github.com/ccccaoqing/test@v0.0.0-20220510085219-3985d23445c0/src/image/draw/draw.go (about)

     1  // Copyright 2009 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package draw provides image composition functions.
     6  //
     7  // See "The Go image/draw package" for an introduction to this package:
     8  // http://golang.org/doc/articles/image_draw.html
     9  package draw
    10  
    11  import (
    12  	"image"
    13  	"image/color"
    14  )
    15  
    16  // m is the maximum color value returned by image.Color.RGBA.
    17  const m = 1<<16 - 1
    18  
    19  // Image is an image.Image with a Set method to change a single pixel.
    20  type Image interface {
    21  	image.Image
    22  	Set(x, y int, c color.Color)
    23  }
    24  
    25  // Quantizer produces a palette for an image.
    26  type Quantizer interface {
    27  	// Quantize appends up to cap(p) - len(p) colors to p and returns the
    28  	// updated palette suitable for converting m to a paletted image.
    29  	Quantize(p color.Palette, m image.Image) color.Palette
    30  }
    31  
    32  // Op is a Porter-Duff compositing operator.
    33  type Op int
    34  
    35  const (
    36  	// Over specifies ``(src in mask) over dst''.
    37  	Over Op = iota
    38  	// Src specifies ``src in mask''.
    39  	Src
    40  )
    41  
    42  // Draw implements the Drawer interface by calling the Draw function with this
    43  // Op.
    44  func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
    45  	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
    46  }
    47  
    48  // Drawer contains the Draw method.
    49  type Drawer interface {
    50  	// Draw aligns r.Min in dst with sp in src and then replaces the
    51  	// rectangle r in dst with the result of drawing src on dst.
    52  	Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
    53  }
    54  
    55  // FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
    56  // diffusion.
    57  var FloydSteinberg Drawer = floydSteinberg{}
    58  
    59  type floydSteinberg struct{}
    60  
    61  func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
    62  	clip(dst, &r, src, &sp, nil, nil)
    63  	if r.Empty() {
    64  		return
    65  	}
    66  	drawPaletted(dst, r, src, sp, true)
    67  }
    68  
    69  // clip clips r against each image's bounds (after translating into the
    70  // destination image's co-ordinate space) and shifts the points sp and mp by
    71  // the same amount as the change in r.Min.
    72  func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
    73  	orig := r.Min
    74  	*r = r.Intersect(dst.Bounds())
    75  	*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
    76  	if mask != nil {
    77  		*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
    78  	}
    79  	dx := r.Min.X - orig.X
    80  	dy := r.Min.Y - orig.Y
    81  	if dx == 0 && dy == 0 {
    82  		return
    83  	}
    84  	(*sp).X += dx
    85  	(*sp).Y += dy
    86  	(*mp).X += dx
    87  	(*mp).Y += dy
    88  }
    89  
    90  func processBackward(dst Image, r image.Rectangle, src image.Image, sp image.Point) bool {
    91  	return image.Image(dst) == src &&
    92  		r.Overlaps(r.Add(sp.Sub(r.Min))) &&
    93  		(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
    94  }
    95  
    96  // Draw calls DrawMask with a nil mask.
