github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/jxr/jxrlib/test/jpeg/jpge.cpp (about) 1 // jpge.cpp - C++ class for JPEG compression. 2 // Public domain, Rich Geldreich <richgel99@gmail.com> 3 // v1.01, Dec. 18, 2010 - Initial release 4 // v1.02, Apr. 6, 2011 - Removed 2x2 ordered dither in H2V1 chroma subsampling method load_block_16_8_8(). (The rounding factor was 2, when it should have been 1. Either way, it wasn't helping.) 5 // v1.03, Apr. 16, 2011 - Added support for optimized Huffman code tables, optimized dynamic memory allocation down to only 1 alloc. 6 // Also from Alex Evans: Added RGBA support, linear memory allocator (no longer needed in v1.03). 7 // v1.04, May. 19, 2012: Forgot to set m_pFile ptr to NULL in cfile_stream::close(). Thanks to Owen Kaluza for reporting this bug. 8 // Code tweaks to fix VS2008 static code analysis warnings (all looked harmless). 9 // Code review revealed method load_block_16_8_8() (used for the non-default H2V1 sampling mode to downsample chroma) somehow didn't get the rounding factor fix from v1.02. 10 11 #include "jpge.h" 12 13 #include <stdlib.h> 14 #include <string.h> 15 #include <malloc.h> 16 17 #define JPGE_MAX(a,b) (((a)>(b))?(a):(b)) 18 #define JPGE_MIN(a,b) (((a)<(b))?(a):(b)) 19 20 namespace jpge { 21 22 static inline void *jpge_malloc(size_t nSize) { return malloc(nSize); } 23 static inline void jpge_free(void *p) { free(p); } 24 25 // Various JPEG enums and tables. 26 enum { M_SOF0 = 0xC0, M_DHT = 0xC4, M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_APP0 = 0xE0 }; 27 enum { DC_LUM_CODES = 12, AC_LUM_CODES = 256, DC_CHROMA_CODES = 12, AC_CHROMA_CODES = 256, MAX_HUFF_SYMBOLS = 257, MAX_HUFF_CODESIZE = 32 }; 28 29 static uint8 s_zag[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; 30 static int16 s_std_lum_quant[64] = { 16,11,12,14,12,10,16,14,13,14,18,17,16,19,24,40,26,24,22,22,24,49,35,37,29,40,58,51,61,60,57,51,56,55,64,72,92,78,64,68,87,69,55,56,80,109,81,87,95,98,103,104,103,62,77,113,121,112,100,120,92,101,103,99 }; 31 static int16 s_std_croma_quant[64] = { 17,18,18,24,21,24,47,26,26,47,99,66,56,66,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 }; 32 static uint8 s_dc_lum_bits[17] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 }; 33 static uint8 s_dc_lum_val[DC_LUM_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; 34 static uint8 s_ac_lum_bits[17] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d }; 35 static uint8 s_ac_lum_val[AC_LUM_CODES] = 36 { 37 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0, 38 0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49, 39 0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, 40 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5, 41 0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, 42 0xf9,0xfa 43 }; 44 static uint8 s_dc_chroma_bits[17] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 }; 45 static uint8 s_dc_chroma_val[DC_CHROMA_CODES] = { 0,1,2,3,4,5,6,7,8,9,10,11 }; 46 static uint8 s_ac_chroma_bits[17] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 }; 47 static uint8 s_ac_chroma_val[AC_CHROMA_CODES] = 48 { 49 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0, 50 0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48, 51 0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, 52 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3, 53 0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8, 54 0xf9,0xfa 55 }; 56 57 // Low-level helper functions. 58 template <class T> inline void clear_obj(T &obj) { memset(&obj, 0, sizeof(obj)); } 59 60 const int YR = 19595, YG = 38470, YB = 7471, CB_R = -11059, CB_G = -21709, CB_B = 32768, CR_R = 32768, CR_G = -27439, CR_B = -5329; 61 static inline uint8 clamp(int i) { if (static_cast<uint>(i) > 255U) { if (i < 0) i = 0; else if (i > 255) i = 255; } return static_cast<uint8>(i); } 62 63 static void RGB_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels) 64 { 65 for ( ; num_pixels; pDst += 3, pSrc += 3, num_pixels--) 66 { 67 const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; 68 pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); 69 pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); 70 pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); 71 } 72 } 73 74 static void RGB_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels) 75 { 76 for ( ; num_pixels; pDst++, pSrc += 3, num_pixels--) 