github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/dec/frame.c (about) 1 // Copyright 2010 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Frame-reconstruction function. Memory allocation. 11 // 12 // Author: Skal (pascal.massimino@gmail.com) 13 14 #include <stdlib.h> 15 #include "./vp8i.h" 16 #include "../utils/utils.h" 17 18 #define ALIGN_MASK (32 - 1) 19 20 static void ReconstructRow(const VP8Decoder* const dec, 21 const VP8ThreadContext* ctx); // TODO(skal): remove 22 23 //------------------------------------------------------------------------------ 24 // Filtering 25 26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary 27 // for caching, given a filtering level. 28 // Simple filter: up to 2 luma samples are read and 1 is written. 29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for 30 // U/V, so it's 8 samples total (because of the 2x upsampling). 31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 }; 32 33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) { 34 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 35 const int cache_id = ctx->id_; 36 const int y_bps = dec->cache_y_stride_; 37 const VP8FInfo* const f_info = ctx->f_info_ + mb_x; 38 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16; 39 const int ilevel = f_info->f_ilevel_; 40 const int limit = f_info->f_limit_; 41 if (limit == 0) { 42 return; 43 } 44 assert(limit >= 3); 45 if (dec->filter_type_ == 1) { // simple 46 if (mb_x > 0) { 47 VP8SimpleHFilter16(y_dst, y_bps, limit + 4); 48 } 49 if (f_info->f_inner_) { 50 VP8SimpleHFilter16i(y_dst, y_bps, limit); 51 } 52 if (mb_y > 0) { 53 VP8SimpleVFilter16(y_dst, y_bps, limit + 4); 54 } 55 if (f_info->f_inner_) { 56 VP8SimpleVFilter16i(y_dst, y_bps, limit); 57 } 58 } else { // complex 59 const int uv_bps = dec->cache_uv_stride_; 60 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; 61 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; 62 const int hev_thresh = f_info->hev_thresh_; 63 if (mb_x > 0) { 64 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 65 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 66 } 67 if (f_info->f_inner_) { 68 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 69 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 70 } 71 if (mb_y > 0) { 72 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh); 73 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh); 74 } 75 if (f_info->f_inner_) { 76 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh); 77 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh); 78 } 79 } 80 } 81 82 // Filter the decoded macroblock row (if needed) 83 static void FilterRow(const VP8Decoder* const dec) { 84 int mb_x; 85 const int mb_y = dec->thread_ctx_.mb_y_; 86 assert(dec->thread_ctx_.filter_row_); 87 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 88 DoFilter(dec, mb_x, mb_y); 89 } 90 } 91 92 //------------------------------------------------------------------------------ 93 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode. 94 95 static void PrecomputeFilterStrengths(VP8Decoder* const dec) { 96 if (dec->filter_type_ > 0) { 97 int s; 98 const VP8FilterHeader* const hdr = &dec->filter_hdr_; 99 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 100 int i4x4; 101 // First, compute the initial level 102 int base_level; 103 if (dec->segment_hdr_.use_segment_) { 104 base_level = dec->segment_hdr_.filter_strength_[s]; 105 if (!dec->segment_hdr_.absolute_delta_) { 106 base_level += hdr->level_; 107 } 108 } else { 109 base_level = hdr->level_; 110 } 111 for (i4x4 = 0; i4x4 <= 1; ++i4x4) { 112 VP8FInfo* const info = &dec->fstrengths_[s][i4x4]; 113 int level = base_level; 114 if (hdr->use_lf_delta_) { 115 // TODO(skal): only CURRENT is handled for now. 116 level += hdr->ref_lf_delta_[0]; 117 if (i4x4) { 118 level += hdr->mode_lf_delta_[0]; 119 } 120 } 121 level = (level < 0) ? 0 : (level > 63) ? 