    97  func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
    98  	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
    99  }
   100  
   101  // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
   102  // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
   103  func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
   104  	clip(dst, &r, src, &sp, mask, &mp)
   105  	if r.Empty() {
   106  		return
   107  	}
   108  
   109  	// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
   110  	switch dst0 := dst.(type) {
   111  	case *image.RGBA:
   112  		if op == Over {
   113  			if mask == nil {
   114  				switch src0 := src.(type) {
   115  				case *image.Uniform:
   116  					drawFillOver(dst0, r, src0)
   117  					return
   118  				case *image.RGBA:
   119  					drawCopyOver(dst0, r, src0, sp)
   120  					return
   121  				case *image.NRGBA:
   122  					drawNRGBAOver(dst0, r, src0, sp)
   123  					return
   124  				case *image.YCbCr:
   125  					if drawYCbCr(dst0, r, src0, sp) {
   126  						return
   127  					}
   128  				}
   129  			} else if mask0, ok := mask.(*image.Alpha); ok {
   130  				switch src0 := src.(type) {
   131  				case *image.Uniform:
   132  					drawGlyphOver(dst0, r, src0, mask0, mp)
   133  					return
   134  				}
   135  			}
   136  		} else {
   137  			if mask == nil {
   138  				switch src0 := src.(type) {
   139  				case *image.Uniform:
   140  					drawFillSrc(dst0, r, src0)
   141  					return
   142  				case *image.RGBA:
   143  					drawCopySrc(dst0, r, src0, sp)
   144  					return
   145  				case *image.NRGBA:
   146  					drawNRGBASrc(dst0, r, src0, sp)
   147  					return
   148  				case *image.YCbCr:
   149  					if drawYCbCr(dst0, r, src0, sp) {
   150  						return
   151  					}
   152  				}
   153  			}
   154  		}
   155  		drawRGBA(dst0, r, src, sp, mask, mp, op)
   156  		return
   157  	case *image.Paletted:
   158  		if op == Src && mask == nil && !processBackward(dst, r, src, sp) {
   159  			drawPaletted(dst0, r, src, sp, false)
   160  		}
   161  	}
   162  
   163  	x0, x1, dx := r.Min.X, r.Max.X, 1
   164  	y0, y1, dy := r.Min.Y, r.Max.Y, 1
   165  	if processBackward(dst, r, src, sp) {
   166  		x0, x1, dx = x1-1, x0-1, -1
   167  		y0, y1, dy = y1-1, y0-1, -1
   168  	}
   169  
   170  	var out color.RGBA64
   171  	sy := sp.Y + y0 - r.Min.Y
   172  	my := mp.Y + y0 - r.Min.Y
   173  	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
   174  		sx := sp.X + x0 - r.Min.X
   175  		mx := mp.X + x0 - r.Min.X
   176  		for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
   177  			ma := uint32(m)
   178  			if mask != nil {
   179  				_, _, _, ma = mask.At(mx, my).RGBA()
   180  			}
   181  			switch {
   182  			case ma == 0:
   183  				if op == Over {
   184  					// No-op.
   185  				} else {
   186  					dst.Set(x, y, color.Transparent)
   187  				}
   188  			case ma == m && op == Src:
   189  				dst.Set(x, y, src.At(sx, sy))
   190  			default:
   191  				sr, sg, sb, sa := src.At(sx, sy).RGBA()
   192  				if op == Over {
   193  					dr, dg, db, da := dst.At(x, y).RGBA()
   194  					a := m - (sa * ma / m)
   195  					out.R = uint16((dr*a + sr*ma) / m)
   196  					out.G = uint16((dg*a + sg*ma) / m)
   197  					out.B = uint16((db*a + sb*ma) / m)
   198  					out.A = uint16((da*a + sa*ma) / m)
   199  				} else {
   200  					out.R = uint16(sr * ma / m)
   201  					out.G = uint16(sg * ma / m)
   202  					out.B = uint16(sb * ma / m)
   203  					out.A = uint16(sa * ma / m)
   204  				}
   205  				// The third argument is &out instead of out (and out is
   206  				// declared outside of the inner loop) to avoid the implicit
   207  				// conversion to color.Color here allocating memory in the
   208  				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
   209  				dst.Set(x, y, &out)
   210  			}
   211  		}
   212  	}
   213  }
   214  
   215  func drawFillOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
   216  	sr, sg, sb, sa := src.RGBA()
   217  	// The 0x101 is here for the same reason as in drawRGBA.
   218  	a := (m - sa) * 0x101
   219  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   220  	i1 := i0 + r.Dx()*4
   221  	for y := r.Min.Y; y != r.Max.Y; y++ {
   222  		for i := i0; i < i1; i += 4 {
   223  			dr := uint32(dst.Pix[i+0])
   224  			dg := uint32(dst.Pix[i+1])
   225  			db := uint32(dst.Pix[i+2])
   226  			da := uint32(dst.Pix[i+3])
   227  
   228  			dst.Pix[i+0] = uint8((dr*a/m + sr) >> 8)
   229  			dst.Pix[i+1] = uint8((dg*a/m + sg) >> 8)
   230  			dst.Pix[i+2] = uint8((db*a/m + sb) >> 8)
   231  			dst.Pix[i+3] = uint8((da*a/m + sa) >> 8)
   232  		}
   233  		i0 += dst.Stride
   234  		i1 += dst.Stride
   235  	}
   236  }
   237  
   238  func drawFillSrc(dst *image.RGBA, r image.Rectangle, src *image.Uniform) {
   239  	sr, sg, sb, sa := src.RGBA()
   240  	// The built-in copy function is faster than a straightforward for loop to fill the destination with
   241  	// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
   242  	// then use the first row as the slice source for the remaining rows.