77 pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); 78 } 79 80 static void RGBA_to_YCC(uint8* pDst, const uint8 *pSrc, int num_pixels) 81 { 82 for ( ; num_pixels; pDst += 3, pSrc += 4, num_pixels--) 83 { 84 const int r = pSrc[0], g = pSrc[1], b = pSrc[2]; 85 pDst[0] = static_cast<uint8>((r * YR + g * YG + b * YB + 32768) >> 16); 86 pDst[1] = clamp(128 + ((r * CB_R + g * CB_G + b * CB_B + 32768) >> 16)); 87 pDst[2] = clamp(128 + ((r * CR_R + g * CR_G + b * CR_B + 32768) >> 16)); 88 } 89 } 90 91 static void RGBA_to_Y(uint8* pDst, const uint8 *pSrc, int num_pixels) 92 { 93 for ( ; num_pixels; pDst++, pSrc += 4, num_pixels--) 94 pDst[0] = static_cast<uint8>((pSrc[0] * YR + pSrc[1] * YG + pSrc[2] * YB + 32768) >> 16); 95 } 96 97 static void Y_to_YCC(uint8* pDst, const uint8* pSrc, int num_pixels) 98 { 99 for( ; num_pixels; pDst += 3, pSrc++, num_pixels--) { pDst[0] = pSrc[0]; pDst[1] = 128; pDst[2] = 128; } 100 } 101 102 // Forward DCT - DCT derived from jfdctint. 103 enum { CONST_BITS = 13, ROW_BITS = 2 }; 104 #define DCT_DESCALE(x, n) (((x) + (((int32)1) << ((n) - 1))) >> (n)) 105 #define DCT_MUL(var, c) (static_cast<int16>(var) * static_cast<int32>(c)) 106 #define DCT1D(s0, s1, s2, s3, s4, s5, s6, s7) \ 107 int32 t0 = s0 + s7, t7 = s0 - s7, t1 = s1 + s6, t6 = s1 - s6, t2 = s2 + s5, t5 = s2 - s5, t3 = s3 + s4, t4 = s3 - s4; \ 108 int32 t10 = t0 + t3, t13 = t0 - t3, t11 = t1 + t2, t12 = t1 - t2; \ 109 int32 u1 = DCT_MUL(t12 + t13, 4433); \ 110 s2 = u1 + DCT_MUL(t13, 6270); \ 111 s6 = u1 + DCT_MUL(t12, -15137); \ 112 u1 = t4 + t7; \ 113 int32 u2 = t5 + t6, u3 = t4 + t6, u4 = t5 + t7; \ 114 int32 z5 = DCT_MUL(u3 + u4, 9633); \ 115 t4 = DCT_MUL(t4, 2446); t5 = DCT_MUL(t5, 16819); \ 116 t6 = DCT_MUL(t6, 25172); t7 = DCT_MUL(t7, 12299); \ 117 u1 = DCT_MUL(u1, -7373); u2 = DCT_MUL(u2, -20995); \ 118 u3 = DCT_MUL(u3, -16069); u4 = DCT_MUL(u4, -3196); \ 119 u3 += z5; u4 += z5; \ 120 s0 = t10 + t11; s1 = t7 + u1 + u4; s3 = t6 + u2 + u3; s4 = t10 - t11; s5 = t5 + u2 + u4; s7 = t4 + u1 + u3; 121 122 static void DCT2D(int32 *p) 123 { 124 int32 c, *q = p; 125 for (c = 7; c >= 0; c--, q += 8) 126 { 127 int32 s0 = q[0], s1 = q[1], s2 = q[2], s3 = q[3], s4 = q[4], s5 = q[5], s6 = q[6], s7 = q[7]; 128 DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); 129 q[0] = s0 << ROW_BITS; q[1] = DCT_DESCALE(s1, CONST_BITS-ROW_BITS); q[2] = DCT_DESCALE(s2, CONST_BITS-ROW_BITS); q[3] = DCT_DESCALE(s3, CONST_BITS-ROW_BITS); 130 q[4] = s4 << ROW_BITS; q[5] = DCT_DESCALE(s5, CONST_BITS-ROW_BITS); q[6] = DCT_DESCALE(s6, CONST_BITS-ROW_BITS); q[7] = DCT_DESCALE(s7, CONST_BITS-ROW_BITS); 131 } 132 for (q = p, c = 7; c >= 0; c--, q++) 133 { 134 int32 s0 = q[0*8], s1 = q[1*8], s2 = q[2*8], s3 = q[3*8], s4 = q[4*8], s5 = q[5*8], s6 = q[6*8], s7 = q[7*8]; 135 DCT1D(s0, s1, s2, s3, s4, s5, s6, s7); 136 q[0*8] = DCT_DESCALE(s0, ROW_BITS+3); q[1*8] = DCT_DESCALE(s1, CONST_BITS+ROW_BITS+3); q[2*8] = DCT_DESCALE(s2, CONST_BITS+ROW_BITS+3); q[3*8] = DCT_DESCALE(s3, CONST_BITS+ROW_BITS+3); 137 q[4*8] = DCT_DESCALE(s4, ROW_BITS+3); q[5*8] = DCT_DESCALE(s5, CONST_BITS+ROW_BITS+3); q[6*8] = DCT_DESCALE(s6, CONST_BITS+ROW_BITS+3); q[7*8] = DCT_DESCALE(s7, CONST_BITS+ROW_BITS+3); 138 } 139 } 140 141 struct sym_freq { uint m_key, m_sym_index; }; 142 143 // Radix sorts sym_freq[] array by 32-bit key m_key. Returns ptr to sorted values. 144 static inline sym_freq* radix_sort_syms(uint num_syms, sym_freq* pSyms0, sym_freq* pSyms1) 145 { 146 const uint cMaxPasses = 4; 147 uint32 hist[256 * cMaxPasses]; clear_obj(hist); 148 for (uint i = 0; i < num_syms; i++) { uint freq = pSyms0[i].m_key; hist[freq & 0xFF]++; hist[256 + ((freq >> 8) & 0xFF)]++; hist[256*2 + ((freq >> 16) & 0xFF)]++; hist[256*3 + ((freq >> 24) & 0xFF)]++; } 149 sym_freq* pCur_syms = pSyms0, *pNew_syms = pSyms1; 150 uint total_passes = cMaxPasses; while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) total_passes--; 151 for (uint pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) 152 { 153 const uint32* pHist = &hist[pass << 8]; 154 uint offsets[256], cur_ofs = 0; 155 for (uint i = 0; i < 256; i++) { offsets[i] = cur_ofs; cur_ofs += pHist[i]; } 156 for (uint i = 0; i < num_syms; i++) 157 pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i]; 158 sym_freq* t = pCur_syms; pCur_syms = pNew_syms; pNew_syms = t; 159 } 160 return pCur_syms; 161 } 162 163 // calculate_minimum_redundancy() originally written by: Alistair Moffat, alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. 