63 : level; 122 if (level > 0) { 123 int ilevel = level; 124 if (hdr->sharpness_ > 0) { 125 if (hdr->sharpness_ > 4) { 126 ilevel >>= 2; 127 } else { 128 ilevel >>= 1; 129 } 130 if (ilevel > 9 - hdr->sharpness_) { 131 ilevel = 9 - hdr->sharpness_; 132 } 133 } 134 if (ilevel < 1) ilevel = 1; 135 info->f_ilevel_ = ilevel; 136 info->f_limit_ = 2 * level + ilevel; 137 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0; 138 } else { 139 info->f_limit_ = 0; // no filtering 140 } 141 info->f_inner_ = i4x4; 142 } 143 } 144 } 145 } 146 147 //------------------------------------------------------------------------------ 148 // Dithering 149 150 #define DITHER_AMP_TAB_SIZE 12 151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = { 152 // roughly, it's dqm->uv_mat_[1] 153 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1 154 }; 155 156 void VP8InitDithering(const WebPDecoderOptions* const options, 157 VP8Decoder* const dec) { 158 assert(dec != NULL); 159 if (options != NULL) { 160 const int d = options->dithering_strength; 161 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1; 162 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100); 163 if (f > 0) { 164 int s; 165 int all_amp = 0; 166 for (s = 0; s < NUM_MB_SEGMENTS; ++s) { 167 VP8QuantMatrix* const dqm = &dec->dqm_[s]; 168 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) { 169 // TODO(skal): should we specially dither more for uv_quant_ < 0? 170 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_; 171 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3; 172 } 173 all_amp |= dqm->dither_; 174 } 175 if (all_amp != 0) { 176 VP8InitRandom(&dec->dithering_rg_, 1.0f); 177 dec->dither_ = 1; 178 } 179 } 180 } 181 } 182 183 // minimal amp that will provide a non-zero dithering effect 184 #define MIN_DITHER_AMP 4 185 #define DITHER_DESCALE 4 186 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1)) 187 #define DITHER_AMP_BITS 8 188 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS) 189 190 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) { 191 int i, j; 192 for (j = 0; j < 8; ++j) { 193 for (i = 0; i < 8; ++i) { 194 // TODO: could be made faster with SSE2 195 const int bits = 196 VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER; 197 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100 198 const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE; 199 const int v = (int)dst[i] + delta; 200 dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v; 201 } 202 dst += bps; 203 } 204 } 205 206 static void DitherRow(VP8Decoder* const dec) { 207 int mb_x; 208 assert(dec->dither_); 209 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) { 210 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 211 const VP8MBData* const data = ctx->mb_data_ + mb_x; 212 const int cache_id = ctx->id_; 213 const int uv_bps = dec->cache_uv_stride_; 214 if (data->dither_ >= MIN_DITHER_AMP) { 215 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8; 216 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8; 217 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_); 218 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_); 219 } 220 } 221 } 222 223 //------------------------------------------------------------------------------ 224 // This function is called after a row of macroblocks is finished decoding. 225 // It also takes into account the following restrictions: 226 // * In case of in-loop filtering, we must hold off sending some of the bottom 227 // pixels as they are yet unfiltered. They will be when the next macroblock 228 // row is decoded. Meanwhile, we must preserve them by rotating them in the 229 // cache area. This doesn't hold for the very bottom row of the uncropped 230 // picture of course. 231 // * we must clip the remaining pixels against the cropping area. The VP8Io 232 // struct must have the following fields set correctly before calling put(): 233 234 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB 235 236 // Finalize and transmit a complete row. Return false in case of user-abort. 