github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/dec/vp8l.c (about) 1 // Copyright 2012 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // main entry for the decoder 11 // 12 // Authors: Vikas Arora (vikaas.arora@gmail.com) 13 // Jyrki Alakuijala (jyrki@google.com) 14 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include "./alphai.h" 18 #include "./vp8li.h" 19 #include "../dsp/lossless.h" 20 #include "../dsp/yuv.h" 21 #include "../utils/alpha_processing.h" 22 #include "../utils/huffman.h" 23 #include "../utils/utils.h" 24 25 #define NUM_ARGB_CACHE_ROWS 16 26 27 static const int kCodeLengthLiterals = 16; 28 static const int kCodeLengthRepeatCode = 16; 29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 }; 30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 }; 31 32 // ----------------------------------------------------------------------------- 33 // Five Huffman codes are used at each meta code: 34 // 1. green + length prefix codes + color cache codes, 35 // 2. alpha, 36 // 3. red, 37 // 4. blue, and, 38 // 5. distance prefix codes. 39 typedef enum { 40 GREEN = 0, 41 RED = 1, 42 BLUE = 2, 43 ALPHA = 3, 44 DIST = 4 45 } HuffIndex; 46 47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = { 48 NUM_LITERAL_CODES + NUM_LENGTH_CODES, 49 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES, 50 NUM_DISTANCE_CODES 51 }; 52 53 54 #define NUM_CODE_LENGTH_CODES 19 55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = { 56 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 57 }; 58 59 #define CODE_TO_PLANE_CODES 120 60 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = { 61 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, 62 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, 63 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, 64 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, 65 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, 66 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, 67 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, 68 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, 69 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, 70 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, 71 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, 72 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70 73 }; 74 75 static int DecodeImageStream(int xsize, int ysize, 76 int is_level0, 77 VP8LDecoder* const dec, 78 uint32_t** const decoded_data); 79 80 //------------------------------------------------------------------------------ 81 82 int VP8LCheckSignature(const uint8_t* const data, size_t size) { 83 return (size >= VP8L_FRAME_HEADER_SIZE && 84 data[0] == VP8L_MAGIC_BYTE && 85 (data[4] >> 5) == 0); // version 86 } 87 88 static int ReadImageInfo(VP8LBitReader* const br, 89 int* const width, int* const height, 90 int* const has_alpha) { 91 if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0; 92 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; 93 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; 94 *has_alpha = VP8LReadBits(br, 1); 95 if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0; 96 return 1; 97 } 98 99 int VP8LGetInfo(const uint8_t* data, size_t data_size, 100 int* const width, int* const height, int* const has_alpha) { 101 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) { 102 return 0; // not enough data 103 } else if (!VP8LCheckSignature(data, data_size)) { 104 return 0; // bad signature 105 } else { 106 int w, h, a; 107 VP8LBitReader br; 108 VP8LInitBitReader(&br, data, data_size); 109 if (!ReadImageInfo(&br, &w, &h, &a)) { 110 return 0; 111 } 112 if (width != NULL) *width = w; 113 if (height != NULL) *height = h; 114 if (has_alpha != NULL) *has_alpha = a; 115 return 1; 116 } 117 } 118 119 //------------------------------------------------------------------------------ 120 121 static WEBP_INLINE int