   243  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   244  	i1 := i0 + r.Dx()*4
   245  	for i := i0; i < i1; i += 4 {
   246  		dst.Pix[i+0] = uint8(sr >> 8)
   247  		dst.Pix[i+1] = uint8(sg >> 8)
   248  		dst.Pix[i+2] = uint8(sb >> 8)
   249  		dst.Pix[i+3] = uint8(sa >> 8)
   250  	}
   251  	firstRow := dst.Pix[i0:i1]
   252  	for y := r.Min.Y + 1; y < r.Max.Y; y++ {
   253  		i0 += dst.Stride
   254  		i1 += dst.Stride
   255  		copy(dst.Pix[i0:i1], firstRow)
   256  	}
   257  }
   258  
   259  func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
   260  	dx, dy := r.Dx(), r.Dy()
   261  	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
   262  	s0 := src.PixOffset(sp.X, sp.Y)
   263  	var (
   264  		ddelta, sdelta int
   265  		i0, i1, idelta int
   266  	)
   267  	if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
   268  		ddelta = dst.Stride
   269  		sdelta = src.Stride
   270  		i0, i1, idelta = 0, dx*4, +4
   271  	} else {
   272  		// If the source start point is higher than the destination start point, or equal height but to the left,
   273  		// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
   274  		d0 += (dy - 1) * dst.Stride
   275  		s0 += (dy - 1) * src.Stride
   276  		ddelta = -dst.Stride
   277  		sdelta = -src.Stride
   278  		i0, i1, idelta = (dx-1)*4, -4, -4
   279  	}
   280  	for ; dy > 0; dy-- {
   281  		dpix := dst.Pix[d0:]
   282  		spix := src.Pix[s0:]
   283  		for i := i0; i != i1; i += idelta {
   284  			sr := uint32(spix[i+0]) * 0x101
   285  			sg := uint32(spix[i+1]) * 0x101
   286  			sb := uint32(spix[i+2]) * 0x101
   287  			sa := uint32(spix[i+3]) * 0x101
   288  
   289  			dr := uint32(dpix[i+0])
   290  			dg := uint32(dpix[i+1])
   291  			db := uint32(dpix[i+2])
   292  			da := uint32(dpix[i+3])
   293  
   294  			// The 0x101 is here for the same reason as in drawRGBA.
   295  			a := (m - sa) * 0x101
   296  
   297  			dpix[i+0] = uint8((dr*a/m + sr) >> 8)
   298  			dpix[i+1] = uint8((dg*a/m + sg) >> 8)
   299  			dpix[i+2] = uint8((db*a/m + sb) >> 8)
   300  			dpix[i+3] = uint8((da*a/m + sa) >> 8)
   301  		}
   302  		d0 += ddelta
   303  		s0 += sdelta
   304  	}
   305  }
   306  
   307  func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
   308  	n, dy := 4*r.Dx(), r.Dy()
   309  	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
   310  	s0 := src.PixOffset(sp.X, sp.Y)
   311  	var ddelta, sdelta int
   312  	if r.Min.Y <= sp.Y {
   313  		ddelta = dst.Stride
   314  		sdelta = src.Stride
   315  	} else {
   316  		// If the source start point is higher than the destination start point, then we compose the rows
   317  		// in bottom-up order instead of top-down. Unlike the drawCopyOver function, we don't have to
   318  		// check the x co-ordinates because the built-in copy function can handle overlapping slices.
   319  		d0 += (dy - 1) * dst.Stride
   320  		s0 += (dy - 1) * src.Stride
   321  		ddelta = -dst.Stride
   322  		sdelta = -src.Stride
   323  	}
   324  	for ; dy > 0; dy-- {
   325  		copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
   326  		d0 += ddelta
   327  		s0 += sdelta
   328  	}
   329  }
   330  
   331  func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
   332  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   333  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   334  	si0 := (sp.X - src.Rect.Min.X) * 4
   335  	yMax := r.Max.Y - dst.Rect.Min.Y
   336  
   337  	y := r.Min.Y - dst.Rect.Min.Y
   338  	sy := sp.Y - src.Rect.Min.Y
   339  	for ; y != yMax; y, sy = y+1, sy+1 {
   340  		dpix := dst.Pix[y*dst.Stride:]
   341  		spix := src.Pix[sy*src.Stride:]
   342  
   343  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   344  			// Convert from non-premultiplied color to pre-multiplied color.