237 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) { 238 int ok = 1; 239 const VP8ThreadContext* const ctx = &dec->thread_ctx_; 240 const int cache_id = ctx->id_; 241 const int extra_y_rows = kFilterExtraRows[dec->filter_type_]; 242 const int ysize = extra_y_rows * dec->cache_y_stride_; 243 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_; 244 const int y_offset = cache_id * 16 * dec->cache_y_stride_; 245 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; 246 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset; 247 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset; 248 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset; 249 const int mb_y = ctx->mb_y_; 250 const int is_first_row = (mb_y == 0); 251 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1); 252 253 if (dec->mt_method_ == 2) { 254 ReconstructRow(dec, ctx); 255 } 256 257 if (ctx->filter_row_) { 258 FilterRow(dec); 259 } 260 261 if (dec->dither_) { 262 DitherRow(dec); 263 } 264 265 if (io->put != NULL) { 266 int y_start = MACROBLOCK_VPOS(mb_y); 267 int y_end = MACROBLOCK_VPOS(mb_y + 1); 268 if (!is_first_row) { 269 y_start -= extra_y_rows; 270 io->y = ydst; 271 io->u = udst; 272 io->v = vdst; 273 } else { 274 io->y = dec->cache_y_ + y_offset; 275 io->u = dec->cache_u_ + uv_offset; 276 io->v = dec->cache_v_ + uv_offset; 277 } 278 279 if (!is_last_row) { 280 y_end -= extra_y_rows; 281 } 282 if (y_end > io->crop_bottom) { 283 y_end = io->crop_bottom; // make sure we don't overflow on last row. 284 } 285 io->a = NULL; 286 if (dec->alpha_data_ != NULL && y_start < y_end) { 287 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a 288 // good idea. 289 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start); 290 if (io->a == NULL) { 291 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR, 292 "Could not decode alpha data."); 293 } 294 } 295 if (y_start < io->crop_top) { 296 const int delta_y = io->crop_top - y_start; 297 y_start = io->crop_top; 298 assert(!(delta_y & 1)); 299 io->y += dec->cache_y_stride_ * delta_y; 300 io->u += dec->cache_uv_stride_ * (delta_y >> 1); 301 io->v += dec->cache_uv_stride_ * (delta_y >> 1); 302 if (io->a != NULL) { 303 io->a += io->width * delta_y; 304 } 305 } 306 if (y_start < y_end) { 307 io->y += io->crop_left; 308 io->u += io->crop_left >> 1; 309 io->v += io->crop_left >> 1; 310 if (io->a != NULL) { 311 io->a += io->crop_left; 312 } 313 io->mb_y = y_start - io->crop_top; 314 io->mb_w = io->crop_right - io->crop_left; 315 io->mb_h = y_end - y_start; 316 ok = io->put(io); 317 } 318 } 319 // rotate top samples if needed 320 if (cache_id + 1 == dec->num_caches_) { 321 if (!is_last_row) { 322 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize); 323 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize); 324 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize); 325 } 326 } 327 328 return ok; 329 } 330 331 #undef MACROBLOCK_VPOS 332 333 //------------------------------------------------------------------------------ 334 335 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) { 336 int ok = 1; 337 VP8ThreadContext* const ctx = &dec->thread_ctx_; 338 const int filter_row = 339 (dec->filter_type_ > 0) && 340 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_); 341 if (dec->mt_method_ == 0) { 342 // ctx->id_ and ctx->f_info_ are already set 343 ctx->mb_y_ = dec->mb_y_; 344 ctx->filter_row_ = filter_row; 345 ReconstructRow(dec, ctx); 346 ok = FinishRow(dec, io); 347 } else { 348 WebPWorker* const worker = &dec->worker_; 349 // Finish previous job *before* updating context 350 ok &= WebPWorkerSync(worker); 351 assert(worker->status_ == OK); 352 if (ok) { // spawn a new deblocking/output job 353 ctx->io_ = *io; 354 ctx->id_ = dec->cache_id_; 355 ctx->mb_y_ = dec->mb_y_; 356 ctx->filter_row_ = filter_row; 357 if (dec->mt_method_ == 2) { // swap macroblock data 358 VP8MBData* const tmp = ctx->mb_data_; 359 ctx->mb_data_ = dec->mb_data_; 360 dec->mb_data_ = tmp; 361 } else { 362 // perform reconstruction directly in main thread 363 ReconstructRow(dec, ctx); 364 } 365 if (filter_row) { // swap filter info 366 VP8FInfo* const tmp = ctx->f_info_; 367 ctx->f_info_ = dec->f_info_; 368 dec->f_info_ = tmp; 369 } 370 WebPWorkerLaunch(worker); // (reconstruct)+filter in parallel 371 if (++dec->cache_id_ == dec->num_caches_) { 372 dec->cache_id_ = 0; 373 } 374 } 375 } 376 return ok; 377 } 378 379 //------------------------------------------------------------------------------ 380 // Finish setting up the decoding parameter once user's setup() is called. 