GetCopyDistance(int distance_symbol, 122 VP8LBitReader* const br) { 123 int extra_bits, offset; 124 if (distance_symbol < 4) { 125 return distance_symbol + 1; 126 } 127 extra_bits = (distance_symbol - 2) >> 1; 128 offset = (2 + (distance_symbol & 1)) << extra_bits; 129 return offset + VP8LReadBits(br, extra_bits) + 1; 130 } 131 132 static WEBP_INLINE int GetCopyLength(int length_symbol, 133 VP8LBitReader* const br) { 134 // Length and distance prefixes are encoded the same way. 135 return GetCopyDistance(length_symbol, br); 136 } 137 138 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) { 139 if (plane_code > CODE_TO_PLANE_CODES) { 140 return plane_code - CODE_TO_PLANE_CODES; 141 } else { 142 const int dist_code = kCodeToPlane[plane_code - 1]; 143 const int yoffset = dist_code >> 4; 144 const int xoffset = 8 - (dist_code & 0xf); 145 const int dist = yoffset * xsize + xoffset; 146 return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small 147 } 148 } 149 150 //------------------------------------------------------------------------------ 151 // Decodes the next Huffman code from bit-stream. 152 // FillBitWindow(br) needs to be called at minimum every second call 153 // to ReadSymbol, in order to pre-fetch enough bits. 154 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree, 155 VP8LBitReader* const br) { 156 const HuffmanTreeNode* node = tree->root_; 157 uint32_t bits = VP8LPrefetchBits(br); 158 int bitpos = br->bit_pos_; 159 // Check if we find the bit combination from the Huffman lookup table. 160 const int lut_ix = bits & (HUFF_LUT - 1); 161 const int lut_bits = tree->lut_bits_[lut_ix]; 162 if (lut_bits <= HUFF_LUT_BITS) { 163 VP8LSetBitPos(br, bitpos + lut_bits); 164 return tree->lut_symbol_[lut_ix]; 165 } 166 node += tree->lut_jump_[lut_ix]; 167 bitpos += HUFF_LUT_BITS; 168 bits >>= HUFF_LUT_BITS; 169 170 // Decode the value from a binary tree. 171 assert(node != NULL); 172 do { 173 node = HuffmanTreeNextNode(node, bits & 1); 174 bits >>= 1; 175 ++bitpos; 176 } while (HuffmanTreeNodeIsNotLeaf(node)); 177 VP8LSetBitPos(br, bitpos); 178 return node->symbol_; 179 } 180 181 static int ReadHuffmanCodeLengths( 182 VP8LDecoder* const dec, const int* const code_length_code_lengths, 183 int num_symbols, int* const code_lengths) { 184 int ok = 0; 185 VP8LBitReader* const br = &dec->br_; 186 int symbol; 187 int max_symbol; 188 int prev_code_len = DEFAULT_CODE_LENGTH; 189 HuffmanTree tree; 190 191 if (!HuffmanTreeBuildImplicit(&tree, code_length_code_lengths, 192 NUM_CODE_LENGTH_CODES)) { 193 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 194 return 0; 195 } 196 197 if (VP8LReadBits(br, 1)) { // use length 198 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3); 199 max_symbol = 2 + VP8LReadBits(br, length_nbits); 200 if (max_symbol > num_symbols) { 201 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 202 goto End; 203 } 204 } else { 205 max_symbol = num_symbols; 206 } 207 208 symbol = 0; 209 while (symbol < num_symbols) { 210 int code_len; 211 if (max_symbol-- == 0) break; 212 VP8LFillBitWindow(br); 213 code_len = ReadSymbol(&tree, br); 214 if (code_len < kCodeLengthLiterals) { 215 code_lengths[symbol++] = code_len; 216 if (code_len != 0) prev_code_len = code_len; 217 } else { 218 const int use_prev = (code_len == kCodeLengthRepeatCode); 219 const int slot = code_len - kCodeLengthLiterals; 220 const int extra_bits = kCodeLengthExtraBits[slot]; 221 const int repeat_offset = kCodeLengthRepeatOffsets[slot]; 222 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset; 223 if (symbol + repeat > num_symbols) { 224 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 225 goto End; 226 } else { 227 const int length = use_prev ? prev_code_len : 0; 228 while (repeat-- > 0) code_lengths[symbol++] = length; 229 } 230 } 231 } 232 ok = 1; 233 234 End: 235 HuffmanTreeRelease(&tree); 236 return ok; 237 } 238 239 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec, 240 HuffmanTree* const tree) { 241 int ok = 0; 242 VP8LBitReader* const br = &dec->br_; 243 const int simple_code = VP8LReadBits(br, 1); 244 245 if (simple_code) { // Read symbols, codes & code lengths directly. 