github.com/ccm-chain/ccmchain@v1.0.0/core/state/sync_test.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package state 18 19 import ( 20 "bytes" 21 "math/big" 22 "testing" 23 24 "github.com/ccm-chain/ccmchain/common" 25 "github.com/ccm-chain/ccmchain/core/rawdb" 26 "github.com/ccm-chain/ccmchain/crypto" 27 "github.com/ccm-chain/ccmchain/database" 28 "github.com/ccm-chain/ccmchain/database/memorydb" 29 "github.com/ccm-chain/ccmchain/trie" 30 ) 31 32 // testAccount is the data associated with an account used by the state tests. 33 type testAccount struct { 34 address common.Address 35 balance *big.Int 36 nonce uint64 37 code []byte 38 } 39 40 // makeTestState create a sample test state to test node-wise reconstruction. 41 func makeTestState() (Database, common.Hash, []*testAccount) { 42 // Create an empty state 43 db := NewDatabase(rawdb.NewMemoryDatabase()) 44 state, _ := New(common.Hash{}, db, nil) 45 46 // Fill it with some arbitrary data 47 accounts := []*testAccount{} 48 for i := byte(0); i < 96; i++ { 49 obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i})) 50 acc := &testAccount{address: common.BytesToAddress([]byte{i})} 51 52 obj.AddBalance(big.NewInt(int64(11 * i))) 53 acc.balance = big.NewInt(int64(11 * i)) 54 55 obj.SetNonce(uint64(42 * i)) 56 acc.nonce = uint64(42 * i) 57 58 if i%3 == 0 { 59 obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) 60 acc.code = []byte{i, i, i, i, i} 61 } 62 state.updateStateObject(obj) 63 accounts = append(accounts, acc) 64 } 65 root, _ := state.Commit(false) 66 67 // Return the generated state 68 return db, root, accounts 69 } 70 71 // checkStateAccounts cross references a reconstructed state with an expected 72 // account array. 73 func checkStateAccounts(t *testing.T, db database.Database, root common.Hash, accounts []*testAccount) { 74 // Check root availability and state contents 75 state, err := New(root, NewDatabase(db), nil) 76 if err != nil { 77 t.Fatalf("failed to create state trie at %x: %v", root, err) 78 } 79 if err := checkStateConsistency(db, root); err != nil { 80 t.Fatalf("inconsistent state trie at %x: %v", root, err) 81 } 82 for i, acc := range accounts { 83 if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 { 84 t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance) 85 } 86 if nonce := state.GetNonce(acc.address); nonce != acc.nonce { 87 t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce) 88 } 89 if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) { 90 t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code) 91 } 92 } 93 } 94 95 // checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present. 96 func checkTrieConsistency(db database.Database, root common.Hash) error { 97 if v, _ := db.Get(root[:]); v == nil { 98 return nil // Consider a non existent state consistent. 99 } 100 trie, err := trie.New(root, trie.NewDatabase(db)) 101 if err != nil { 102 return err 103 } 104 it := trie.NodeIterator(nil) 105 for it.Next(true) { 106 } 107 return it.Error() 108 } 109 110 // checkStateConsistency checks that all data of a state root is present. 111 func checkStateConsistency(db database.Database, root common.Hash) error { 112 // Create and iterate a state trie rooted in a sub-node 113 if _, err := db.Get(root.Bytes()); err != nil { 114 return nil // Consider a non existent state consistent. 115 } 116 state, err := New(root, NewDatabase(db), nil) 117 if err != nil { 118 return err 119 } 120 it := NewNodeIterator(state) 121 for it.Next() { 122 } 123 return it.Error 124 } 125 126 // Tests that an empty state is not scheduled for syncing. 127 func TestEmptyStateSync(t *testing.T) { 128 empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 129 if req := NewStateSync(empty, rawdb.NewMemoryDatabase(), trie.NewSyncBloom(1, memorydb.New())).Missing(1); len(req) != 0 { 130 t.Errorf("content requested for empty state: %v", req) 131 } 132 } 133 134 // Tests that given a root hash, a state can sync iteratively on a single thread, 135 // requesting retrieval tasks and returning all of them in one go. 136 func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1, false) } 137 func TestIterativeStateSyncBatched(t *testing.T) { testIterativeStateSync(t, 100, false) } 138 func TestIterativeStateSyncIndividualFromDisk(t *testing.T) { testIterativeStateSync(t, 1, true) } 139 func TestIterativeStateSyncBatchedFromDisk(t *testing.T) { testIterativeStateSync(t, 100, true) } 140 141 func testIterativeStateSync(t *testing.T, count int, commit bool) { 142 // Create a random state to copy 143 srcDb, srcRoot, srcAccounts := makeTestState() 144 if commit { 145 srcDb.TrieDB().Commit(srcRoot, false, nil) 146 } 147 // Create a destination state and sync with the scheduler 148 dstDb := rawdb.NewMemoryDatabase() 149 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 150 151 queue := append([]common.Hash{}, sched.Missing(count)...) 