381 382 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) { 383 // Call setup() first. This may trigger additional decoding features on 'io'. 384 // Note: Afterward, we must call teardown() no matter what. 385 if (io->setup != NULL && !io->setup(io)) { 386 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed"); 387 return dec->status_; 388 } 389 390 // Disable filtering per user request 391 if (io->bypass_filtering) { 392 dec->filter_type_ = 0; 393 } 394 // TODO(skal): filter type / strength / sharpness forcing 395 396 // Define the area where we can skip in-loop filtering, in case of cropping. 397 // 398 // 'Simple' filter reads two luma samples outside of the macroblock 399 // and filters one. It doesn't filter the chroma samples. Hence, we can 400 // avoid doing the in-loop filtering before crop_top/crop_left position. 401 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered. 402 // Means: there's a dependency chain that goes all the way up to the 403 // top-left corner of the picture (MB #0). We must filter all the previous 404 // macroblocks. 405 // TODO(skal): add an 'approximate_decoding' option, that won't produce 406 // a 1:1 bit-exactness for complex filtering? 407 { 408 const int extra_pixels = kFilterExtraRows[dec->filter_type_]; 409 if (dec->filter_type_ == 2) { 410 // For complex filter, we need to preserve the dependency chain. 411 dec->tl_mb_x_ = 0; 412 dec->tl_mb_y_ = 0; 413 } else { 414 // For simple filter, we can filter only the cropped region. 415 // We include 'extra_pixels' on the other side of the boundary, since 416 // vertical or horizontal filtering of the previous macroblock can 417 // modify some abutting pixels. 418 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4; 419 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4; 420 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0; 421 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0; 422 } 423 // We need some 'extra' pixels on the right/bottom. 424 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4; 425 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4; 426 if (dec->br_mb_x_ > dec->mb_w_) { 427 dec->br_mb_x_ = dec->mb_w_; 428 } 429 if (dec->br_mb_y_ > dec->mb_h_) { 430 dec->br_mb_y_ = dec->mb_h_; 431 } 432 } 433 PrecomputeFilterStrengths(dec); 434 return VP8_STATUS_OK; 435 } 436 437 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) { 438 int ok = 1; 439 if (dec->mt_method_ > 0) { 440 ok = WebPWorkerSync(&dec->worker_); 441 } 442 443 if (io->teardown != NULL) { 444 io->teardown(io); 445 } 446 return ok; 447 } 448 449 //------------------------------------------------------------------------------ 450 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line. 451 // 452 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges 453 // immediately, and needs to wait for first few rows of the next macroblock to 454 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending 455 // on strength). 456 // With two threads, the vertical positions of the rows being decoded are: 457 // Decode: [ 0..15][16..31][32..47][48..63][64..79][... 458 // Deblock: [ 0..11][12..27][28..43][44..59][... 459 // If we use two threads and two caches of 16 pixels, the sequence would be: 460 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][... 461 // Deblock: [ 0..11][12..27!!][-4..11][12..27][... 