   345  			sa := uint32(spix[si+3]) * 0x101
   346  			sr := uint32(spix[si+0]) * sa / 0xff
   347  			sg := uint32(spix[si+1]) * sa / 0xff
   348  			sb := uint32(spix[si+2]) * sa / 0xff
   349  
   350  			dr := uint32(dpix[i+0])
   351  			dg := uint32(dpix[i+1])
   352  			db := uint32(dpix[i+2])
   353  			da := uint32(dpix[i+3])
   354  
   355  			// The 0x101 is here for the same reason as in drawRGBA.
   356  			a := (m - sa) * 0x101
   357  
   358  			dpix[i+0] = uint8((dr*a/m + sr) >> 8)
   359  			dpix[i+1] = uint8((dg*a/m + sg) >> 8)
   360  			dpix[i+2] = uint8((db*a/m + sb) >> 8)
   361  			dpix[i+3] = uint8((da*a/m + sa) >> 8)
   362  		}
   363  	}
   364  }
   365  
   366  func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
   367  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   368  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   369  	si0 := (sp.X - src.Rect.Min.X) * 4
   370  	yMax := r.Max.Y - dst.Rect.Min.Y
   371  
   372  	y := r.Min.Y - dst.Rect.Min.Y
   373  	sy := sp.Y - src.Rect.Min.Y
   374  	for ; y != yMax; y, sy = y+1, sy+1 {
   375  		dpix := dst.Pix[y*dst.Stride:]
   376  		spix := src.Pix[sy*src.Stride:]
   377  
   378  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   379  			// Convert from non-premultiplied color to pre-multiplied color.
   380  			sa := uint32(spix[si+3]) * 0x101
   381  			sr := uint32(spix[si+0]) * sa / 0xff
   382  			sg := uint32(spix[si+1]) * sa / 0xff
   383  			sb := uint32(spix[si+2]) * sa / 0xff
   384  
   385  			dpix[i+0] = uint8(sr >> 8)
   386  			dpix[i+1] = uint8(sg >> 8)
   387  			dpix[i+2] = uint8(sb >> 8)
   388  			dpix[i+3] = uint8(sa >> 8)
   389  		}
   390  	}
   391  }
   392  
   393  func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) {
   394  	// An image.YCbCr is always fully opaque, and so if the mask is implicitly nil
   395  	// (i.e. fully opaque) then the op is effectively always Src.
   396  	x0 := (r.Min.X - dst.Rect.Min.X) * 4
   397  	x1 := (r.Max.X - dst.Rect.Min.X) * 4
   398  	y0 := r.Min.Y - dst.Rect.Min.Y
   399  	y1 := r.Max.Y - dst.Rect.Min.Y
   400  	switch src.SubsampleRatio {
   401  	case image.YCbCrSubsampleRatio444:
   402  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   403  			dpix := dst.Pix[y*dst.Stride:]
   404  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   405  			ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X)
   406  			for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
   407  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   408  				dpix[x+0] = rr
   409  				dpix[x+1] = gg
   410  				dpix[x+2] = bb
   411  				dpix[x+3] = 255
   412  			}
   413  		}
   414  	case image.YCbCrSubsampleRatio422:
   415  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   416  			dpix := dst.Pix[y*dst.Stride:]
   417  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   418  			ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2
   419  			for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
   420  				ci := ciBase + sx/2
   421  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   422  				dpix[x+0] = rr
   423  				dpix[x+1] = gg
   424  				dpix[x+2] = bb
   425  				dpix[x+3] = 255
   426  			}
   427  		}
   428  	case image.YCbCrSubsampleRatio420:
   429  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   430  			dpix := dst.Pix[y*dst.Stride:]
   431  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   432  			ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2
   433  			for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 {
   434  				ci := ciBase + sx/2
   435  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   436  				dpix[x+0] = rr
   437  				dpix[x+1] = gg
   438  				dpix[x+2] = bb
   439  				dpix[x+3] = 255
   440  			}
   441  		}
   442  	case image.YCbCrSubsampleRatio440:
   443  		for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 {
   444  			dpix := dst.Pix[y*dst.Stride:]
   445  			yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X)
   446  			ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X)
   447  			for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 {
   448  				rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci])
   449  				dpix[x+0] = rr
   450  				dpix[x+1] = gg
   451  				dpix[x+2] = bb
   452  				dpix[x+3] = 255
   453  			}
   454  		}
   455  	default:
   456  		return false
   457  	}
   458  	return true
   459  }
   460  
   461  func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
   462  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   463  	i1 := i0 + r.Dx()*4
   464  	mi0 := mask.PixOffset(mp.X, mp.Y)
   465  	sr, sg, sb, sa := src.RGBA()
   466  	for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
   467  		for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
   468  			ma := uint32(mask.Pix[mi])
   469  			if ma == 0 {
   470  				continue
   471  			}
   472  			ma |= ma << 8
   473  
   474  			dr := uint32(dst.Pix[i+0])
   475  			dg := uint32(dst.Pix[i+1])
   476  			db := uint32(dst.Pix[i+2])
   477  			da := uint32(dst.Pix[i+3])
   478  
   479  			// The 0x101 is here for the same reason as in drawRGBA.
   480  			a := (m - (sa * ma / m)) * 0x101
   481  
   482  			dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
   483  			dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
   484  			dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
   485  			dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
   486  		}
   487  		i0 += dst.Stride
   488  		i1 += dst.Stride
   489  		mi0 += mask.Stride
   490  	}
   491  }
   492  
   493  func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
   494  	x0, x1, dx := r.Min.X, r.Max.X, 1
   495  	y0, y1, dy := r.Min.Y, r.Max.Y, 1
   496  	if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
   497  		if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
   498  			x0, x1, dx = x1-1, x0-1, -1
   499  			y0, y1, dy = y1-1, y0-1, -1
   500  		}
   501  	}
   502  
   503  	sy := sp.Y + y0 - r.Min.Y
   504  	my := mp.Y + y0 - r.Min.Y
   505  	sx0 := sp.X + x0 - r.Min.X
   506  	mx0 := mp.X + x0 - r.Min.X
   507  	sx1 := sx0 + (x1 - x0)
   508  	i0 := dst.PixOffset(x0, y0)
   509  	di := dx * 4
   510  	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
   511  		for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
   512  			ma := uint32(m)
   513  			if mask != nil {
   514  				_, _, _, ma = mask.At(mx, my).RGBA()
   515  			}
   516  			sr, sg, sb, sa := src.At(sx, sy).RGBA()
   517  			if op == Over {
   518  				dr := uint32(dst.Pix[i+0])
   519  				dg := uint32(dst.Pix[i+1])
   520  				db := uint32(dst.Pix[i+2])
   521  				da := uint32(dst.Pix[i+3])
   522  
   523  				// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
   524  				// We work in 16-bit color, and so would normally do:
   525  				// dr |= dr << 8
   526  				// and similarly for dg, db and da, but instead we multiply a
   527  				// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
   528  				// This yields the same result, but is fewer arithmetic operations.
   529  				a := (m - (sa * ma / m)) * 0x101
   530  
   531  				dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8)
   532  				dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8)
   533  				dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8)
   534  				dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8)
   535  
   536  			} else {
   537  				dst.Pix[i+0] = uint8(sr * ma / m >> 8)
   538  				dst.Pix[i+1] = uint8(sg * ma / m >> 8)
   539  				dst.Pix[i+2] = uint8(sb * ma / m >> 8)
   540  				dst.Pix[i+3] = uint8(sa * ma / m >> 8)
   541  			}
   542  		}
   543  		i0 += dy * dst.Stride
   544  	}
   545  }
   546  
   547  // clamp clamps i to the interval [0, 0xffff].
   548  func clamp(i int32) int32 {
   549  	if i < 0 {
   550  		return 0
   551  	}
   552  	if i > 0xffff {
   553  		return 0xffff
   554  	}
   555  	return i
   556  }
   557  
   558  func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
   559  	// TODO(nigeltao): handle the case where the dst and src overlap.
   560  	// Does it even make sense to try and do Floyd-Steinberg whilst
   561  	// walking the image backward (right-to-left bottom-to-top)?
   562  
   563  	// If dst is an *image.Paletted, we have a fast path for dst.Set and
   564  	// dst.At. The dst.Set equivalent is a batch version of the algorithm
   565  	// used by color.Palette's Index method in image/color/color.go, plus
   566  	// optional Floyd-Steinberg error diffusion.
   567  	palette, pix, stride := [][3]int32(nil), []byte(nil), 0
   568  	if p, ok := dst.(*image.Paletted); ok {
   569  		palette = make([][3]int32, len(p.Palette))
   570  		for i, col := range p.Palette {
   571  			r, g, b, _ := col.RGBA()
   572  			palette[i][0] = int32(r)
   573  			palette[i][1] = int32(g)
   574  			palette[i][2] = int32(b)
   575  		}
   576  		pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
   577  	}
   578  
   579  	// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
   580  	// errors that have been propagated to the pixels in the current and next
   581  	// rows. The +2 simplifies calculation near the edges.
   582  	var quantErrorCurr, quantErrorNext [][3]int32
   583  	if floydSteinberg {
   584  		quantErrorCurr = make([][3]int32, r.Dx()+2)
   585  		quantErrorNext = make([][3]int32, r.Dx()+2)
   586  	}
   587  
   588  	// Loop over each source pixel.
   589  	out := color.RGBA64{A: 0xffff}
   590  	for y := 0; y != r.Dy(); y++ {
   591  		for x := 0; x != r.Dx(); x++ {
   592  			// er, eg and eb are the pixel's R,G,B values plus the
   593  			// optional Floyd-Steinberg error.
   594  			sr, sg, sb, _ := src.At(sp.X+x, sp.Y+y).RGBA()
   595  			er, eg, eb := int32(sr), int32(sg), int32(sb)
   596  			if floydSteinberg {
   597  				er = clamp(er + quantErrorCurr[x+1][0]/16)
   598  				eg = clamp(eg + quantErrorCurr[x+1][1]/16)
   599  				eb = clamp(eb + quantErrorCurr[x+1][2]/16)
   600  			}
   601  
   602  			if palette != nil {
   603  				// Find the closest palette color in Euclidean R,G,B space: the
   604  				// one that minimizes sum-squared-difference. We shift by 1 bit
   605  				// to avoid potential uint32 overflow in sum-squared-difference.
   606  				// TODO(nigeltao): consider smarter algorithms.
   607  				bestIndex, bestSSD := 0, uint32(1<<32-1)
   608  				for index, p := range palette {
   609  					delta := (er - p[0]) >> 1
   610  					ssd := uint32(delta * delta)
   611  					delta = (eg - p[1]) >> 1
   612  					ssd += uint32(delta * delta)
   613  					delta = (eb - p[2]) >> 1
   614  					ssd += uint32(delta * delta)
   615  					if ssd < bestSSD {
   616  						bestIndex, bestSSD = index, ssd
   617  						if ssd == 0 {
   618  							break
   619  						}
   620  					}
   621  				}
   622  				pix[y*stride+x] = byte(bestIndex)
   623  
   624  				if !floydSteinberg {
   625  					continue
   626  				}
   627  				er -= int32(palette[bestIndex][0])
   628  				eg -= int32(palette[bestIndex][1])
   629  				eb -= int32(palette[bestIndex][2])
   630  
   631  			} else {
   632  				out.R = uint16(er)
   633  				out.G = uint16(eg)
   634  				out.B = uint16(eb)
   635  				// The third argument is &out instead of out (and out is
   636  				// declared outside of the inner loop) to avoid the implicit
   637  				// conversion to color.Color here allocating memory in the
   638  				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
   639  				dst.Set(r.Min.X+x, r.Min.Y+y, &out)
   640  
   641  				if !floydSteinberg {
   642  					continue
   643  				}
   644  				sr, sg, sb, _ = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
   645  				er -= int32(sr)
   646  				eg -= int32(sg)
   647  				eb -= int32(sb)
   648  			}
   649  
   650  			// Propagate the Floyd-Steinberg quantization error.
   651  			quantErrorNext[x+0][0] += er * 3
   652  			quantErrorNext[x+0][1] += eg * 3
   653  			quantErrorNext[x+0][2] += eb * 3
   654  			quantErrorNext[x+1][0] += er * 5
   655  			quantErrorNext[x+1][1] += eg * 5
   656  			quantErrorNext[x+1][2] += eb * 5
   657  			quantErrorNext[x+2][0] += er * 1
   658  			quantErrorNext[x+2][1] += eg * 1
   659  			quantErrorNext[x+2][2] += eb * 1
   660  			quantErrorCurr[x+2][0] += er * 7
   661  			quantErrorCurr[x+2][1] += eg * 7
   662  			quantErrorCurr[x+2][2] += eb * 7
   663  		}
   664  
   665  		// Recycle the quantization error buffers.
   666  		if floydSteinberg {
   667  			quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
   668  			for i := range quantErrorNext {
   669  				quantErrorNext[i] = [3]int32{}
   670  			}
   671  		}
   672  	}
   673  }