164 static void calculate_minimum_redundancy(sym_freq *A, int n) 165 { 166 int root, leaf, next, avbl, used, dpth; 167 if (n==0) return; else if (n==1) { A[0].m_key = 1; return; } 168 A[0].m_key += A[1].m_key; root = 0; leaf = 2; 169 for (next=1; next < n-1; next++) 170 { 171 if (leaf>=n || A[root].m_key<A[leaf].m_key) { A[next].m_key = A[root].m_key; A[root++].m_key = next; } else A[next].m_key = A[leaf++].m_key; 172 if (leaf>=n || (root<next && A[root].m_key<A[leaf].m_key)) { A[next].m_key += A[root].m_key; A[root++].m_key = next; } else A[next].m_key += A[leaf++].m_key; 173 } 174 A[n-2].m_key = 0; 175 for (next=n-3; next>=0; next--) A[next].m_key = A[A[next].m_key].m_key+1; 176 avbl = 1; used = dpth = 0; root = n-2; next = n-1; 177 while (avbl>0) 178 { 179 while (root>=0 && (int)A[root].m_key==dpth) { used++; root--; } 180 while (avbl>used) { A[next--].m_key = dpth; avbl--; } 181 avbl = 2*used; dpth++; used = 0; 182 } 183 } 184 185 // Limits canonical Huffman code table's max code size to max_code_size. 186 static void huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size) 187 { 188 if (code_list_len <= 1) return; 189 190 for (int i = max_code_size + 1; i <= MAX_HUFF_CODESIZE; i++) pNum_codes[max_code_size] += pNum_codes[i]; 191 192 uint32 total = 0; 193 for (int i = max_code_size; i > 0; i--) 194 total += (((uint32)pNum_codes[i]) << (max_code_size - i)); 195 196 while (total != (1UL << max_code_size)) 197 { 198 pNum_codes[max_code_size]--; 199 for (int i = max_code_size - 1; i > 0; i--) 200 { 201 if (pNum_codes[i]) { pNum_codes[i]--; pNum_codes[i + 1] += 2; break; } 202 } 203 total--; 204 } 205 } 206 207 // Generates an optimized offman table. 208 void jpeg_encoder::optimize_huffman_table(int table_num, int table_len) 209 { 210 sym_freq syms0[MAX_HUFF_SYMBOLS], syms1[MAX_HUFF_SYMBOLS]; 211 syms0[0].m_key = 1; syms0[0].m_sym_index = 0; // dummy symbol, assures that no valid code contains all 1's 212 int num_used_syms = 1; 213 const uint32 *pSym_count = &m_huff_count[table_num][0]; 214 for (int i = 0; i < table_len; i++) 215 if (pSym_count[i]) { syms0[num_used_syms].m_key = pSym_count[i]; syms0[num_used_syms++].m_sym_index = i + 1; } 216 sym_freq* pSyms = radix_sort_syms(num_used_syms, syms0, syms1); 217 calculate_minimum_redundancy(pSyms, num_used_syms); 218 219 // Count the # of symbols of each code size. 220 int num_codes[1 + MAX_HUFF_CODESIZE]; clear_obj(num_codes); 221 for (int i = 0; i < num_used_syms; i++) 222 num_codes[pSyms[i].m_key]++; 223 224 const uint JPGE_CODE_SIZE_LIMIT = 16; // the maximum possible size of a JPEG Huffman code (valid range is [9,16] - 9 vs. 8 because of the dummy symbol) 225 huffman_enforce_max_code_size(num_codes, num_used_syms, JPGE_CODE_SIZE_LIMIT); 226 227 // Compute m_huff_bits array, which contains the # of symbols per code size. 228 clear_obj(m_huff_bits[table_num]); 229 for (int i = 1; i <= (int)JPGE_CODE_SIZE_LIMIT; i++) 230 m_huff_bits[table_num][i] = static_cast<uint8>(num_codes[i]); 231 232 // Remove the dummy symbol added above, which must be in largest bucket. 233 for (int i = JPGE_CODE_SIZE_LIMIT; i >= 1; i--) 234 { 235 if (m_huff_bits[table_num][i]) { m_huff_bits[table_num][i]--; break; } 236 } 237 238 // Compute the m_huff_val array, which contains the symbol indices sorted by code size (smallest to largest). 239 for (int i = num_used_syms - 1; i >= 1; i--) 240 m_huff_val[table_num][num_used_syms - 1 - i] = static_cast<uint8>(pSyms[i].m_sym_index - 1); 241 } 242 243 // JPEG marker generation. 244 void jpeg_encoder::emit_byte(uint8 i) 245 { 246 m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_obj(i); 247 } 248 249 void jpeg_encoder::emit_word(uint i) 250 { 251 emit_byte(uint8(i >> 8)); emit_byte(uint8(i & 0xFF)); 252 } 253 254 void jpeg_encoder::emit_marker(int marker) 255 { 256 emit_byte(uint8(0xFF)); emit_byte(uint8(marker)); 257 } 258 259 // Emit JFIF marker 260 void jpeg_encoder::emit_jfif_app0() 261 { 262 emit_marker(M_APP0); 263 emit_word(2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); 264 emit_byte(0x4A); emit_byte(0x46); emit_byte(0x49); emit_byte(0x46); /* Identifier: ASCII "JFIF" */ 265 emit_byte(0); 266 emit_byte(1); /* Major version */ 267 emit_byte(1); /* Minor version */ 268 emit_byte(0); /* Density unit */ 269 emit_word(1); 270 emit_word(1); 271 emit_byte(0); /* No thumbnail image */ 272 emit_byte(0); 273 } 274 275 // Emit quantization tables 276 void jpeg_encoder::emit_dqt() 277 { 278 for (int i = 0; i < ((m_num_components == 3) ? 