462 // The problem occurs during row [12..15!!] that both the decoding and 463 // deblocking threads are writing simultaneously. 464 // With 3 cache lines, one get a safe write pattern: 465 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0.. 466 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28... 467 // Note that multi-threaded output _without_ deblocking can make use of two 468 // cache lines of 16 pixels only, since there's no lagging behind. The decoding 469 // and output process have non-concurrent writing: 470 // Decode: [ 0..15][16..31][ 0..15][16..31][... 471 // io->put: [ 0..15][16..31][ 0..15][... 472 473 #define MT_CACHE_LINES 3 474 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case 475 476 // Initialize multi/single-thread worker 477 static int InitThreadContext(VP8Decoder* const dec) { 478 dec->cache_id_ = 0; 479 if (dec->mt_method_ > 0) { 480 WebPWorker* const worker = &dec->worker_; 481 if (!WebPWorkerReset(worker)) { 482 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 483 "thread initialization failed."); 484 } 485 worker->data1 = dec; 486 worker->data2 = (void*)&dec->thread_ctx_.io_; 487 worker->hook = (WebPWorkerHook)FinishRow; 488 dec->num_caches_ = 489 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1; 490 } else { 491 dec->num_caches_ = ST_CACHE_LINES; 492 } 493 return 1; 494 } 495 496 int VP8GetThreadMethod(const WebPDecoderOptions* const options, 497 const WebPHeaderStructure* const headers, 498 int width, int height) { 499 if (options == NULL || options->use_threads == 0) { 500 return 0; 501 } 502 (void)headers; 503 (void)width; 504 (void)height; 505 assert(!headers->is_lossless); 506 #if defined(WEBP_USE_THREAD) 507 if (width < MIN_WIDTH_FOR_THREADS) return 0; 508 // TODO(skal): tune the heuristic further 509 #if 0 510 if (height < 2 * width) return 2; 511 #endif 512 return 2; 513 #else // !WEBP_USE_THREAD 514 return 0; 515 #endif 516 } 517 518 #undef MT_CACHE_LINES 519 #undef ST_CACHE_LINES 520 521 //------------------------------------------------------------------------------ 522 // Memory setup 523 524 static int AllocateMemory(VP8Decoder* const dec) { 525 const int num_caches = dec->num_caches_; 526 const int mb_w = dec->mb_w_; 527 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise. 528 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t); 529 const size_t top_size = sizeof(VP8TopSamples) * mb_w; 530 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB); 531 const size_t f_info_size = 532 (dec->filter_type_ > 0) ? 533 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo) 534 : 0; 535 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_); 536 const size_t mb_data_size = 537 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_); 538 const size_t cache_height = (16 * num_caches 539 + kFilterExtraRows[dec->filter_type_]) * 3 / 2; 540 const size_t cache_size = top_size * cache_height; 541 // alpha_size is the only one that scales as width x height. 542 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ? 543 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL; 544 const uint64_t needed = (uint64_t)intra_pred_mode_size 545 + top_size + mb_info_size + f_info_size 546 + yuv_size + mb_data_size 547 + cache_size + alpha_size + ALIGN_MASK; 548 uint8_t* mem; 549 550 if (needed != (size_t)needed) return 0; // check for overflow 551 if (needed > dec->mem_size_) { 552 free(dec->mem_); 553 dec->mem_size_ = 0; 554 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t)); 555 if (dec->mem_ == NULL) { 556 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY, 557 "no memory during frame initialization."); 558 } 559 // down-cast is ok, thanks to WebPSafeAlloc() above. 