 8) 733 b.data[2] = byte(vers) 734 b.data[3] = byte(m >> 8) 735 b.data[4] = byte(m) 736 if explicitIVLen > 0 { 737 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 738 if explicitIVIsSeq { 739 copy(explicitIV, c.out.seq[:]) 740 } else { 741 if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil { 742 break 743 } 744 } 745 } 746 copy(b.data[recordHeaderLen+explicitIVLen:], data) 747 c.out.encrypt(b, explicitIVLen) 748 _, err = c.conn.Write(b.data) 749 if err != nil { 750 break 751 } 752 n += m 753 data = data[m:] 754 } 755 c.out.freeBlock(b) 756 757 if typ == recordTypeChangeCipherSpec { 758 err = c.out.changeCipherSpec() 759 if err != nil { 760 // Cannot call sendAlert directly, 761 // because we already hold c.out.Mutex. 762 c.tmp[0] = alertLevelError 763 c.tmp[1] = byte(err.(alert)) 764 c.writeRecord(recordTypeAlert, c.tmp[0:2]) 765 return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 766 } 767 } 768 return 769 } 770 771 // readHandshake reads the next handshake message from 772 // the record layer. 773 // c.in.Mutex < L; c.out.Mutex < L. 774 func (c *Conn) readHandshake() (interface{}, error) { 775 for c.hand.Len() < 4 { 776 if err := c.in.err; err != nil { 777 return nil, err 778 } 779 if err := c.readRecord(recordTypeHandshake); err != nil { 780 return nil, err 781 } 782 } 783 784 data := c.hand.Bytes() 785 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 786 if n > maxHandshake { 787 return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError)) 788 } 789 for c.hand.Len() < 4+n { 790 if err := c.in.err; err != nil { 791 return nil, err 792 } 793 if err := c.readRecord(recordTypeHandshake); err != nil { 794 return nil, err 795 } 796 } 797 data = c.hand.Next(4 + n) 798 var m handshakeMessage 799 switch data[0] { 800 case typeClientHello: 801 m = new(clientHelloMsg) 802 case typeServerHello: 803 m = new(serverHelloMsg) 804 case typeNewSessionTicket: 805 m = new(newSessionTicketMsg) 806 case typeCertificate: 807 m = new(certificateMsg) 808 case typeCertificateRequest: 809 m = &certificateRequestMsg{ 810 hasSignatureAndHash: c.vers >= VersionTLS12, 811 } 812 case typeCertificateStatus: 813 m = new(certificateStatusMsg) 814 case typeServerKeyExchange: 815 m = new(serverKeyExchangeMsg) 816 case typeServerHelloDone: 817 m = new(serverHelloDoneMsg) 818 case typeClientKeyExchange: 819 m = new(clientKeyExchangeMsg) 820 case typeCertificateVerify: 821 m = &certificateVerifyMsg{ 822 hasSignatureAndHash: c.vers >= VersionTLS12, 823 } 824 case typeNextProtocol: 825 m = new(nextProtoMsg) 826 case typeFinished: 827 m = new(finishedMsg) 828 default: 829 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 830 } 831 832 // The handshake message unmarshallers 833 // expect to be able to keep references to data, 834 // so pass in a fresh copy that won't be overwritten. 835 data = append([]byte(nil), data...) 836 837 if !m.unmarshal(data) { 838 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 839 } 840 return m, nil 841 } 842 843 // Write writes data to the connection. 844 func (c *Conn) Write(b []byte) (int, error) { 845 if err := c.Handshake(); err != nil { 846 return 0, err 847 } 848 849 c.out.Lock() 850 defer c.out.Unlock() 851 852 if err := c.out.err; err != nil { 853 return 0, err 854 } 855 856 if !c.handshakeComplete { 857 return 0, alertInternalError 858 } 859 860 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 861 // attack when using block mode ciphers due to predictable IVs. 862 // This can be prevented by splitting each Application Data 863 // record into two records, effectively randomizing the IV. 864 // 865 // http://www.openssl.org/~bodo/tls-cbc.txt 866 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 867 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 868 869 var m int 870 if len(b) > 1 && c.vers <= VersionTLS10 { 871 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 872 n, err := c.writeRecord(recordTypeApplicationData, b[:1]) 873 if err != nil { 874 return n, c.out.setErrorLocked(err) 875 } 876 m, b = 1, b[1:] 877 } 878 } 879 880 n, err := c.writeRecord(recordTypeApplicationData, b) 881 return n + m, c.out.setErrorLocked(err) 882 } 883 884 // Read can be made to time out and return a net.Error with Timeout() == true 885 // after a fixed time limit; see SetDeadline and SetReadDeadline. 