github.com/ccccaoqing/test@v0.0.0-20220510085219-3985d23445c0/src/math/big/int.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements signed multi-precision integers. 6 7 package big 8 9 import ( 10 "errors" 11 "fmt" 12 "io" 13 "math/rand" 14 "strings" 15 ) 16 17 // An Int represents a signed multi-precision integer. 18 // The zero value for an Int represents the value 0. 19 type Int struct { 20 neg bool // sign 21 abs nat // absolute value of the integer 22 } 23 24 var intOne = &Int{false, natOne} 25 26 // Sign returns: 27 // 28 // -1 if x < 0 29 // 0 if x == 0 30 // +1 if x > 0 31 // 32 func (x *Int) Sign() int { 33 if len(x.abs) == 0 { 34 return 0 35 } 36 if x.neg { 37 return -1 38 } 39 return 1 40 } 41 42 // SetInt64 sets z to x and returns z. 43 func (z *Int) SetInt64(x int64) *Int { 44 neg := false 45 if x < 0 { 46 neg = true 47 x = -x 48 } 49 z.abs = z.abs.setUint64(uint64(x)) 50 z.neg = neg 51 return z 52 } 53 54 // SetUint64 sets z to x and returns z. 55 func (z *Int) SetUint64(x uint64) *Int { 56 z.abs = z.abs.setUint64(x) 57 z.neg = false 58 return z 59 } 60 61 // NewInt allocates and returns a new Int set to x. 62 func NewInt(x int64) *Int { 63 return new(Int).SetInt64(x) 64 } 65 66 // Set sets z to x and returns z. 67 func (z *Int) Set(x *Int) *Int { 68 if z != x { 69 z.abs = z.abs.set(x.abs) 70 z.neg = x.neg 71 } 72 return z 73 } 74 75 // Bits provides raw (unchecked but fast) access to x by returning its 76 // absolute value as a little-endian Word slice. The result and x share 77 // the same underlying array. 78 // Bits is intended to support implementation of missing low-level Int 79 // functionality outside this package; it should be avoided otherwise. 80 func (x *Int) Bits() []Word { 81 return x.abs 82 } 83 84 // SetBits provides raw (unchecked but fast) access to z by setting its 85 // value to abs, interpreted as a little-endian Word slice, and returning 86 // z. The result and abs share the same underlying array. 87 // SetBits is intended to support implementation of missing low-level Int 88 // functionality outside this package; it should be avoided otherwise. 89 func (z *Int) SetBits(abs []Word) *Int { 90 z.abs = nat(abs).norm() 91 z.neg = false 92 return z 93 } 94 95 // Abs sets z to |x| (the absolute value of x) and returns z. 96 func (z *Int) Abs(x *Int) *Int { 97 z.Set(x) 98 z.neg = false 99 return z 100 } 101 102 // Neg sets z to -x and returns z. 103 func (z *Int) Neg(x *Int) *Int { 104 z.Set(x) 105 z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign 106 return z 107 } 108 109 // Add sets z to the sum x+y and returns z. 110 func (z *Int) Add(x, y *Int) *Int { 111 neg := x.neg 112 if x.neg == y.neg { 113 // x + y == x + y 114 // (-x) + (-y) == -(x + y) 115 z.abs = z.abs.add(x.abs, y.abs) 116 } else { 117 // x + (-y) == x - y == -(y - x) 118 // (-x) + y == y - x == -(x - y) 119 if x.abs.cmp(y.abs) >= 0 { 120 z.abs = z.abs.sub(x.abs, y.abs) 121 } else { 122 neg = !neg 123 z.abs = z.abs.sub(y.abs, x.abs) 124 } 125 } 126 z.neg = len(z.abs) > 0 && neg // 0 has no sign 127 return z 128 } 129 130 // Sub sets z to the difference x-y and returns z. 131 func (z *Int) Sub(x, y *Int) *Int { 132 neg := x.neg 133 if x.neg != y.neg { 134 // x - (-y) == x + y 135 // (-x) - y == -(x + y) 136 z.abs = z.abs.add(x.abs, y.abs) 137 } else { 138 // x - y == x - y == -(y - x) 139 // (-x) - (-y) == y - x == -(x - y) 140 if x.abs.cmp(y.abs) >= 0 { 141 z.abs = z.abs.sub(x.abs, y.abs) 142 } else { 143 neg = !neg 144 z.abs = z.abs.sub(y.abs, x.abs) 145 } 146 } 147 z.neg = len(z.abs) > 0 && neg // 0 has no sign 148 return z 149 } 150 151 // Mul sets z to the product x*y and returns z. 152 func (z *Int) Mul(x, y *Int) *Int { 153 // x * y == x * y 154 // x * (-y) == -(x * y) 155 // (-x) * y == -(x * y) 156 // (-x) * (-y) == x * y 157 z.abs = z.abs.mul(x.abs, y.abs) 158 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign 159 return z 160 } 161 162 // MulRange sets z to the product of all integers 163 // in the range [a, b] inclusively and returns z. 164 // If a > b (empty range), the result is 1. 165 func (z *Int) MulRange(a, b int64) *Int { 166 switch { 167 case a > b: 168 return z.SetInt64(1) // empty range 169 case a <= 0 && b >= 0: 170 return z.SetInt64(0) // range includes 0 171 } 172 // a <= b && (b < 0 || a > 0) 173 174 neg := false 175 if a < 0 { 176 neg = (b-a)&1 == 0 177 a, b = -b, -a 178 } 179 180 z.abs = z.abs.mulRange(uint64(a), uint64(b)) 181 z.neg = neg 182 return z 183 } 184 185 // Binomial sets z to the binomial coefficient of (n, k) and returns z. 186 func (z *Int) Binomial(n, k int64) *Int { 187 var a, b Int 188 a.MulRange(n-k+1, n) 189 b.MulRange(1, k) 190 return z.Quo(&a, &b) 191 } 192 193 // Quo sets z to the quotient x/y for y != 0 and returns z. 194 // If y == 0, a division-by-zero run-time panic occurs. 195 // Quo implements truncated division (like Go); see QuoRem for more details. 196 func (z *Int) Quo(x, y *Int) *Int { 197 z.abs, _ = z.abs.div(nil, x.abs, y.abs) 198 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign 199 return z 200 } 201 202 // Rem sets z to the remainder x%y for y != 0 and returns z. 203 // If y == 0, a division-by-zero run-time panic occurs. 204 // Rem implements truncated modulus (like Go); see QuoRem for more details. 205 func (z *Int) Rem(x, y *Int) *Int { 206 _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) 207 z.neg = len(z.abs) > 0 && x.neg // 0 has no sign 208 return z 209 } 210 211 // QuoRem sets z to the quotient x/y and r to the remainder x%y 212 // and returns the pair (z, r) for y != 0. 213 // If y == 0, a division-by-zero run-time panic occurs. 214 // 215 // QuoRem implements T-division and modulus (like Go): 216 // 217 // q = x/y with the result truncated to zero 218 // r = x - y*q 219 // 220 // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) 221 // See DivMod for Euclidean division and modulus (unlike Go). 222 // 223 func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { 224 z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) 225 z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign 226 return z, r 227 } 228 229 // Div sets z to the quotient x/y for y != 0 and returns z. 230 // If y == 0, a division-by-zero run-time panic occurs. 231 // Div implements Euclidean division (unlike Go); see DivMod for more details. 232 func (z *Int) Div(x, y *Int) *Int { 233 y_neg := y.neg // z may be an alias for y 234 var r Int 235 z.QuoRem(x, y, &r) 236 if r.neg { 237 if y_neg { 238 z.Add(z, intOne) 239 } else { 240 z.Sub(z, intOne) 241 } 242 } 243 return z 244 } 245 246 // Mod sets z to the modulus x%y for y != 0 and returns z. 247 // If y == 0, a division-by-zero run-time panic occurs. 248 // Mod implements Euclidean modulus (unlike Go); see DivMod for more details. 249 func (z *Int) Mod(x, y *Int) *Int { 250 y0 := y // save y 251 if z == y || alias(z.abs, y.abs) { 252 y0 = new(Int).Set(y) 253 } 254 var q Int 255 q.QuoRem(x, y, z) 256 if z.neg { 257 if y0.neg { 258 z.Sub(z, y0) 259 } else { 260 z.Add(z, y0) 261 } 262 } 263 return z 264 } 265 266 // DivMod sets z to the quotient x div y and m to the modulus x mod y 267 // and returns the pair (z, m) for y != 0. 268 // If y == 0, a division-by-zero run-time panic occurs. 269 // 270 // DivMod implements Euclidean division and modulus (unlike Go): 271 // 272 // q = x div y such that 273 // m = x - y*q with 0 <= m < |q| 274 // 275 // (See Raymond T. Boute, ``The Euclidean definition of the functions 276 // div and mod''. ACM Transactions on Programming Languages and 277 // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. 278 // ACM press.) 279 // See QuoRem for T-division and modulus (like Go). 280 // 281 func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { 282 y0 := y // save y 283 if z == y || alias(z.abs, y.abs) { 284 y0 = new(Int).Set(y) 285 } 286 z.QuoRem(x, y, m) 287 if m.neg { 288 if y0.neg { 289 z.Add(z, intOne) 290 m.Sub(m, y0) 291 } else { 292 z.Sub(z, intOne) 293 m.Add(m, y0) 294 } 295 } 296 return z, m 297 } 298 299 // Cmp compares x and y and returns: 300 // 301 // -1 if x < y 302 // 0 if x == y 303 // +1 if x > y 304 // 305 func (x *Int) Cmp(y *Int) (r int) { 306 // x cmp y == x cmp y 307 // x cmp (-y) == x 308 // (-x) cmp y == y 309 // (-x) cmp (-y) == -(x cmp y) 310 switch { 311 case x.neg == y.neg: 312 r = x.abs.cmp(y.abs) 313 if x.neg { 314 r = -r 315 } 316 case x.neg: 317 r = -1 318 default: 319 r = 1 320 } 321 return 322 } 323 324 func (x *Int) String() string { 325 switch { 326 case x == nil: 327 return "<nil>" 328 case x.neg: 329 return "-" + x.abs.decimalString() 330 } 331 return x.abs.decimalString() 332 } 333 334 func charset(ch rune) string { 335 switch ch { 336 case 'b': 337 return lowercaseDigits[0:2] 338 case 'o': 339 return lowercaseDigits[0:8] 340 case 'd', 's', 'v': 341 return lowercaseDigits[0:10] 342 case 'x': 343 return lowercaseDigits[0:16] 344 case 'X': 345 return uppercaseDigits[0:16] 346 } 347 return "" // unknown format 348 } 349 350 // write count copies of text to s 351 func writeMultiple(s fmt.State, text string, count int) { 352 if len(text) > 0 { 353 b := []byte(text) 354 for ; count > 0; count-- { 355 s.Write(b) 356 } 357 } 358 } 359 360 // Format is a support routine for fmt.Formatter. It accepts 361 // the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' 362 // (lowercase hexadecimal), and 'X' (uppercase hexadecimal). 363 // Also supported are the full suite of package fmt's format 364 // verbs for integral types, including '+', '-', and ' ' 365 // for sign control, '#' for leading zero in octal and for 366 // hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X" 367 // respectively, specification of minimum digits precision, 368 // output field width, space or zero padding, and left or 369 // right justification. 370 // 371 func (x *Int) Format(s fmt.State, ch rune) { 372 cs := charset(ch) 373 374 // special cases 375 switch { 376 case cs == "": 377 // unknown format 378 fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String()) 379 return 380 case x == nil: 381 fmt.Fprint(s, "<nil>") 382 return 383 } 384 385 // determine sign character 386 sign := "" 387 switch { 388 case x.neg: 389 sign = "-" 390 case s.Flag('+'): // supersedes ' ' when both specified 391 sign = "+" 392 case s.Flag(' '): 393 sign = " " 394 } 395 396 // determine prefix characters for indicating output base 397 prefix := "" 398 if s.Flag('#') { 399 switch ch { 400 case 'o': // octal 401 prefix = "0" 402 case 'x': // hexadecimal 403 prefix = "0x" 404 case 'X': 405 prefix = "0X" 406 } 407 } 408 409 // determine digits with base set by len(cs) and digit characters from cs 410 digits := x.abs.string(cs) 411 412 // number of characters for the three classes of number padding 413 var left int // space characters to left of digits for right justification ("%8d") 414 var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d") 415 var right int // space characters to right of digits for left justification ("%-8d") 416 417 // determine number padding from precision: the least number of digits to output 418 precision, precisionSet := s.Precision() 419 if precisionSet { 420 switch { 421 case len(digits) < precision: 422 zeroes = precision - len(digits) // count of zero padding 423 case digits == "0" && precision == 0: 424 return // print nothing if zero value (x == 0) and zero precision ("." or ".0") 425 } 426 } 427 428 // determine field pad from width: the least number of characters to output 429 length := len(sign) + len(prefix) + zeroes + len(digits) 430 if width, widthSet := s.Width(); widthSet && length < width { // pad as specified 431 switch d := width - length; { 432 case s.Flag('-'): 433 // pad on the right with spaces; supersedes '0' when both specified 434 right = d 435 case s.Flag('0') && !precisionSet: 436 // pad with zeroes unless precision also specified 437 zeroes = d 438 default: 439 // pad on the left with spaces 440 left = d 441 } 442 } 443 444 // print number as [left pad][sign][prefix][zero pad][digits][right pad] 445 writeMultiple(s, " ", left) 446 writeMultiple(s, sign, 1) 447 writeMultiple(s, prefix, 1) 448 writeMultiple(s, "0", zeroes) 449 writeMultiple(s, digits, 1) 450 writeMultiple(s, " ", right) 451 } 452 453 // scan sets z to the integer value corresponding to the longest possible prefix 454 // read from r representing a signed integer number in a given conversion base. 455 // It returns z, the actual conversion base used, and an error, if any. In the 456 // error case, the value of z is undefined but the returned value is nil. The 457 // syntax follows the syntax of integer literals in Go. 458 // 459 // The base argument must be 0 or a value from 2 through MaxBase. If the base 460 // is 0, the string prefix determines the actual conversion base. A prefix of 461 // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a 462 // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. 463 // 464 func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) { 465 // determine sign 466 ch, _, err := r.ReadRune() 467 if err != nil { 468 return nil, 0, err 469 } 470 neg := false 471 switch ch { 472 case '-': 473 neg = true 474 case '+': // nothing to do 475 default: 476 r.UnreadRune() 477 } 478 479 // determine mantissa 480 z.abs, base, err = z.abs.scan(r, base) 481 if err != nil { 482 return nil, base, err 483 } 484 z.neg = len(z.abs) > 0 && neg // 0 has no sign 485 486 return z, base, nil 487 } 488 489 // Scan is a support routine for fmt.Scanner; it sets z to the value of 490 // the scanned number. It accepts the formats 'b' (binary), 'o' (octal), 491 // 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). 