152 for len(queue) > 0 { 153 results := make([]trie.SyncResult, len(queue)) 154 for i, hash := range queue { 155 data, err := srcDb.TrieDB().Node(hash) 156 if err != nil { 157 data, err = srcDb.ContractCode(common.Hash{}, hash) 158 } 159 if err != nil { 160 t.Fatalf("failed to retrieve node data for %x", hash) 161 } 162 results[i] = trie.SyncResult{Hash: hash, Data: data} 163 } 164 for _, result := range results { 165 if err := sched.Process(result); err != nil { 166 t.Fatalf("failed to process result %v", err) 167 } 168 } 169 batch := dstDb.NewBatch() 170 if err := sched.Commit(batch); err != nil { 171 t.Fatalf("failed to commit data: %v", err) 172 } 173 batch.Write() 174 queue = append(queue[:0], sched.Missing(count)...) 175 } 176 // Cross check that the two states are in sync 177 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 178 } 179 180 // Tests that the trie scheduler can correctly reconstruct the state even if only 181 // partial results are returned, and the others sent only later. 182 func TestIterativeDelayedStateSync(t *testing.T) { 183 // Create a random state to copy 184 srcDb, srcRoot, srcAccounts := makeTestState() 185 186 // Create a destination state and sync with the scheduler 187 dstDb := rawdb.NewMemoryDatabase() 188 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 189 190 queue := append([]common.Hash{}, sched.Missing(0)...) 191 for len(queue) > 0 { 192 // Sync only half of the scheduled nodes 193 results := make([]trie.SyncResult, len(queue)/2+1) 194 for i, hash := range queue[:len(results)] { 195 data, err := srcDb.TrieDB().Node(hash) 196 if err != nil { 197 data, err = srcDb.ContractCode(common.Hash{}, hash) 198 } 199 if err != nil { 200 t.Fatalf("failed to retrieve node data for %x", hash) 201 } 202 results[i] = trie.SyncResult{Hash: hash, Data: data} 203 } 204 for _, result := range results { 205 if err := sched.Process(result); err != nil { 206 t.Fatalf("failed to process result %v", err) 207 } 208 } 209 batch := dstDb.NewBatch() 210 if err := sched.Commit(batch); err != nil { 211 t.Fatalf("failed to commit data: %v", err) 212 } 213 batch.Write() 214 queue = append(queue[len(results):], sched.Missing(0)...) 215 } 216 // Cross check that the two states are in sync 217 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 218 } 219 220 // Tests that given a root hash, a trie can sync iteratively on a single thread, 221 // requesting retrieval tasks and returning all of them in one go, however in a 222 // random order. 223 func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) } 224 func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) } 225 226 func testIterativeRandomStateSync(t *testing.T, count int) { 227 // Create a random state to copy 228 srcDb, srcRoot, srcAccounts := makeTestState() 229 230 // Create a destination state and sync with the scheduler 231 dstDb := rawdb.NewMemoryDatabase() 232 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 233 234 queue := make(map[common.Hash]struct{}) 235 for _, hash := range sched.Missing(count) { 236 queue[hash] = struct{}{} 237 } 238 for len(queue) > 0 { 239 // Fetch all the queued nodes in a random order 240 results := make([]trie.SyncResult, 0, len(queue)) 241 for hash := range queue { 242 data, err := srcDb.TrieDB().Node(hash) 243 if err != nil { 244 data, err = srcDb.ContractCode(common.Hash{}, hash) 245 } 246 if err != nil { 247 t.Fatalf("failed to retrieve node data for %x", hash) 248 } 249 results = append(results, trie.SyncResult{Hash: hash, Data: data}) 250 } 251 // Feed the retrieved results back and queue new tasks 252 for _, result := range results { 253 if err := sched.Process(result); err != nil { 254 t.Fatalf("failed to process result %v", err) 255 } 256 } 257 batch := dstDb.NewBatch() 258 if err := sched.Commit(batch); err != nil { 259 t.Fatalf("failed to commit data: %v", err) 260 } 261 batch.Write() 262 queue = make(map[common.Hash]struct{}) 263 for _, hash := range sched.Missing(count) { 264 queue[hash] = struct{}{} 265 } 266 } 267 // Cross check that the two states are in sync 268 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 269 } 270 271 // Tests that the trie scheduler can correctly reconstruct the state even if only 272 // partial results are returned (Even those randomly), others sent only later. 