886 func (c *Conn) Read(b []byte) (n int, err error) { 887 if err = c.Handshake(); err != nil { 888 return 889 } 890 if len(b) == 0 { 891 // Put this after Handshake, in case people were calling 892 // Read(nil) for the side effect of the Handshake. 893 return 894 } 895 896 c.in.Lock() 897 defer c.in.Unlock() 898 899 // Some OpenSSL servers send empty records in order to randomize the 900 // CBC IV. So this loop ignores a limited number of empty records. 901 const maxConsecutiveEmptyRecords = 100 902 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 903 for c.input == nil && c.in.err == nil { 904 if err := c.readRecord(recordTypeApplicationData); err != nil { 905 // Soft error, like EAGAIN 906 return 0, err 907 } 908 } 909 if err := c.in.err; err != nil { 910 return 0, err 911 } 912 913 n, err = c.input.Read(b) 914 if c.input.off >= len(c.input.data) { 915 c.in.freeBlock(c.input) 916 c.input = nil 917 } 918 919 // If a close-notify alert is waiting, read it so that 920 // we can return (n, EOF) instead of (n, nil), to signal 921 // to the HTTP response reading goroutine that the 922 // connection is now closed. This eliminates a race 923 // where the HTTP response reading goroutine would 924 // otherwise not observe the EOF until its next read, 925 // by which time a client goroutine might have already 926 // tried to reuse the HTTP connection for a new 927 // request. 928 // See https://codereview.appspot.com/76400046 929 // and http://golang.org/issue/3514 930 if ri := c.rawInput; ri != nil && 931 n != 0 && err == nil && 932 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 933 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 934 err = recErr // will be io.EOF on closeNotify 935 } 936 } 937 938 if n != 0 || err != nil { 939 return n, err 940 } 941 } 942 943 return 0, io.ErrNoProgress 944 } 945 946 // Close closes the connection. 947 func (c *Conn) Close() error { 948 var alertErr error 949 950 c.handshakeMutex.Lock() 951 defer c.handshakeMutex.Unlock() 952 if c.handshakeComplete { 953 alertErr = c.sendAlert(alertCloseNotify) 954 } 955 956 if err := c.conn.Close(); err != nil { 957 return err 958 } 959 return alertErr 960 } 961 962 // Handshake runs the client or server handshake 963 // protocol if it has not yet been run. 964 // Most uses of this package need not call Handshake 965 // explicitly: the first Read or Write will call it automatically. 966 func (c *Conn) Handshake() error { 967 c.handshakeMutex.Lock() 968 defer c.handshakeMutex.Unlock() 969 if err := c.handshakeErr; err != nil { 970 return err 971 } 972 if c.handshakeComplete { 973 return nil 974 } 975 976 if c.isClient { 977 c.handshakeErr = c.clientHandshake() 978 } else { 979 c.handshakeErr = c.serverHandshake() 980 } 981 return c.handshakeErr 982 } 983 984 // ConnectionState returns basic TLS details about the connection. 985 func (c *Conn) ConnectionState() ConnectionState { 986 c.handshakeMutex.Lock() 987 defer c.handshakeMutex.Unlock() 988 989 var state ConnectionState 990 state.HandshakeComplete = c.handshakeComplete 991 if c.handshakeComplete { 992 state.Version = c.vers 993 state.NegotiatedProtocol = c.clientProtocol 994 state.DidResume = c.didResume 995 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 996 state.CipherSuite = c.cipherSuite 997 state.PeerCertificates = c.peerCertificates 998 state.VerifiedChains = c.verifiedChains 999 state.ServerName = c.serverName 1000 if !c.didResume { 1001 state.TLSUnique = c.firstFinished[:] 1002 } 1003 } 1004 1005 return state 1006 } 1007 1008 // OCSPResponse returns the stapled OCSP response from the TLS server, if 1009 // any. (Only valid for client connections.) 1010 func (c *Conn) OCSPResponse() []byte { 1011 c.handshakeMutex.Lock() 1012 defer c.handshakeMutex.Unlock() 1013 1014 return c.ocspResponse 1015 } 1016 1017 // VerifyHostname checks that the peer certificate chain is valid for 1018 // connecting to host. If so, it returns nil; if not, it returns an error 1019 // describing the problem. 1020 func (c *Conn) VerifyHostname(host string) error { 1021 c.handshakeMutex.Lock() 1022 defer c.handshakeMutex.Unlock() 1023 if !c.isClient { 1024 return errors.New("tls: VerifyHostname called on TLS server connection") 1025 } 1026 if !c.handshakeComplete { 1027 return errors.New("tls: handshake has not yet been performed") 1028 } 1029 return c.peerCertificates[0].VerifyHostname(host) 1030 }