246 int symbols[2]; 247 int codes[2]; 248 int code_lengths[2]; 249 const int num_symbols = VP8LReadBits(br, 1) + 1; 250 const int first_symbol_len_code = VP8LReadBits(br, 1); 251 // The first code is either 1 bit or 8 bit code. 252 symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8); 253 codes[0] = 0; 254 code_lengths[0] = num_symbols - 1; 255 // The second code (if present), is always 8 bit long. 256 if (num_symbols == 2) { 257 symbols[1] = VP8LReadBits(br, 8); 258 codes[1] = 1; 259 code_lengths[1] = num_symbols - 1; 260 } 261 ok = HuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols, 262 alphabet_size, num_symbols); 263 } else { // Decode Huffman-coded code lengths. 264 int* code_lengths = NULL; 265 int i; 266 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 }; 267 const int num_codes = VP8LReadBits(br, 4) + 4; 268 if (num_codes > NUM_CODE_LENGTH_CODES) { 269 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 270 return 0; 271 } 272 273 code_lengths = 274 (int*)WebPSafeCalloc((uint64_t)alphabet_size, sizeof(*code_lengths)); 275 if (code_lengths == NULL) { 276 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 277 return 0; 278 } 279 280 for (i = 0; i < num_codes; ++i) { 281 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3); 282 } 283 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size, 284 code_lengths); 285 if (ok) { 286 ok = HuffmanTreeBuildImplicit(tree, code_lengths, alphabet_size); 287 } 288 free(code_lengths); 289 } 290 ok = ok && !br->error_; 291 if (!ok) { 292 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 293 return 0; 294 } 295 return 1; 296 } 297 298 static void DeleteHtreeGroups(HTreeGroup* htree_groups, int num_htree_groups) { 299 if (htree_groups != NULL) { 300 int i, j; 301 for (i = 0; i < num_htree_groups; ++i) { 302 HuffmanTree* const htrees = htree_groups[i].htrees_; 303 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 304 HuffmanTreeRelease(&htrees[j]); 305 } 306 } 307 free(htree_groups); 308 } 309 } 310 311 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize, 312 int color_cache_bits, int allow_recursion) { 313 int i, j; 314 VP8LBitReader* const br = &dec->br_; 315 VP8LMetadata* const hdr = &dec->hdr_; 316 uint32_t* huffman_image = NULL; 317 HTreeGroup* htree_groups = NULL; 318 int num_htree_groups = 1; 319 320 if (allow_recursion && VP8LReadBits(br, 1)) { 321 // use meta Huffman codes. 322 const int huffman_precision = VP8LReadBits(br, 3) + 2; 323 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision); 324 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision); 325 const int huffman_pixs = huffman_xsize * huffman_ysize; 326 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec, 327 &huffman_image)) { 328 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 329 goto Error; 330 } 331 hdr->huffman_subsample_bits_ = huffman_precision; 332 for (i = 0; i < huffman_pixs; ++i) { 333 // The huffman data is stored in red and green bytes. 334 const int group = (huffman_image[i] >> 8) & 0xffff; 335 huffman_image[i] = group; 336 if (group >= num_htree_groups) { 337 num_htree_groups = group + 1; 338 } 339 } 340 } 341 342 if (br->error_) goto Error; 343 344 assert(num_htree_groups <= 0x10000); 345 htree_groups = 346 (HTreeGroup*)WebPSafeCalloc((uint64_t)num_htree_groups, 347 sizeof(*htree_groups)); 348 if (htree_groups == NULL) { 349 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 350 goto Error; 351 } 352 353 for (i = 0; i < num_htree_groups; ++i) { 354 HuffmanTree* const htrees = htree_groups[i].htrees_; 355 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 356 int alphabet_size = kAlphabetSize[j]; 357 if (j == 0 && color_cache_bits > 0) { 358 alphabet_size += 1 << color_cache_bits; 359 } 360 if (!ReadHuffmanCode(alphabet_size, dec, htrees + j)) goto Error; 361 } 362 } 363 364 // All OK. Finalize pointers and return. 365 hdr->huffman_image_ = huffman_image; 366 hdr->num_htree_groups_ = num_htree_groups; 367 hdr->htree_groups_ = htree_groups; 368 return 1; 369 370 Error: 371 free(huffman_image); 372 DeleteHtreeGroups(htree_groups, num_htree_groups); 373 return 0; 374 } 375 376 //------------------------------------------------------------------------------ 377 // Scaling. 378 379 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) { 380 const int num_channels = 4; 381 const int in_width = io->mb_w; 382 const int out_width = io->scaled_width; 383 const int in_height = io->mb_h; 384 const int out_height = io->scaled_height; 385 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width; 386 int32_t* work; // Rescaler work area. 387 const uint64_t scaled_data_size = num_channels * (uint64_t)out_width; 388 uint32_t* scaled_data; // Temporary storage for scaled BGRA data. 389 const uint64_t memory_size = sizeof(*dec->rescaler) + 390 work_size * sizeof(*work) + 391 scaled_data_size * sizeof(*scaled_data); 392 uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory)); 393 if (memory == NULL) { 394 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 395 return 0; 396 } 397 assert(dec->rescaler_memory == NULL); 398 dec->rescaler_memory = memory; 399 400 dec->rescaler = (WebPRescaler*)memory; 401 memory += sizeof(*dec->rescaler); 402 work = (int32_t*)memory; 403 memory += work_size * sizeof(*work); 404 scaled_data = (uint32_t*)memory; 405 406 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data, 407 out_width, out_height, 0, num_channels, 408 in_width, out_width, in_height, out_height, work); 409 return 1; 410 } 411 412 //------------------------------------------------------------------------------ 413 // Export to ARGB 414 415 // We have special "export" function since we need to convert from BGRA 416 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace, 417 int rgba_stride, uint8_t* const rgba) { 418 uint32_t* const src = (uint32_t*)rescaler->dst; 419 const int dst_width = rescaler->dst_width; 420 int num_lines_out = 0; 421 while (WebPRescalerHasPendingOutput(rescaler)) { 422 uint8_t* const dst = rgba + num_lines_out * rgba_stride; 423 WebPRescalerExportRow(rescaler); 424 WebPMultARGBRow(src, dst_width, 1); 425 VP8LConvertFromBGRA(src, dst_width, colorspace, dst); 426 ++num_lines_out; 427 } 428 return num_lines_out; 429 } 430 431 // Emit scaled rows. 432 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec, 433 uint8_t* in, int in_stride, int mb_h, 434 uint8_t* const out, int out_stride) { 435 const WEBP_CSP_MODE colorspace = dec->output_->colorspace; 436 int num_lines_in = 0; 437 int num_lines_out = 0; 438 while (num_lines_in < mb_h) { 439 uint8_t* const row_in = in + num_lines_in * in_stride; 440 uint8_t* const row_out = out + num_lines_out * out_stride; 441 const int lines_left = mb_h - num_lines_in; 442 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); 443 assert(needed_lines > 0 && needed_lines <= lines_left); 444 WebPMultARGBRows(row_in, in_stride, 445 dec->rescaler->src_width, needed_lines, 0); 446 WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride); 447 num_lines_in += needed_lines; 448 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out); 449 } 450 return num_lines_out; 451 } 452 453 // Emit rows without any scaling. 454 static int EmitRows(WEBP_CSP_MODE colorspace, 455 const uint8_t* row_in, int in_stride, 456 int mb_w, int mb_h, 457 uint8_t* const out, int out_stride) { 458 int lines = mb_h; 459 uint8_t* row_out = out; 460 while (lines-- > 0) { 461 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out); 462 row_in += in_stride; 463 row_out += out_stride; 464 } 465 return mb_h; // Num rows out == num rows in. 466 } 467 468 //------------------------------------------------------------------------------ 469 // Export to YUVA 470 471 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos, 472 const WebPDecBuffer* const output) { 473 const WebPYUVABuffer* const buf = &output->u.YUVA; 474 // first, the luma plane 475 { 476 int i; 477 uint8_t* const y = buf->y + y_pos * buf->y_stride; 478 for (i = 0; i < width; ++i) { 479 const uint32_t p = src[i]; 480 y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, 481 YUV_HALF); 482 } 483 } 484 485 // then U/V planes 486 { 487 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride; 488 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride; 489 const int uv_width = width >> 1; 490 int i; 491 for (i = 0; i < uv_width; ++i) { 492 const uint32_t v0 = src[2 * i + 0]; 493 const uint32_t v1 = src[2 * i + 1]; 494 // VP8RGBToU/V expects four accumulated pixels. Hence we need to 495 // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less. 496 const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe); 497 const int g = ((v0 >> 7) & 0x1fe) + ((v1 >> 7) & 0x1fe); 498 const int b = ((v0 << 1) & 0x1fe) + ((v1 << 1) & 0x1fe); 499 if (!(y_pos & 1)) { // even lines: store values 500 u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); 501 v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); 502 } else { // odd lines: average with previous values 503 const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); 504 const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); 505 // Approximated average-of-four. But it's an acceptable diff. 506 u[i] = (u[i] + tmp_u + 1) >> 1; 507 v[i] = (v[i] + tmp_v + 1) >> 1; 508 } 509 } 510 if (width & 1) { // last pixel 511 const uint32_t v0 = src[2 * i + 0]; 512 const int r = (v0 >> 14) & 0x3fc; 513 const int g = (v0 >> 6) & 0x3fc; 514 const int b = (v0 << 2) & 0x3fc; 515 if (!(y_pos & 1)) { // even lines 516 u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2); 517 v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2); 518 } else { // odd lines (note: we could just skip this) 519 const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2); 520 const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2); 521 u[i] = (u[i] + tmp_u + 1) >> 1; 522 v[i] = (v[i] + tmp_v + 1) >> 1; 523 } 524 } 525 } 526 // Lastly, store alpha if needed. 527 if (buf->a != NULL) { 528 int i; 529 uint8_t* const a = buf->a + y_pos * buf->a_stride; 530 for (i = 0; i < width; ++i) a[i] = (src[i] >> 24); 531 } 532 } 533 534 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) { 535 WebPRescaler* const rescaler = dec->rescaler; 536 uint32_t* const src = (uint32_t*)rescaler->dst; 537 const int dst_width = rescaler->dst_width; 538 int num_lines_out = 0; 539 while (WebPRescalerHasPendingOutput(rescaler)) { 540 WebPRescalerExportRow(rescaler); 541 WebPMultARGBRow(src, dst_width, 1); 542 ConvertToYUVA(src, dst_width, y_pos, dec->output_); 543 ++y_pos; 544 ++num_lines_out; 545 } 546 return num_lines_out; 547 } 548 549 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec, 550 uint8_t* in, int in_stride, int mb_h) { 551 int num_lines_in = 0; 552 int y_pos = dec->last_out_row_; 553 while (num_lines_in < mb_h) { 554 const int lines_left = mb_h - num_lines_in; 555 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); 556 WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0); 557 WebPRescalerImport(dec->rescaler, lines_left, in, in_stride); 558 num_lines_in += needed_lines; 559 in += needed_lines * in_stride; 560 y_pos += ExportYUVA(dec, y_pos); 561 } 562 return y_pos; 563 } 564 565 static int EmitRowsYUVA(const VP8LDecoder* const dec, 566 const uint8_t* in, int in_stride, 567 int mb_w, int num_rows) { 568 int y_pos = dec->last_out_row_; 569 while (num_rows-- > 0) { 570 ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_); 571 in += in_stride; 572 ++y_pos; 573 } 574 return y_pos; 575 } 576 577 //------------------------------------------------------------------------------ 578 // Cropping. 579 580 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and 581 // crop options. Also updates the input data pointer, so that it points to the 582 // start of the cropped window. Note that pixels are in ARGB format even if 583 // 'in_data' is uint8_t*. 584 // Returns true if the crop window is not empty. 585 static int SetCropWindow(VP8Io* const io, int y_start, int y_end, 586 uint8_t** const in_data, int pixel_stride) { 587 assert(y_start < y_end); 588 assert(io->crop_left < io->crop_right); 589 if (y_end > io->crop_bottom) { 590 y_end = io->crop_bottom; // make sure we don't overflow on last row. 591 } 592 if (y_start < io->crop_top) { 593 const int delta = io->crop_top - y_start; 594 y_start = io->crop_top; 595 *in_data += delta * pixel_stride; 596 } 597 if (y_start >= y_end) return 0; // Crop window is empty. 598 599 *in_data += io->crop_left * sizeof(uint32_t); 600 601 io->mb_y = y_start - io->crop_top; 602 io->mb_w = io->crop_right - io->crop_left; 603 io->mb_h = y_end - y_start; 604 return 1; // Non-empty crop window. 605 } 606 607 //------------------------------------------------------------------------------ 608 609 static WEBP_INLINE int GetMetaIndex( 610 const uint32_t* const image, int xsize, int bits, int x, int y) { 611 if (bits == 0) return 0; 612 return image[xsize * (y >> bits) + (x >> bits)]; 613 } 614 615 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr, 616 int x, int y) { 617 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_, 618 hdr->huffman_subsample_bits_, x, y); 619 assert(meta_index < hdr->num_htree_groups_); 620 return hdr->htree_groups_ + meta_index; 621 } 622 623 //------------------------------------------------------------------------------ 624 // Main loop, with custom row-processing function 625 626 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row); 627 628 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows, 629 const uint32_t* const rows) { 630 int n = dec->next_transform_; 631 const int cache_pixs = dec->width_ * num_rows; 632 const int start_row = dec->last_row_; 633 const int end_row = start_row + num_rows; 634 const uint32_t* rows_in = rows; 635 uint32_t* const rows_out = dec->argb_cache_; 636 637 // Inverse transforms. 638 // TODO: most transforms only need to operate on the cropped region only. 639 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out)); 640 while (n-- > 0) { 641 VP8LTransform* const transform = &dec->transforms_[n]; 642 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out); 643 rows_in = rows_out; 644 } 645 } 646 647 // Special method for paletted alpha data. 648 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows, 649 const uint8_t* const rows) { 650 const int start_row = dec->last_row_; 651 const int end_row = start_row + num_rows; 652 const uint8_t* rows_in = rows; 653 uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row; 654 VP8LTransform* const transform = &dec->transforms_[0]; 655 assert(dec->next_transform_ == 1); 656 assert(transform->type_ == COLOR_INDEXING_TRANSFORM); 657 VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in, 658 rows_out); 659 } 660 661 // Processes (transforms, scales & color-converts) the rows decoded after the 662 // last call. 663 static void ProcessRows(VP8LDecoder* const dec, int row) { 664 const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_; 665 const int num_rows = row - dec->last_row_; 666 667 if (num_rows <= 0) return; // Nothing to be done. 668 ApplyInverseTransforms(dec, num_rows, rows); 669 670 // Emit output. 671 { 672 VP8Io* const io = dec->io_; 673 uint8_t* rows_data = (uint8_t*)dec->argb_cache_; 674 const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA 675 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) { 676 // