github.com/ccccaoqing/test@v0.0.0-20220510085219-3985d23445c0/src/image/png/writer.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package png 6 7 import ( 8 "bufio" 9 "compress/zlib" 10 "hash/crc32" 11 "image" 12 "image/color" 13 "io" 14 "strconv" 15 ) 16 17 // Encoder configures encoding PNG images. 18 type Encoder struct { 19 CompressionLevel CompressionLevel 20 } 21 22 type encoder struct { 23 enc *Encoder 24 w io.Writer 25 m image.Image 26 cb int 27 err error 28 header [8]byte 29 footer [4]byte 30 tmp [4 * 256]byte 31 } 32 33 type CompressionLevel int 34 35 const ( 36 DefaultCompression CompressionLevel = 0 37 NoCompression CompressionLevel = -1 38 BestSpeed CompressionLevel = -2 39 BestCompression CompressionLevel = -3 40 41 // Positive CompressionLevel values are reserved to mean a numeric zlib 42 // compression level, although that is not implemented yet. 43 ) 44 45 // Big-endian. 46 func writeUint32(b []uint8, u uint32) { 47 b[0] = uint8(u >> 24) 48 b[1] = uint8(u >> 16) 49 b[2] = uint8(u >> 8) 50 b[3] = uint8(u >> 0) 51 } 52 53 type opaquer interface { 54 Opaque() bool 55 } 56 57 // Returns whether or not the image is fully opaque. 58 func opaque(m image.Image) bool { 59 if o, ok := m.(opaquer); ok { 60 return o.Opaque() 61 } 62 b := m.Bounds() 63 for y := b.Min.Y; y < b.Max.Y; y++ { 64 for x := b.Min.X; x < b.Max.X; x++ { 65 _, _, _, a := m.At(x, y).RGBA() 66 if a != 0xffff { 67 return false 68 } 69 } 70 } 71 return true 72 } 73 74 // The absolute value of a byte interpreted as a signed int8. 75 func abs8(d uint8) int { 76 if d < 128 { 77 return int(d) 78 } 79 return 256 - int(d) 80 } 81 82 func (e *encoder) writeChunk(b []byte, name string) { 83 if e.err != nil { 84 return 85 } 86 n := uint32(len(b)) 87 if int(n) != len(b) { 88 e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b))) 89 return 90 } 91 writeUint32(e.header[:4], n) 92 e.header[4] = name[0] 93 e.header[5] = name[1] 94 e.header[6] = name[2] 95 e.header[7] = name[3] 96 crc := crc32.NewIEEE() 97 crc.Write(e.header[4:8]) 98 crc.Write(b) 99 writeUint32(e.footer[:4], crc.Sum32()) 100 101 _, e.err = e.w.Write(e.header[:8]) 102 if e.err != nil { 103 return 104 } 105 _, e.err = e.w.Write(b) 106 if e.err != nil { 107 return 108 } 109 _, e.err = e.w.Write(e.footer[:4]) 110 } 111 112 func (e *encoder) writeIHDR() { 113 b := e.m.Bounds() 114 writeUint32(e.tmp[0:4], uint32(b.Dx())) 115 writeUint32(e.tmp[4:8], uint32(b.Dy())) 116 // Set bit depth and color type. 117 switch e.cb { 118 case cbG8: 119 e.tmp[8] = 8 120 e.tmp[9] = ctGrayscale 121 case cbTC8: 122 e.tmp[8] = 8 123 e.tmp[9] = ctTrueColor 124 case cbP8: 125 e.tmp[8] = 8 126 e.tmp[9] = ctPaletted 127 case cbTCA8: 128 e.tmp[8] = 8 129 e.tmp[9] = ctTrueColorAlpha 130 case cbG16: 131 e.tmp[8] = 16 132 e.tmp[9] = ctGrayscale 133 case cbTC16: 134 e.tmp[8] = 16 135 e.tmp[9] = ctTrueColor 136 case cbTCA16: 137 e.tmp[8] = 16 138 e.tmp[9] = ctTrueColorAlpha 139 } 140 e.tmp[10] = 0 // default compression method 141 e.tmp[11] = 0 // default filter method 142 e.tmp[12] = 0 // non-interlaced 143 e.writeChunk(e.tmp[:13], "IHDR") 144 } 145 146 func (e *encoder) writePLTEAndTRNS(p color.Palette) { 147 if len(p) < 1 || len(p) > 256 { 148 e.err = FormatError("bad palette length: " + strconv.Itoa(len(p))) 149 return 150 } 151 last := -1 152 for i, c := range p { 153 c1 := color.NRGBAModel.Convert(c).(color.NRGBA) 154 e.tmp[3*i+0] = c1.R 155 e.tmp[3*i+1] = c1.G 156 e.tmp[3*i+2] = c1.B 157 if c1.A != 0xff { 158 last = i 159 } 160 e.tmp[3*256+i] = c1.A 161 } 162 e.writeChunk(e.tmp[:3*len(p)], "PLTE") 163 if last != -1 { 164 e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS") 165 } 166 } 167 168 // An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks, 169 // including an 8-byte header and 4-byte CRC checksum per Write call. Such calls 170 // should be relatively infrequent, since writeIDATs uses a bufio.Writer. 171 // 172 // This method should only be called from writeIDATs (via writeImage). 173 // No other code should treat an encoder as an io.Writer. 174 func (e *encoder) Write(b []byte) (int, error) { 175 e.writeChunk(b, "IDAT") 176 if e.err != nil { 177 return 0, e.err 178 } 179 return len(b), nil 180 } 181 182 // Chooses the filter to use for encoding the current row, and applies it. 183 // The return value is the index of the filter and also of the row in cr that has had it applied. 184 func filter(cr *[nFilter][]byte, pr []byte, bpp int) int { 185 // We try all five filter types, and pick the one that minimizes the sum of absolute differences. 186 // This is the same heuristic that libpng uses, although the filters are attempted in order of 187 // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than 188 // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth). 189 cdat0 := cr[0][1:] 190 cdat1 := cr[1][1:] 191 cdat2 := cr[2][1:] 192 cdat3 := cr[3][1:] 193 cdat4 := cr[4][1:] 194 pdat := pr[1:] 195 n := len(cdat0) 196 197 // The up filter. 198 sum := 0 199 for i := 0; i < n; i++ { 200 cdat2[i] = cdat0[i] - pdat[i] 201 sum += abs8(cdat2[i]) 202 } 203 best := sum 204 filter := ftUp 205 206 // The Paeth filter. 207 sum = 0 208 for i := 0; i < bpp; i++ { 209 cdat4[i] = cdat0[i] - pdat[i] 210 sum += abs8(cdat4[i]) 211 } 212 for i := bpp; i < n; i++ { 213 cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]) 214 sum += abs8(cdat4[i]) 215 if sum >= best { 216 break 217 } 218 } 219 if sum < best { 220 best = sum 221 filter = ftPaeth 222 } 223 224 // The none filter. 225 sum = 0 226 for i := 0; i < n; i++ { 227 sum += abs8(cdat0[i]) 228 if sum >= best { 229 break 230 } 231 } 232 if sum < best { 233 best = sum 234 filter = ftNone 235 } 236 237 // The sub filter. 238 sum = 0 239 for i := 0; i < bpp; i++ { 240 cdat1[i] = cdat0[i] 241 sum += abs8(cdat1[i]) 242 } 243 for i := bpp; i < n; i++ { 244 cdat1[i] = cdat0[i] - cdat0[i-bpp] 245 sum += abs8(cdat1[i]) 246 if sum >= best { 247 break 248 } 249 } 250 if sum < best { 251 best = sum 252 filter = ftSub 253 } 254 255 // The average filter. 256 sum = 0 257 for i := 0; i < bpp; i++ { 258 cdat3[i] = cdat0[i] - pdat[i]/2 259 sum += abs8(cdat3[i]) 260 } 261 for i := bpp; i < n; i++ { 262 cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2) 263 sum += abs8(cdat3[i]) 264 if sum >= best { 265 break 266 } 267 } 268 if sum < best { 269 best = sum 270 filter = ftAverage 271 } 272 273 return filter 274 } 275 276 func writeImage(w io.Writer, m image.Image, cb int, level int) error { 277 zw, err := zlib.NewWriterLevel(w, level) 278 if err != nil { 279 return err 280 } 281 defer zw.Close() 282 283 bpp := 0 // Bytes per pixel. 