560 dec->mem_size_ = (size_t)needed; 561 } 562 563 mem = (uint8_t*)dec->mem_; 564 dec->intra_t_ = (uint8_t*)mem; 565 mem += intra_pred_mode_size; 566 567 dec->yuv_t_ = (VP8TopSamples*)mem; 568 mem += top_size; 569 570 dec->mb_info_ = ((VP8MB*)mem) + 1; 571 mem += mb_info_size; 572 573 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL; 574 mem += f_info_size; 575 dec->thread_ctx_.id_ = 0; 576 dec->thread_ctx_.f_info_ = dec->f_info_; 577 if (dec->mt_method_ > 0) { 578 // secondary cache line. The deblocking process need to make use of the 579 // filtering strength from previous macroblock row, while the new ones 580 // are being decoded in parallel. We'll just swap the pointers. 581 dec->thread_ctx_.f_info_ += mb_w; 582 } 583 584 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK); 585 assert((yuv_size & ALIGN_MASK) == 0); 586 dec->yuv_b_ = (uint8_t*)mem; 587 mem += yuv_size; 588 589 dec->mb_data_ = (VP8MBData*)mem; 590 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem; 591 if (dec->mt_method_ == 2) { 592 dec->thread_ctx_.mb_data_ += mb_w; 593 } 594 mem += mb_data_size; 595 596 dec->cache_y_stride_ = 16 * mb_w; 597 dec->cache_uv_stride_ = 8 * mb_w; 598 { 599 const int extra_rows = kFilterExtraRows[dec->filter_type_]; 600 const int extra_y = extra_rows * dec->cache_y_stride_; 601 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_; 602 dec->cache_y_ = ((uint8_t*)mem) + extra_y; 603 dec->cache_u_ = dec->cache_y_ 604 + 16 * num_caches * dec->cache_y_stride_ + extra_uv; 605 dec->cache_v_ = dec->cache_u_ 606 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv; 607 dec->cache_id_ = 0; 608 } 609 mem += cache_size; 610 611 // alpha plane 612 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL; 613 mem += alpha_size; 614 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_); 615 616 // note: left/top-info is initialized once for all. 617 memset(dec->mb_info_ - 1, 0, mb_info_size); 618 VP8InitScanline(dec); // initialize left too. 619 620 // initialize top 621 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size); 622 623 return 1; 624 } 625 626 static void InitIo(VP8Decoder* const dec, VP8Io* io) { 627 // prepare 'io' 628 io->mb_y = 0; 629 io->y = dec->cache_y_; 630 io->u = dec->cache_u_; 631 io->v = dec->cache_v_; 632 io->y_stride = dec->cache_y_stride_; 633 io->uv_stride = dec->cache_uv_stride_; 634 io->a = NULL; 635 } 636 637 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) { 638 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_. 639 if (!AllocateMemory(dec)) return 0; 640 InitIo(dec, io); 641 VP8DspInit(); // Init critical function pointers and look-up tables. 642 return 1; 643 } 644 645 //------------------------------------------------------------------------------ 646 // Main reconstruction function. 647 648 static const int kScan[16] = { 649 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS, 650 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS, 651 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS, 652 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS 653 }; 654 655 static int CheckMode(int mb_x, int mb_y, int mode) { 656 if (mode == B_DC_PRED) { 657 if (mb_x == 0) { 658 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT; 659 } else { 660 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED; 661 } 662 } 663 return mode; 664 } 665 666 static void Copy32b(uint8_t* dst, uint8_t* src) { 667 memcpy(dst, src, 4); 668 } 669 670 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src, 671 uint8_t* const dst) { 672 switch (bits >> 30) { 673 case 3: 674 VP8Transform(src, dst, 0); 675 break; 676 case 2: 677 VP8TransformAC3(src, dst); 678 break; 679 case 1: 680 VP8TransformDC(src, dst); 681 break; 682 default: 683 break; 684 } 685 } 686 687 static void DoUVTransform(uint32_t bits, const int16_t* const src, 688 uint8_t* const dst) { 689 if (bits & 0xff) { // any non-zero coeff at all? 690 if (bits & 0xaa) { // any non-zero AC coefficient? 691 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V 692 } else { 693 VP8TransformDCUV(src, dst); 694 } 695 } 696 } 697 698 static void ReconstructRow(const VP8Decoder* const dec, 699 const VP8ThreadContext* ctx) { 700 int j; 701 int mb_x; 702 const int mb_y = ctx->mb_y_; 703 const int cache_id = ctx->id_; 704 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF; 705 uint8_t* const u_dst = dec->yuv_b_ + U_OFF; 706 uint8_t* const v_dst = dec->yuv_b_ + V_OFF; 707 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) { 708 const VP8MBData* const block = ctx->mb_data_ + mb_x; 709 710 // Rotate in the left samples from previously decoded block. We move four 711 // pixels at a time for alignment reason, and because of in-loop filter. 712 if (mb_x > 0) { 713 for (j = -1; j < 16; ++j) { 714 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]); 715 } 716 for (j = -1; j < 8; ++j) { 717 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]); 718 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]); 719 } 720 } else { 721 for (j = 0; j < 16; ++j) { 722 y_dst[j * BPS - 1] = 129; 723 } 724 for (j = 0; j < 8; ++j) { 725 u_dst[j * BPS - 1] = 129; 726 v_dst[j * BPS - 1] = 129; 727 } 728 // Init top-left sample on left column too 729 if (mb_y > 0) { 730 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129; 731 } 732 } 733 { 734 // bring top samples into the cache 735 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x; 736 const int16_t* const coeffs = block->coeffs_; 737 uint32_t bits = block->non_zero_y_; 738 int n; 739 740 if (mb_y > 0) { 741 memcpy(y_dst - BPS, top_yuv[0].y, 16); 742 memcpy(u_dst - BPS, top_yuv[0].u, 8); 743 memcpy(v_dst - BPS, top_yuv[0].v, 8); 744 } else if (mb_x == 0) { 745 // we only need to do this init once at block (0,0). 746 // Afterward, it remains valid for the whole topmost row. 747 memset(y_dst - BPS - 1, 127, 16 + 4 + 1); 748 memset(u_dst - BPS - 1, 127, 8 + 1); 749 memset(v_dst - BPS - 1, 127, 8 + 1); 750 } 751 752 // predict and add residuals 753 if (block->is_i4x4_) { // 4x4 754 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16); 755 756 if (mb_y > 0) { 757 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border 758 memset(top_right, top_yuv[0].y[15], sizeof(*top_right)); 759 } else { 760 memcpy(top_right, top_yuv[1].y, sizeof(*top_right)); 761 } 762 } 763 // replicate the top-right pixels below 764 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0]; 765 766 // predict and add residuals for all 4x4 blocks in turn. 767 for (n = 0; n < 16; ++n, bits <<= 2) { 768 uint8_t* const dst = y_dst + kScan[n]; 769 VP8PredLuma4[block->imodes_[n]](dst); 770 DoTransform(bits, coeffs + n * 16, dst); 771 } 772 } else { // 16x16 773 const int pred_func = CheckMode(mb_x, mb_y, 774 block->imodes_[0]); 775 VP8PredLuma16[pred_func](y_dst); 776 if (bits != 0) { 777 for (n = 0; n < 16; ++n, bits <<= 2) { 778 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]); 779 } 780 } 781 } 782 { 783 // Chroma 784 const uint32_t bits_uv = block->non_zero_uv_; 785 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_); 786 VP8PredChroma8[pred_func](u_dst); 787 VP8PredChroma8[pred_func](v_dst); 788 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst); 789 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst); 790 } 791 792 // stash away top samples for next block 793 if (mb_y < dec->mb_h_ - 1) { 794 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16); 795 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8); 796 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8); 797 } 798 } 799 // Transfer reconstructed samples from yuv_b_ cache to final destination. 800 { 801 const int y_offset = cache_id * 16 * dec->cache_y_stride_; 802 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_; 803 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset; 804 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset; 805 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset; 806 for (j = 0; j < 16; ++j) { 807 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16); 808 } 809 for (j = 0; j < 8; ++j) { 810 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8); 811 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8); 812 } 813 } 814 } 815 } 816 817 //------------------------------------------------------------------------------ 818