492 func (z *Int) Scan(s fmt.ScanState, ch rune) error { 493 s.SkipSpace() // skip leading space characters 494 base := 0 495 switch ch { 496 case 'b': 497 base = 2 498 case 'o': 499 base = 8 500 case 'd': 501 base = 10 502 case 'x', 'X': 503 base = 16 504 case 's', 'v': 505 // let scan determine the base 506 default: 507 return errors.New("Int.Scan: invalid verb") 508 } 509 _, _, err := z.scan(s, base) 510 return err 511 } 512 513 // low32 returns the least significant 32 bits of z. 514 func low32(z nat) uint32 { 515 if len(z) == 0 { 516 return 0 517 } 518 return uint32(z[0]) 519 } 520 521 // low64 returns the least significant 64 bits of z. 522 func low64(z nat) uint64 { 523 if len(z) == 0 { 524 return 0 525 } 526 v := uint64(z[0]) 527 if _W == 32 && len(z) > 1 { 528 v |= uint64(z[1]) << 32 529 } 530 return v 531 } 532 533 // Int64 returns the int64 representation of x. 534 // If x cannot be represented in an int64, the result is undefined. 535 func (x *Int) Int64() int64 { 536 v := int64(low64(x.abs)) 537 if x.neg { 538 v = -v 539 } 540 return v 541 } 542 543 // Uint64 returns the uint64 representation of x. 544 // If x cannot be represented in a uint64, the result is undefined. 545 func (x *Int) Uint64() uint64 { 546 return low64(x.abs) 547 } 548 549 // SetString sets z to the value of s, interpreted in the given base, 550 // and returns z and a boolean indicating success. If SetString fails, 551 // the value of z is undefined but the returned value is nil. 552 // 553 // The base argument must be 0 or a value from 2 through MaxBase. If the base 554 // is 0, the string prefix determines the actual conversion base. A prefix of 555 // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a 556 // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. 557 // 558 func (z *Int) SetString(s string, base int) (*Int, bool) { 559 r := strings.NewReader(s) 560 _, _, err := z.scan(r, base) 561 if err != nil { 562 return nil, false 563 } 564 _, _, err = r.ReadRune() 565 if err != io.EOF { 566 return nil, false 567 } 568 return z, true // err == io.EOF => scan consumed all of s 569 } 570 571 // SetBytes interprets buf as the bytes of a big-endian unsigned 572 // integer, sets z to that value, and returns z. 573 func (z *Int) SetBytes(buf []byte) *Int { 574 z.abs = z.abs.setBytes(buf) 575 z.neg = false 576 return z 577 } 578 579 // Bytes returns the absolute value of x as a big-endian byte slice. 580 func (x *Int) Bytes() []byte { 581 buf := make([]byte, len(x.abs)*_S) 582 return buf[x.abs.bytes(buf):] 583 } 584 585 // BitLen returns the length of the absolute value of x in bits. 586 // The bit length of 0 is 0. 587 func (x *Int) BitLen() int { 588 return x.abs.bitLen() 589 } 590 591 // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. 592 // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y. 593 // See Knuth, volume 2, section 4.6.3. 594 func (z *Int) Exp(x, y, m *Int) *Int { 595 var yWords nat 596 if !y.neg { 597 yWords = y.abs 598 } 599 // y >= 0 600 601 var mWords nat 602 if m != nil { 603 mWords = m.abs // m.abs may be nil for m == 0 604 } 605 606 z.abs = z.abs.expNN(x.abs, yWords, mWords) 607 z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign 608 if z.neg && len(mWords) > 0 { 609 // make modulus result positive 610 z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| 611 z.neg = false 612 } 613 614 return z 615 } 616 617 // GCD sets z to the greatest common divisor of a and b, which both must 618 // be > 0, and returns z. 619 // If x and y are not nil, GCD sets x and y such that z = a*x + b*y. 620 // If either a or b is <= 0, GCD sets z = x = y = 0. 621 func (z *Int) GCD(x, y, a, b *Int) *Int { 622 if a.Sign() <= 0 || b.Sign() <= 0 { 623 z.SetInt64(0) 624 if x != nil { 625 x.SetInt64(0) 626 } 627 if y != nil { 628 y.SetInt64(0) 629 } 630 return z 631 } 632 if x == nil && y == nil { 633 return z.binaryGCD(a, b) 634 } 635 636 A := new(Int).Set(a) 637 B := new(Int).Set(b) 638 639 X := new(Int) 640 Y := new(Int).SetInt64(1) 641 642 lastX := new(Int).SetInt64(1) 643 lastY := new(Int) 644 645 q := new(Int) 646 temp := new(Int) 647 648 for len(B.abs) > 0 { 649 r := new(Int) 650 q, r = q.QuoRem(A, B, r) 651 652 A, B = B, r 653 654 temp.Set(X) 655 X.Mul(X, q) 656 X.neg = !X.neg 657 X.Add(X, lastX) 658 lastX.Set(temp) 659 660 temp.Set(Y) 661 Y.Mul(Y, q) 662 Y.neg = !Y.neg 663 Y.Add(Y, lastY) 664 lastY.Set(temp) 665 } 666 667 if x != nil { 668 *x = *lastX 669 } 670 671 if y != nil { 672 *y = *lastY 673 } 674 675 *z = *A 676 return z 677 } 678 679 // binaryGCD sets z to the greatest common divisor of a and b, which both must 680 // be > 0, and returns z. 681 // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B. 682 func (z *Int) binaryGCD(a, b *Int) *Int { 683 u := z 684 v := new(Int) 685 686 // use one Euclidean iteration to ensure that u and v are approx. the same size 687 switch { 688 case len(a.abs) > len(b.abs): 689 u.Set(b) 690 v.Rem(a, b) 691 case len(a.abs) < len(b.abs): 692 u.Set(a) 693 v.Rem(b, a) 694 default: 695 u.Set(a) 696 v.Set(b) 697 } 698 699 // v might be 0 now 700 if len(v.abs) == 0 { 701 return u 702 } 703 // u > 0 && v > 0 704 705 // determine largest k such that u = u' << k, v = v' << k 706 k := u.abs.trailingZeroBits() 707 if vk := v.abs.trailingZeroBits(); vk < k { 708 k = vk 709 } 710 u.Rsh(u, k) 711 v.Rsh(v, k) 712 713 // determine t (we know that u > 0) 714 t := new(Int) 715 if u.abs[0]&1 != 0 { 716 // u is odd 717 t.Neg(v) 718 } else { 719 t.Set(u) 720 } 721 722 for len(t.abs) > 0 { 723 // reduce t 724 t.Rsh(t, t.abs.trailingZeroBits()) 725 if t.neg { 726 v, t = t, v 727 v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign 728 } else { 729 u, t = t, u 730 } 731 t.Sub(u, v) 732 } 733 734 return z.Lsh(u, k) 735 } 736 737 // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime. 738 // If it returns true, x is prime with probability 1 - 1/4^n. 739 // If it returns false, x is not prime. 740 func (x *Int) ProbablyPrime(n int) bool { 741 return !x.neg && x.abs.probablyPrime(n) 742 } 743 744 // Rand sets z to a pseudo-random number in [0, n) and returns z. 745 func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { 746 z.neg = false 747 if n.neg == true || len(n.abs) == 0 { 748 z.abs = nil 749 return z 750 } 751 z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) 752 return z 753 } 754 755 // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ 756 // and returns z. If g and n are not relatively prime, the result is undefined. 757 func (z *Int) ModInverse(g, n *Int) *Int { 758 var d Int 759 d.GCD(z, nil, g, n) 760 // x and y are such that g*x + n*y = d. Since g and n are 761 // relatively prime, d = 1. Taking that modulo n results in 762 // g*x = 1, therefore x is the inverse element. 763 if z.neg { 764 z.Add(z, n) 765 } 766 return z 767 } 768 769 // Lsh sets z = x << n and returns z. 770 func (z *Int) Lsh(x *Int, n uint) *Int { 771 z.abs = z.abs.shl(x.abs, n) 772 z.neg = x.neg 773 return z 774 } 775 776 // Rsh sets z = x >> n and returns z. 777 func (z *Int) Rsh(x *Int, n uint) *Int { 778 if x.neg { 779 // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) 780 t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 781 t = t.shr(t, n) 782 z.abs = t.add(t, natOne) 783 z.neg = true // z cannot be zero if x is negative 784 return z 785 } 786 787 z.abs = z.abs.shr(x.abs, n) 788 z.neg = false 789 return z 790 } 791 792 // Bit returns the value of the i'th bit of x. That is, it 793 // returns (x>>i)&1. The bit index i must be >= 0. 794 func (x *Int) Bit(i int) uint { 795 if i == 0 { 796 // optimization for common case: odd/even test of x 797 if len(x.abs) > 0 { 798 return uint(x.abs[0] & 1) // bit 0 is same for -x 799 } 800 return 0 801 } 802 if i < 0 { 803 panic("negative bit index") 804 } 805 if x.neg { 806 t := nat(nil).sub(x.abs, natOne) 807 return t.bit(uint(i)) ^ 1 808 } 809 810 return x.abs.bit(uint(i)) 811 } 812 813 // SetBit sets z to x, with x's i'th bit set to b (0 or 1). 814 // That is, if b is 1 SetBit sets z = x | (1 << i); 815 // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, 816 // SetBit will panic. 817 func (z *Int) SetBit(x *Int, i int, b uint) *Int { 818 if i < 0 { 819 panic("negative bit index") 820 } 821 if x.neg { 822 t := z.abs.sub(x.abs, natOne) 823 t = t.setBit(t, uint(i), b^1) 824 z.abs = t.add(t, natOne) 825 z.neg = len(z.abs) > 0 826 return z 827 } 828 z.abs = z.abs.setBit(x.abs, uint(i), b) 829 z.neg = false 830 return z 831 } 832 833 // And sets z = x & y and returns z. 834 func (z *Int) And(x, y *Int) *Int { 835 if x.neg == y.neg { 836 if x.neg { 837 // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) 838 x1 := nat(nil).sub(x.abs, natOne) 839 y1 := nat(nil).sub(y.abs, natOne) 840 z.abs = z.abs.add(z.abs.or(x1, y1), natOne) 841 z.neg = true // z cannot be zero if x and y are negative 842 return z 843 } 844 845 // x & y == x & y 846 z.abs = z.abs.and(x.abs, y.abs) 847 z.neg = false 848 return z 849 } 850 851 // x.neg != y.neg 852 if x.neg { 853 x, y = y, x // & is symmetric 854 } 855 856 // x & (-y) == x & ^(y-1) == x &^ (y-1) 857 y1 := nat(nil).sub(y.abs, natOne) 858 z.abs = z.abs.andNot(x.abs, y1) 859 z.neg = false 860 return z 861 } 862 863 // AndNot sets z = x &^ y and returns z. 864 func (z *Int) AndNot(x, y *Int) *Int { 865 if x.neg == y.neg { 866 if x.neg { 867 // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) 868 x1 := nat(nil).sub(x.abs, natOne) 869 y1 := nat(nil).sub(y.abs, natOne) 870 z.abs = z.abs.andNot(y1, x1) 871 z.neg = false 872 return z 873 } 874 875 // x &^ y == x &^ y 876 z.abs = z.abs.andNot(x.abs, y.abs) 877 z.neg = false 878 return z 879 } 880 881 if x.neg { 882 // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) 883 x1 := nat(nil).sub(x.abs, natOne) 884 z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) 885 z.neg = true // z cannot be zero if x is negative and y is positive 886 return z 887 } 888 889 // x &^ (-y) == x &^ ^(y-1) == x & (y-1) 890 y1 := nat(nil).sub(y.abs, natOne) 891 z.abs = z.abs.and(x.abs, y1) 892 z.neg = false 893 return z 894 } 895 896 // Or sets z = x | y and returns z. 897 func (z *Int) Or(x, y *Int) *Int { 898 if x.neg == y.neg { 899 if x.neg { 900 // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) 901 x1 := nat(nil).sub(x.abs, natOne) 902 y1 := nat(nil).sub(y.abs, natOne) 903 z.abs = z.abs.add(z.abs.and(x1, y1), natOne) 904 z.neg = true // z cannot be zero if x and y are negative 905 return z 906 } 907 908 // x | y == x | y 909 z.abs = z.abs.or(x.abs, y.abs) 910 z.neg = false 911 return z 912 } 913 914 // x.neg != y.neg 915 if x.neg { 916 x, y = y, x // | is symmetric 917 } 918 919 // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) 920 y1 := nat(nil).sub(y.abs, natOne) 921 z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) 922 z.neg = true // z cannot be zero if one of x or y is negative 923 return z 924 } 925 926 // Xor sets z = x ^ y and returns z. 927 func (z *Int) Xor(x, y *Int) *Int { 928 if x.neg == y.neg { 929 if x.neg { 930 // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) 931 x1 := nat(nil).sub(x.abs, natOne) 932 y1 := nat(nil).sub(y.abs, natOne) 933 z.abs = z.abs.xor(x1, y1) 934 z.neg = false 935 return z 936 } 937 938 // x ^ y == x ^ y 939 z.abs = z.abs.xor(x.abs, y.abs) 940 z.neg = false 941 return z 942 } 943 944 // x.neg != y.neg 945 if x.neg { 946 x, y = y, x // ^ is symmetric 947 } 948 949 // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) 950 y1 := nat(nil).sub(y.abs, natOne) 951 z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) 952 z.neg = true // z cannot be zero if only one of x or y is negative 953 return z 954 } 955 956 // Not sets z = ^x and returns z. 957 func (z *Int) Not(x *Int) *Int { 958 if x.neg { 959 // ^(-x) == ^(^(x-1)) == x-1 960 z.abs = z.abs.sub(x.abs, natOne) 961 z.neg = false 962 return z 963 } 964 965 // ^x == -x-1 == -(x+1) 966 z.abs = z.abs.add(x.abs, natOne) 967 z.neg = true // z cannot be zero if x is positive 968 return z 969 } 970 971 // Gob codec version. Permits backward-compatible changes to the encoding. 972 const intGobVersion byte = 1 973 974 // GobEncode implements the gob.GobEncoder interface. 975 func (x *Int) GobEncode() ([]byte, error) { 976 if x == nil { 977 return nil, nil 978 } 979 buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit 980 i := x.abs.bytes(buf) - 1 // i >= 0 981 b := intGobVersion << 1 // make space for sign bit 982 if x.neg { 983 b |= 1 984 } 985 buf[i] = b 986 return buf[i:], nil 987 } 988 989 // GobDecode implements the gob.GobDecoder interface. 990 func (z *Int) GobDecode(buf []byte) error { 991 if len(buf) == 0 { 992 // Other side sent a nil or default value. 993 *z = Int{} 994 return nil 995 } 996 b := buf[0] 997 if b>>1 != intGobVersion { 998 return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1)) 999 } 1000 z.neg = b&1 != 0 1001 z.abs = z.abs.setBytes(buf[1:]) 1002 return nil 1003 } 1004 1005 // MarshalJSON implements the json.Marshaler interface. 1006 func (z *Int) MarshalJSON() ([]byte, error) { 1007 // TODO(gri): get rid of the []byte/string conversions 1008 return []byte(z.String()), nil 1009 } 1010 1011 // UnmarshalJSON implements the json.Unmarshaler interface. 1012 func (z *Int) UnmarshalJSON(text []byte) error { 1013 // TODO(gri): get rid of the []byte/string conversions 1014 if _, ok := z.SetString(string(text), 0); !ok { 1015 return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) 1016 } 1017 return nil 1018 } 1019 1020 // MarshalText implements the encoding.TextMarshaler interface. 1021 func (z *Int) MarshalText() (text []byte, err error) { 1022 return []byte(z.String()), nil 1023 } 1024 1025 // UnmarshalText implements the encoding.TextUnmarshaler interface. 1026 func (z *Int) UnmarshalText(text []byte) error { 1027 if _, ok := z.SetString(string(text), 0); !ok { 1028 return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text) 1029 } 1030 return nil 1031 }