2 : 1); i++) 279 { 280 emit_marker(M_DQT); 281 emit_word(64 + 1 + 2); 282 emit_byte(static_cast<uint8>(i)); 283 for (int j = 0; j < 64; j++) 284 emit_byte(static_cast<uint8>(m_quantization_tables[i][j])); 285 } 286 } 287 288 // Emit start of frame marker 289 void jpeg_encoder::emit_sof() 290 { 291 emit_marker(M_SOF0); /* baseline */ 292 emit_word(3 * m_num_components + 2 + 5 + 1); 293 emit_byte(8); /* precision */ 294 emit_word(m_image_y); 295 emit_word(m_image_x); 296 emit_byte(m_num_components); 297 for (int i = 0; i < m_num_components; i++) 298 { 299 emit_byte(static_cast<uint8>(i + 1)); /* component ID */ 300 emit_byte((m_comp_h_samp[i] << 4) + m_comp_v_samp[i]); /* h and v sampling */ 301 emit_byte(i > 0); /* quant. table num */ 302 } 303 } 304 305 // Emit Huffman table. 306 void jpeg_encoder::emit_dht(uint8 *bits, uint8 *val, int index, bool ac_flag) 307 { 308 emit_marker(M_DHT); 309 310 int length = 0; 311 for (int i = 1; i <= 16; i++) 312 length += bits[i]; 313 314 emit_word(length + 2 + 1 + 16); 315 emit_byte(static_cast<uint8>(index + (ac_flag << 4))); 316 317 for (int i = 1; i <= 16; i++) 318 emit_byte(bits[i]); 319 320 for (int i = 0; i < length; i++) 321 emit_byte(val[i]); 322 } 323 324 // Emit all Huffman tables. 325 void jpeg_encoder::emit_dhts() 326 { 327 emit_dht(m_huff_bits[0+0], m_huff_val[0+0], 0, false); 328 emit_dht(m_huff_bits[2+0], m_huff_val[2+0], 0, true); 329 if (m_num_components == 3) 330 { 331 emit_dht(m_huff_bits[0+1], m_huff_val[0+1], 1, false); 332 emit_dht(m_huff_bits[2+1], m_huff_val[2+1], 1, true); 333 } 334 } 335 336 // emit start of scan 337 void jpeg_encoder::emit_sos() 338 { 339 emit_marker(M_SOS); 340 emit_word(2 * m_num_components + 2 + 1 + 3); 341 emit_byte(m_num_components); 342 for (int i = 0; i < m_num_components; i++) 343 { 344 emit_byte(static_cast<uint8>(i + 1)); 345 if (i == 0) 346 emit_byte((0 << 4) + 0); 347 else 348 emit_byte((1 << 4) + 1); 349 } 350 emit_byte(0); /* spectral selection */ 351 emit_byte(63); 352 emit_byte(0); 353 } 354 355 // Emit all markers at beginning of image file. 356 void jpeg_encoder::emit_markers() 357 { 358 emit_marker(M_SOI); 359 emit_jfif_app0(); 360 emit_dqt(); 361 emit_sof(); 362 emit_dhts(); 363 emit_sos(); 364 } 365 366 // Compute the actual canonical Huffman codes/code sizes given the JPEG huff bits and val arrays. 367 void jpeg_encoder::compute_huffman_table(uint *codes, uint8 *code_sizes, uint8 *bits, uint8 *val) 368 { 369 int i, l, last_p, si; 370 uint8 huff_size[257]; 371 uint huff_code[257]; 372 uint code; 373 374 int p = 0; 375 for (l = 1; l <= 16; l++) 376 for (i = 1; i <= bits[l]; i++) 377 huff_size[p++] = (char)l; 378 379 huff_size[p] = 0; last_p = p; // write sentinel 380 381 code = 0; si = huff_size[0]; p = 0; 382 383 while (huff_size[p]) 384 { 385 while (huff_size[p] == si) 386 huff_code[p++] = code++; 387 code <<= 1; 388 si++; 389 } 390 391 memset(codes, 0, sizeof(codes[0])*256); 392 memset(code_sizes, 0, sizeof(code_sizes[0])*256); 393 for (p = 0; p < last_p; p++) 394 { 395 codes[val[p]] = huff_code[p]; 396 code_sizes[val[p]] = huff_size[p]; 397 } 398 } 399 400 // Quantization table generation. 401 void jpeg_encoder::compute_quant_table(int32 *pDst, int16 *pSrc) 402 { 403 int32 q; 404 if (m_params.m_quality < 50) 405 q = 5000 / m_params.m_quality; 406 else 407 q = 200 - m_params.m_quality * 2; 408 for (int i = 0; i < 64; i++) 409 { 410 int32 j = *pSrc++; j = (j * q + 50L) / 100L; 411 *pDst++ = JPGE_MIN(JPGE_MAX(j, 1), 255); 412 } 413 } 414 415 // Higher-level methods. 416 void jpeg_encoder::first_pass_init() 417 { 418 m_bit_buffer = 0; m_bits_in = 0; 419 memset(m_last_dc_val, 0, 3 * sizeof(m_last_dc_val[0])); 420 m_mcu_y_ofs = 0; 421 m_pass_num = 1; 422 } 423 424 bool jpeg_encoder::second_pass_init() 425 { 426 compute_huffman_table(&m_huff_codes[0+0][0], &m_huff_code_sizes[0+0][0], m_huff_bits[0+0], m_huff_val[0+0]); 427 compute_huffman_table(&m_huff_codes[2+0][0], &m_huff_code_sizes[2+0][0], m_huff_bits[2+0], m_huff_val[2+0]); 428 if (m_num_components > 1) 429 { 430 compute_huffman_table(&m_huff_codes[0+1][0], &m_huff_code_sizes[0+1][0], m_huff_bits[0+1], m_huff_val[0+1]); 431 compute_huffman_table(&m_huff_codes[2+1][0], &m_huff_code_sizes[2+1][0], m_huff_bits[2+1], m_huff_val[2+1]); 