284 285 switch cb { 286 case cbG8: 287 bpp = 1 288 case cbTC8: 289 bpp = 3 290 case cbP8: 291 bpp = 1 292 case cbTCA8: 293 bpp = 4 294 case cbTC16: 295 bpp = 6 296 case cbTCA16: 297 bpp = 8 298 case cbG16: 299 bpp = 2 300 } 301 // cr[*] and pr are the bytes for the current and previous row. 302 // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter). 303 // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the 304 // other PNG filter types. These buffers are allocated once and re-used for each row. 305 // The +1 is for the per-row filter type, which is at cr[*][0]. 306 b := m.Bounds() 307 var cr [nFilter][]uint8 308 for i := range cr { 309 cr[i] = make([]uint8, 1+bpp*b.Dx()) 310 cr[i][0] = uint8(i) 311 } 312 pr := make([]uint8, 1+bpp*b.Dx()) 313 314 gray, _ := m.(*image.Gray) 315 rgba, _ := m.(*image.RGBA) 316 paletted, _ := m.(*image.Paletted) 317 nrgba, _ := m.(*image.NRGBA) 318 319 for y := b.Min.Y; y < b.Max.Y; y++ { 320 // Convert from colors to bytes. 321 i := 1 322 switch cb { 323 case cbG8: 324 if gray != nil { 325 offset := (y - b.Min.Y) * gray.Stride 326 copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()]) 327 } else { 328 for x := b.Min.X; x < b.Max.X; x++ { 329 c := color.GrayModel.Convert(m.At(x, y)).(color.Gray) 330 cr[0][i] = c.Y 331 i++ 332 } 333 } 334 case cbTC8: 335 // We have previously verified that the alpha value is fully opaque. 336 cr0 := cr[0] 337 stride, pix := 0, []byte(nil) 338 if rgba != nil { 339 stride, pix = rgba.Stride, rgba.Pix 340 } else if nrgba != nil { 341 stride, pix = nrgba.Stride, nrgba.Pix 342 } 343 if stride != 0 { 344 j0 := (y - b.Min.Y) * stride 345 j1 := j0 + b.Dx()*4 346 for j := j0; j < j1; j += 4 { 347 cr0[i+0] = pix[j+0] 348 cr0[i+1] = pix[j+1] 349 cr0[i+2] = pix[j+2] 350 i += 3 351 } 352 } else { 353 for x := b.Min.X; x < b.Max.X; x++ { 354 r, g, b, _ := m.At(x, y).RGBA() 355 cr0[i+0] = uint8(r >> 8) 356 cr0[i+1] = uint8(g >> 8) 357 cr0[i+2] = uint8(b >> 8) 358 i += 3 359 } 360 } 361 case cbP8: 362 if paletted != nil { 363 offset := (y - b.Min.Y) * paletted.Stride 364 copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()]) 365 } else { 366 pi := m.(image.PalettedImage) 367 for x := b.Min.X; x < b.Max.X; x++ { 368 cr[0][i] = pi.ColorIndexAt(x, y) 369 i += 1 370 } 371 } 372 case cbTCA8: 373 if nrgba != nil { 374 offset := (y - b.Min.Y) * nrgba.Stride 375 copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4]) 376 } else { 377 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 378 for x := b.Min.X; x < b.Max.X; x++ { 379 c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA) 380 cr[0][i+0] = c.R 381 cr[0][i+1] = c.G 382 cr[0][i+2] = c.B 383 cr[0][i+3] = c.A 384 i += 4 385 } 386 } 387 case cbG16: 388 for x := b.Min.X; x < b.Max.X; x++ { 389 c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16) 390 cr[0][i+0] = uint8(c.Y >> 8) 391 cr[0][i+1] = uint8(c.Y) 392 i += 2 393 } 394 case cbTC16: 395 // We have previously verified that the alpha value is fully opaque. 396 for x := b.Min.X; x < b.Max.X; x++ { 397 r, g, b, _ := m.At(x, y).RGBA() 398 cr[0][i+0] = uint8(r >> 8) 399 cr[0][i+1] = uint8(r) 400 cr[0][i+2] = uint8(g >> 8) 401 cr[0][i+3] = uint8(g) 402 cr[0][i+4] = uint8(b >> 8) 403 cr[0][i+5] = uint8(b) 404 i += 6 405 } 406 case cbTCA16: 407 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 408 for x := b.Min.X; x < b.Max.X; x++ { 409 c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64) 410 cr[0][i+0] = uint8(c.R >> 8) 411 cr[0][i+1] = uint8(c.R) 412 cr[0][i+2] = uint8(c.G >> 8) 413 cr[0][i+3] = uint8(c.G) 414 cr[0][i+4] = uint8(c.B >> 8) 415 cr[0][i+5] = uint8(c.B) 416 cr[0][i+6] = uint8(c.A >> 8) 417 cr[0][i+7] = uint8(c.A) 418 i += 8 419 } 420 } 421 422 // Apply the filter. 423 f := ftNone 424 if level != zlib.NoCompression { 425 f = filter(&cr, pr, bpp) 426 } 427 428 // Write the compressed bytes. 429 if _, err := zw.Write(cr[f]); err != nil { 430 return err 431 } 432 433 // The current row for y is the previous row for y+1. 434 pr, cr[0] = cr[0], pr 435 } 436 return nil 437 } 438 439 // Write the actual image data to one or more IDAT chunks. 440 func (e *encoder) writeIDATs() { 441 if e.err != nil { 442 return 443 } 444 var bw *bufio.Writer 445 bw = bufio.NewWriterSize(e, 1<<15) 446 e.err = writeImage(bw, e.m, e.cb, levelToZlib(e.enc.CompressionLevel)) 447 if e.err != nil { 448 return 449 } 450 e.err = bw.Flush() 451 } 452 453 // This function is required because we want the zero value of 454 // Encoder.CompressionLevel to map to zlib.DefaultCompression. 455 func levelToZlib(l CompressionLevel) int { 456 switch l { 457 case DefaultCompression: 458 return zlib.DefaultCompression 459 case NoCompression: 460 return zlib.NoCompression 461 case BestSpeed: 462 return zlib.BestSpeed 463 case BestCompression: 464 return zlib.BestCompression 465 default: 466 return zlib.DefaultCompression 467 } 468 } 469 470 func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") } 471 472 // Encode writes the Image m to w in PNG format. Any Image may be 473 // encoded, but images that are not image.NRGBA might be encoded lossily. 474 func Encode(w io.Writer, m image.Image) error { 475 var e Encoder 476 return e.Encode(w, m) 477 } 478 479 // Encode writes the Image m to w in PNG format. 480 func (enc *Encoder) Encode(w io.Writer, m image.Image) error { 481 // Obviously, negative widths and heights are invalid. Furthermore, the PNG 482 // spec section 11.2.2 says that zero is invalid. Excessively large images are 483 // also rejected. 484 mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy()) 485 if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 { 486 return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10)) 487 } 488 489 var e encoder 490 e.enc = enc 491 e.w = w 492 e.m = m 493 494 var pal color.Palette 495 // cbP8 encoding needs PalettedImage's ColorIndexAt method. 496 if _, ok := m.(image.PalettedImage); ok { 497 pal, _ = m.ColorModel().(color.Palette) 498 } 499 if pal != nil { 500 e.cb = cbP8 501 } else { 502 switch m.ColorModel() { 503 case color.GrayModel: 504 e.cb = cbG8 505 case color.Gray16Model: 506 e.cb = cbG16 507 case color.RGBAModel, color.NRGBAModel, color.AlphaModel: 508 if opaque(m) { 509 e.cb = cbTC8 510 } else { 511 e.cb = cbTCA8 512 } 513 default: 514 if opaque(m) { 515 e.cb = cbTC16 516 } else { 517 e.cb = cbTCA16 518 } 519 } 520 } 521 522 _, e.err = io.WriteString(w, pngHeader) 523 e.writeIHDR() 524 if pal != nil { 525 e.writePLTEAndTRNS(pal) 526 } 527 e.writeIDATs() 528 e.writeIEND() 529 return e.err 530 }