273 func TestIterativeRandomDelayedStateSync(t *testing.T) { 274 // Create a random state to copy 275 srcDb, srcRoot, srcAccounts := makeTestState() 276 277 // Create a destination state and sync with the scheduler 278 dstDb := rawdb.NewMemoryDatabase() 279 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 280 281 queue := make(map[common.Hash]struct{}) 282 for _, hash := range sched.Missing(0) { 283 queue[hash] = struct{}{} 284 } 285 for len(queue) > 0 { 286 // Sync only half of the scheduled nodes, even those in random order 287 results := make([]trie.SyncResult, 0, len(queue)/2+1) 288 for hash := range queue { 289 delete(queue, hash) 290 291 data, err := srcDb.TrieDB().Node(hash) 292 if err != nil { 293 data, err = srcDb.ContractCode(common.Hash{}, hash) 294 } 295 if err != nil { 296 t.Fatalf("failed to retrieve node data for %x", hash) 297 } 298 results = append(results, trie.SyncResult{Hash: hash, Data: data}) 299 300 if len(results) >= cap(results) { 301 break 302 } 303 } 304 // Feed the retrieved results back and queue new tasks 305 for _, result := range results { 306 if err := sched.Process(result); err != nil { 307 t.Fatalf("failed to process result %v", err) 308 } 309 } 310 batch := dstDb.NewBatch() 311 if err := sched.Commit(batch); err != nil { 312 t.Fatalf("failed to commit data: %v", err) 313 } 314 batch.Write() 315 for _, hash := range sched.Missing(0) { 316 queue[hash] = struct{}{} 317 } 318 } 319 // Cross check that the two states are in sync 320 checkStateAccounts(t, dstDb, srcRoot, srcAccounts) 321 } 322 323 // Tests that at any point in time during a sync, only complete sub-tries are in 324 // the database. 325 func TestIncompleteStateSync(t *testing.T) { 326 // Create a random state to copy 327 srcDb, srcRoot, srcAccounts := makeTestState() 328 329 // isCode reports whether the hash is contract code hash. 330 isCode := func(hash common.Hash) bool { 331 for _, acc := range srcAccounts { 332 if hash == crypto.Keccak256Hash(acc.code) { 333 return true 334 } 335 } 336 return false 337 } 338 checkTrieConsistency(srcDb.TrieDB().DiskDB().(database.Database), srcRoot) 339 340 // Create a destination state and sync with the scheduler 341 dstDb := rawdb.NewMemoryDatabase() 342 sched := NewStateSync(srcRoot, dstDb, trie.NewSyncBloom(1, dstDb)) 343 344 added := []common.Hash{} 345 queue := append([]common.Hash{}, sched.Missing(1)...) 346 for len(queue) > 0 { 347 // Fetch a batch of state nodes 348 results := make([]trie.SyncResult, len(queue)) 349 for i, hash := range queue { 350 data, err := srcDb.TrieDB().Node(hash) 351 if err != nil { 352 data, err = srcDb.ContractCode(common.Hash{}, hash) 353 } 354 if err != nil { 355 t.Fatalf("failed to retrieve node data for %x", hash) 356 } 357 results[i] = trie.SyncResult{Hash: hash, Data: data} 358 } 359 // Process each of the state nodes 360 for _, result := range results { 361 if err := sched.Process(result); err != nil { 362 t.Fatalf("failed to process result %v", err) 363 } 364 } 365 batch := dstDb.NewBatch() 366 if err := sched.Commit(batch); err != nil { 367 t.Fatalf("failed to commit data: %v", err) 368 } 369 batch.Write() 370 for _, result := range results { 371 added = append(added, result.Hash) 372 } 373 // Check that all known sub-tries added so far are complete or missing entirely. 374 for _, hash := range added { 375 if isCode(hash) { 376 continue 377 } 378 // Can't use checkStateConsistency here because subtrie keys may have odd 379 // length and crash in LeafKey. 380 if err := checkTrieConsistency(dstDb, hash); err != nil { 381 t.Fatalf("state inconsistent: %v", err) 382 } 383 } 384 // Fetch the next batch to retrieve 385 queue = append(queue[:0], sched.Missing(1)...) 386 } 387 // Sanity check that removing any node from the database is detected 388 for _, node := range added[1:] { 389 var ( 390 key = node.Bytes() 391 code = isCode(node) 392 val []byte 393 ) 394 if code { 395 val = rawdb.ReadCode(dstDb, node) 396 rawdb.DeleteCode(dstDb, node) 397 } else { 398 val = rawdb.ReadTrieNode(dstDb, node) 399 rawdb.DeleteTrieNode(dstDb, node) 400 } 401 if err := checkStateConsistency(dstDb, added[0]); err == nil { 402 t.Fatalf("trie inconsistency not caught, missing: %x", key) 403 } 404 if code { 405 rawdb.WriteCode(dstDb, node, val) 406 } else { 407 rawdb.WriteTrieNode(dstDb, node, val) 408 } 409 } 410 }