432 } 433 first_pass_init(); 434 emit_markers(); 435 m_pass_num = 2; 436 return true; 437 } 438 439 bool jpeg_encoder::jpg_open(int p_x_res, int p_y_res, int src_channels) 440 { 441 m_num_components = 3; 442 switch (m_params.m_subsampling) 443 { 444 case Y_ONLY: 445 { 446 m_num_components = 1; 447 m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; 448 m_mcu_x = 8; m_mcu_y = 8; 449 break; 450 } 451 case H1V1: 452 { 453 m_comp_h_samp[0] = 1; m_comp_v_samp[0] = 1; 454 m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; 455 m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; 456 m_mcu_x = 8; m_mcu_y = 8; 457 break; 458 } 459 case H2V1: 460 { 461 m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 1; 462 m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; 463 m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; 464 m_mcu_x = 16; m_mcu_y = 8; 465 break; 466 } 467 case H2V2: 468 { 469 m_comp_h_samp[0] = 2; m_comp_v_samp[0] = 2; 470 m_comp_h_samp[1] = 1; m_comp_v_samp[1] = 1; 471 m_comp_h_samp[2] = 1; m_comp_v_samp[2] = 1; 472 m_mcu_x = 16; m_mcu_y = 16; 473 } 474 } 475 476 m_image_x = p_x_res; m_image_y = p_y_res; 477 m_image_bpp = src_channels; 478 m_image_bpl = m_image_x * src_channels; 479 m_image_x_mcu = (m_image_x + m_mcu_x - 1) & (~(m_mcu_x - 1)); 480 m_image_y_mcu = (m_image_y + m_mcu_y - 1) & (~(m_mcu_y - 1)); 481 m_image_bpl_xlt = m_image_x * m_num_components; 482 m_image_bpl_mcu = m_image_x_mcu * m_num_components; 483 m_mcus_per_row = m_image_x_mcu / m_mcu_x; 484 485 if ((m_mcu_lines[0] = static_cast<uint8*>(jpge_malloc(m_image_bpl_mcu * m_mcu_y))) == NULL) return false; 486 for (int i = 1; i < m_mcu_y; i++) 487 m_mcu_lines[i] = m_mcu_lines[i-1] + m_image_bpl_mcu; 488 489 compute_quant_table(m_quantization_tables[0], s_std_lum_quant); 490 compute_quant_table(m_quantization_tables[1], m_params.m_no_chroma_discrim_flag ? s_std_lum_quant : s_std_croma_quant); 491 492 m_out_buf_left = JPGE_OUT_BUF_SIZE; 493 m_pOut_buf = m_out_buf; 494 495 if (m_params.m_two_pass_flag) 496 { 497 clear_obj(m_huff_count); 498 first_pass_init(); 499 } 500 else 501 { 502 memcpy(m_huff_bits[0+0], s_dc_lum_bits, 17); memcpy(m_huff_val [0+0], s_dc_lum_val, DC_LUM_CODES); 503 memcpy(m_huff_bits[2+0], s_ac_lum_bits, 17); memcpy(m_huff_val [2+0], s_ac_lum_val, AC_LUM_CODES); 504 memcpy(m_huff_bits[0+1], s_dc_chroma_bits, 17); memcpy(m_huff_val [0+1], s_dc_chroma_val, DC_CHROMA_CODES); 505 memcpy(m_huff_bits[2+1], s_ac_chroma_bits, 17); memcpy(m_huff_val [2+1], s_ac_chroma_val, AC_CHROMA_CODES); 506 if (!second_pass_init()) return false; // in effect, skip over the first pass 507 } 508 return m_all_stream_writes_succeeded; 509 } 510 511 void jpeg_encoder::load_block_8_8_grey(int x) 512 { 513 uint8 *pSrc; 514 sample_array_t *pDst = m_sample_array; 515 x <<= 3; 516 for (int i = 0; i < 8; i++, pDst += 8) 517 { 518 pSrc = m_mcu_lines[i] + x; 519 pDst[0] = pSrc[0] - 128; pDst[1] = pSrc[1] - 128; pDst[2] = pSrc[2] - 128; pDst[3] = pSrc[3] - 128; 520 pDst[4] = pSrc[4] - 128; pDst[5] = pSrc[5] - 128; pDst[6] = pSrc[6] - 128; pDst[7] = pSrc[7] - 128; 521 } 522 } 523 524 void jpeg_encoder::load_block_8_8(int x, int y, int c) 525 { 526 uint8 *pSrc; 527 sample_array_t *pDst = m_sample_array; 528 x = (x * (8 * 3)) + c; 529 y <<= 3; 530 for (int i = 0; i < 8; i++, pDst += 8) 531 { 532 pSrc = m_mcu_lines[y + i] + x; 533 pDst[0] = pSrc[0 * 3] - 128; pDst[1] = pSrc[1 * 3] - 128; pDst[2] = pSrc[2 * 3] - 128; pDst[3] = pSrc[3 * 3] - 128; 534 pDst[4] = pSrc[4 * 3] - 128; pDst[5] = pSrc[5 * 3] - 128; pDst[6] = pSrc[6 * 3] - 128; pDst[7] = pSrc[7 * 3] - 128; 535 } 536 } 537 538 void jpeg_encoder::load_block_16_8(int x, int c) 539 { 540 uint8 *pSrc1, *pSrc2; 541 sample_array_t *pDst = m_sample_array; 542 x = (x * (16 * 3)) + c; 543 int a = 0, b = 2; 544 for (int i = 0; i < 16; i += 2, pDst += 8) 545 { 546 pSrc1 = m_mcu_lines[i + 0] + x; 547 pSrc2 = m_mcu_lines[i + 1] + x; 548 pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3] + pSrc2[ 0 * 3] + pSrc2[ 1 * 3] + a) >> 2) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3] + pSrc2[ 2 * 3] + pSrc2[ 3 * 3] + b) >> 2) - 128; 549 pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3] + pSrc2[ 4 * 3] + pSrc2[ 5 * 3] + a) >> 2) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3] + pSrc2[ 6 * 3] + pSrc2[ 7 * 3] + b) >> 2) - 128; 550 pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3] + pSrc2[ 8 * 3] + pSrc2[ 9 * 3] + a) >> 2) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3] + pSrc2[10 * 3] + pSrc2[11 * 3] + b) >> 2) - 128; 551 pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3] + pSrc2[12 * 3] + pSrc2[13 * 3] + a) >> 2) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3] + pSrc2[14 * 3] + pSrc2[15 * 3] + b) >> 2) - 128; 552 int temp = a; a = b; b = temp; 553 } 554 } 555 556 void jpeg_encoder::load_block_16_8_8(int x, int c) 557 { 558 uint8 *pSrc1; 559 sample_array_t *pDst = m_sample_array; 560 x = (x * (16 * 3)) + c; 561 for (int i = 0; i < 8; i++, pDst += 8) 562 { 563 pSrc1 = m_mcu_lines[i + 0] + x; 564 pDst[0] = ((pSrc1[ 0 * 3] + pSrc1[ 1 * 3]) >> 1) - 128; pDst[1] = ((pSrc1[ 2 * 3] + pSrc1[ 3 * 3]) >> 1) - 128; 565 pDst[2] = ((pSrc1[ 4 * 3] + pSrc1[ 5 * 3]) >> 1) - 128; pDst[3] = ((pSrc1[ 6 * 3] + pSrc1[ 7 * 3]) >> 1) - 128; 566 pDst[4] = ((pSrc1[ 8 * 3] + pSrc1[ 9 * 3]) >> 1) - 128; pDst[5] = ((pSrc1[10 * 3] + pSrc1[11 * 3]) >> 1) - 128; 567 pDst[6] = ((pSrc1[12 * 3] + pSrc1[13 * 3]) >> 1) - 128; pDst[7] = ((pSrc1[14 * 3] + pSrc1[15 * 3]) >> 1) - 128; 568 } 569 } 570 571 void jpeg_encoder::load_quantized_coefficients(int component_num) 572 { 573 int32 *q = m_quantization_tables[component_num > 0]; 574 int16 *pDst = m_coefficient_array; 575 for (int i = 0; i < 64; i++) 576 { 577 sample_array_t j = m_sample_array[s_zag[i]]; 578 if (j < 0) 579 { 580 if ((j = -j + (*q >> 1)) < *q) 581 *pDst++ = 0; 582 else 583 *pDst++ = static_cast<int16>(-(j / *q)); 584 } 585 else 586 { 587 if ((j = j + (*q >> 1)) < *q) 588 *pDst++ = 0; 589 else 590 *pDst++ = static_cast<int16>((j / *q)); 591 } 592 q++; 593 } 594 } 595 596 void jpeg_encoder::flush_output_buffer() 597 { 598 if (m_out_buf_left != JPGE_OUT_BUF_SIZE) 599 m_all_stream_writes_succeeded = m_all_stream_writes_succeeded && m_pStream->put_buf(m_out_buf, JPGE_OUT_BUF_SIZE - m_out_buf_left); 600 m_pOut_buf = m_out_buf; 601 m_out_buf_left = JPGE_OUT_BUF_SIZE; 602 } 603 604 void jpeg_encoder::put_bits(uint bits, uint len) 605 { 606 m_bit_buffer |= ((uint32)bits << (24 - (m_bits_in += len))); 607 while (m_bits_in >= 8) 608 { 609 uint8 c; 610 #define JPGE_PUT_BYTE(c) { *m_pOut_buf++ = (c); if (--m_out_buf_left == 0) flush_output_buffer(); } 611 JPGE_PUT_BYTE(c = (uint8)((m_bit_buffer >> 16) & 0xFF)); 612 if (c == 0xFF) JPGE_PUT_BYTE(0); 613 m_bit_buffer <<= 8; 614 m_bits_in -= 8; 615 } 616 } 617 618 void jpeg_encoder::code_coefficients_pass_one(int component_num) 619 { 620 if (component_num >= 3) return; // just to shut up static analysis 621 int i, run_len, nbits, temp1; 622 int16 *src = m_coefficient_array; 623 uint32 *dc_count = component_num ? m_huff_count[0 + 1] : m_huff_count[0 + 0], *ac_count = component_num ? m_huff_count[2 + 1] : m_huff_count[2 + 0]; 624 625 temp1 = src[0] - m_last_dc_val[component_num]; 626 m_last_dc_val[component_num] = src[0]; 627 if (temp1 < 0) temp1 = -temp1; 628 629 nbits = 0; 630 while (temp1) 631 { 632 nbits++; temp1 >>= 1; 633 } 634 635 dc_count[nbits]++; 636 for (run_len = 0, i = 1; i < 64; i++) 637 { 638 if ((temp1 = m_coefficient_array[i]) == 0) 639 run_len++; 640 else 641 { 642 while (run_len >= 16) 643 { 644 ac_count[0xF0]++; 645 run_len -= 16; 646 } 647 if (temp1 < 0) temp1 = -temp1; 648 nbits = 1; 649 while (temp1 >>= 1) nbits++; 650 ac_count[(run_len << 4) + nbits]++; 651 run_len = 0; 652 } 653 } 654 if (run_len) ac_count[0]++; 655 } 656 657 void jpeg_encoder::code_coefficients_pass_two(int component_num) 658 { 659 int i, j, run_len, nbits, temp1, temp2; 660 int16 *pSrc = m_coefficient_array; 661 uint *codes[2]; 662 uint8 *code_sizes[2]; 663 664 if (component_num == 0) 665 { 666 codes[0] = m_huff_codes[0 + 0]; codes[1] = m_huff_codes[2 + 0]; 667 code_sizes[0] = m_huff_code_sizes[0 + 0]; code_sizes[1] = m_huff_code_sizes[2 + 0]; 668 } 669 else 670 { 671 codes[0] = m_huff_codes[0 + 1]; codes[1] = m_huff_codes[2 + 1]; 672 code_sizes[0] = m_huff_code_sizes[0 + 1]; code_sizes[1] = m_huff_code_sizes[2 + 1]; 673 } 674 675 temp1 = temp2 = pSrc[0] - m_last_dc_val[component_num]; 676 m_last_dc_val[component_num] = pSrc[0]; 677 678 if (temp1 < 0) 679 { 680 temp1 = -temp1; temp2--; 681 } 682 683 nbits = 0; 684 while (temp1) 685 { 686 nbits++; temp1 >>= 1; 687 } 688 689 put_bits(codes[0][nbits], code_sizes[0][nbits]); 690 if (nbits) put_bits(temp2 & ((1 << nbits) - 1), nbits); 691 692 for (run_len = 0, i = 1; i < 64; i++) 693 { 694 if ((temp1 = m_coefficient_array[i]) == 0) 695 run_len++; 696 else 697 { 698 while (run_len >= 16) 699 { 700 put_bits(codes[1][0xF0], code_sizes[1][0xF0]); 701 run_len -= 16; 702 } 703 if ((temp2 = temp1) < 0) 704 { 705 temp1 = -temp1; 706 temp2--; 707 } 708 nbits = 1; 709 while (temp1 >>= 1) 710 nbits++; 711 j = (run_len << 4) + nbits; 712 put_bits(codes[1][j], code_sizes[1][j]); 713 put_bits(temp2 & ((1 << nbits) - 1), nbits); 714 run_len = 0; 715 } 716 } 717 if (run_len) 718 put_bits(codes[1][0], code_sizes[1][0]); 719 } 720 721 void jpeg_encoder::code_block(int component_num) 722 { 723 DCT2D(m_sample_array); 724 load_quantized_coefficients(component_num); 725 if (m_pass_num == 1) 726 code_coefficients_pass_one(component_num); 727 else 728 code_coefficients_pass_two(component_num); 729 } 730 731 void jpeg_encoder::process_mcu_row() 732 { 733 if (m_num_components == 1) 734 { 735 for (int i = 0; i < m_mcus_per_row; i++) 736 { 737 load_block_8_8_grey(i); code_block(0); 738 } 739 } 740 else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) 741 { 742 for (int i = 0; i < m_mcus_per_row; i++) 743 { 744 load_block_8_8(i, 0, 0); code_block(0); load_block_8_8(i, 0, 1); code_block(1); load_block_8_8(i, 0, 2); code_block(2); 745 } 746 } 747 else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) 748 { 749 for (int i = 0; i < m_mcus_per_row; i++) 750 { 751 load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); 752 load_block_16_8_8(i, 1); code_block(1); load_block_16_8_8(i, 2); code_block(2); 753 } 754 } 755 else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) 756 { 757 for (int i = 0; i < m_mcus_per_row; i++) 758 { 759 load_block_8_8(i * 2 + 0, 0, 0); code_block(0); load_block_8_8(i * 2 + 1, 0, 0); code_block(0); 760 load_block_8_8(i * 2 + 0, 1, 0); code_block(0); load_block_8_8(i * 2 + 1, 1, 0); code_block(0); 761 load_block_16_8(i, 1); code_block(1); load_block_16_8(i, 2); code_block(2); 762 } 763 } 764 } 765 766 bool jpeg_encoder::terminate_pass_one() 767 { 768 optimize_huffman_table(0+0, DC_LUM_CODES); optimize_huffman_table(2+0, AC_LUM_CODES); 769 if (m_num_components > 1) 770 { 771 optimize_huffman_table(0+1, DC_CHROMA_CODES); optimize_huffman_table(2+1, AC_CHROMA_CODES); 772 } 773 return second_pass_init(); 774 } 775 776 bool jpeg_encoder::terminate_pass_two() 777 { 778 put_bits(0x7F, 7); 779 flush_output_buffer(); 780 emit_marker(M_EOI); 781 m_pass_num++; // purposely bump up m_pass_num, for debugging 782 return true; 783 } 784 785 bool jpeg_encoder::process_end_of_image() 786 { 787 if (m_mcu_y_ofs) 788 { 789 if (m_mcu_y_ofs < 16) // check here just to shut up static analysis 790 { 791 for (int i = m_mcu_y_ofs; i < m_mcu_y; i++) 792 memcpy(m_mcu_lines[i], m_mcu_lines[m_mcu_y_ofs - 1], m_image_bpl_mcu); 793 } 794 795 process_mcu_row(); 796 } 797 798 if (m_pass_num == 1) 799 return terminate_pass_one(); 800 else 801 return terminate_pass_two(); 802 } 803 804 void jpeg_encoder::load_mcu(const void *pSrc) 805 { 806 const uint8* Psrc = reinterpret_cast<const uint8*>(pSrc); 807 808 uint8* pDst = m_mcu_lines[m_mcu_y_ofs]; // OK to write up to m_image_bpl_xlt bytes to pDst 809 810 if (m_num_components == 1) 811 { 812 if (m_image_bpp == 4) 813 RGBA_to_Y(pDst, Psrc, m_image_x); 814 else if (m_image_bpp == 3) 815 RGB_to_Y(pDst, Psrc, m_image_x); 816 else 817 memcpy(pDst, Psrc, m_image_x); 818 } 819 else 820 { 821 if (m_image_bpp == 4) 822 RGBA_to_YCC(pDst, Psrc, m_image_x); 823 else if (m_image_bpp == 3) 824 RGB_to_YCC(pDst, Psrc, m_image_x); 825 else 826 Y_to_YCC(pDst, Psrc, m_image_x); 827 } 828 829 // Possibly duplicate pixels at end of scanline if not a multiple of 8 or 16 830 if (m_num_components == 1) 831 memset(m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt, pDst[m_image_bpl_xlt - 1], m_image_x_mcu - m_image_x); 832 else 833 { 834 const uint8 y = pDst[m_image_bpl_xlt - 3 + 0], cb = pDst[m_image_bpl_xlt - 3 + 1], cr = pDst[m_image_bpl_xlt - 3 + 2]; 835 uint8 *q = m_mcu_lines[m_mcu_y_ofs] + m_image_bpl_xlt; 836 for (int i = m_image_x; i < m_image_x_mcu; i++) 837 { 838 *q++ = y; *q++ = cb; *q++ = cr; 839 } 840 } 841 842 if (++m_mcu_y_ofs == m_mcu_y) 843 { 844 process_mcu_row(); 845 m_mcu_y_ofs = 0; 846 } 847 } 848 849 void jpeg_encoder::clear() 850 { 851 m_mcu_lines[0] = NULL; 852 m_pass_num = 0; 853 m_all_stream_writes_succeeded = true; 854 } 855 856 jpeg_encoder::jpeg_encoder() 857 { 858 clear(); 859 } 860 861 jpeg_encoder::~jpeg_encoder() 862 { 863 deinit(); 864 } 865 866 bool jpeg_encoder::init(output_stream *pStream, int width, int height, int src_channels, const params &comp_params) 867 { 868 deinit(); 869 if (((!pStream) || (width < 1) || (height < 1)) || ((src_channels != 1) && (src_channels != 3) && (src_channels != 4)) || (!comp_params.check())) return false; 870 m_pStream = pStream; 871 m_params = comp_params; 872 return jpg_open(width, height, src_channels); 873 } 874 875 void jpeg_encoder::deinit() 876 { 877 jpge_free(m_mcu_lines[0]); 878 clear(); 879 } 880 881 bool jpeg_encoder::process_scanline(const void* pScanline) 882 { 883 if ((m_pass_num < 1) || (m_pass_num > 2)) return false; 884 if (m_all_stream_writes_succeeded) 885 { 886 if (!pScanline) 887 { 888 if (!process_end_of_image()) return false; 889 } 890 else 891 { 892 load_mcu(pScanline); 893 } 894 } 895 return m_all_stream_writes_succeeded; 896 } 897 898 // Higher level wrappers/examples (optional). 899 #include <stdio.h> 900 901 class cfile_stream : public output_stream 902 { 903 cfile_stream(const cfile_stream &); 904 cfile_stream &operator= (const cfile_stream &); 905 906 FILE* m_pFile; 907 bool m_bStatus; 908 909 public: 910 cfile_stream() : m_pFile(NULL), m_bStatus(false) { } 911 912 virtual ~cfile_stream() 913 { 914 close(); 915 } 916 917 bool open(const char *pFilename) 918 { 919 close(); 920 m_pFile = fopen(pFilename, "wb"); 921 m_bStatus = (m_pFile != NULL); 922 return m_bStatus; 923 } 924 925 bool close() 926 { 927 if (m_pFile) 928 { 929 if (fclose(m_pFile) == EOF) 930 { 931 m_bStatus = false; 932 } 933 m_pFile = NULL; 934 } 935 return m_bStatus; 936 } 937 938 virtual bool put_buf(const void* pBuf, int len) 939 { 940 m_bStatus = m_bStatus && (fwrite(pBuf, len, 1, m_pFile) == 1); 941 return m_bStatus; 942 } 943 944 uint get_size() const 945 { 946 return m_pFile ? ftell(m_pFile) : 0; 947 } 948 }; 949 950 // Writes JPEG image to file. 951 bool compress_image_to_jpeg_file(const char *pFilename, int width, int height, int num_channels, const uint8 *pImage_data, const params &comp_params) 952 { 953 cfile_stream dst_stream; 954 if (!dst_stream.open(pFilename)) 955 return false; 956 957 jpge::jpeg_encoder dst_image; 958 if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) 959 return false; 960 961 for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) 962 { 963 for (int i = 0; i < height; i++) 964 { 965 const uint8* pBuf = pImage_data + i * width * num_channels; 966 if (!dst_image.process_scanline(pBuf)) 967 return false; 968 } 969 if (!dst_image.process_scanline(NULL)) 970 return false; 971 } 972 973 dst_image.deinit(); 974 975 return dst_stream.close(); 976 } 977 978 class memory_stream : public output_stream 979 { 980 memory_stream(const memory_stream &); 981 memory_stream &operator= (const memory_stream &); 982 983 uint8 *m_pBuf; 984 uint m_buf_size, m_buf_ofs; 985 986 public: 987 memory_stream(void *pBuf, uint buf_size) : m_pBuf(static_cast<uint8*>(pBuf)), m_buf_size(buf_size), m_buf_ofs(0) { } 988 989 virtual ~memory_stream() { } 990 991 virtual bool put_buf(const void* pBuf, int len) 992 { 993 uint buf_remaining = m_buf_size - m_buf_ofs; 994 if ((uint)len > buf_remaining) 995 return false; 996 memcpy(m_pBuf + m_buf_ofs, pBuf, len); 997 m_buf_ofs += len; 998 return true; 999 } 1000 1001 uint get_size() const 1002 { 1003 return m_buf_ofs; 1004 } 1005 }; 1006 1007 bool compress_image_to_jpeg_file_in_memory(void *pDstBuf, int &buf_size, int width, int height, int num_channels, const uint8 *pImage_data, const params &comp_params) 1008 { 1009 if ((!pDstBuf) || (!buf_size)) 1010 return false; 1011 1012 memory_stream dst_stream(pDstBuf, buf_size); 1013 1014 buf_size = 0; 1015 1016 jpge::jpeg_encoder dst_image; 1017 if (!dst_image.init(&dst_stream, width, height, num_channels, comp_params)) 1018 return false; 1019 1020 for (uint pass_index = 0; pass_index < dst_image.get_total_passes(); pass_index++) 1021 { 1022 for (int i = 0; i < height; i++) 1023 { 1024 const uint8* pScanline = pImage_data + i * width * num_channels; 1025 if (!dst_image.process_scanline(pScanline)) 1026 return false; 1027 } 1028 if (!dst_image.process_scanline(NULL)) 1029 return false; 1030 } 1031 1032 dst_image.deinit(); 1033 1034 buf_size = dst_stream.get_size(); 1035 return true; 1036 } 1037 1038 } // namespace jpge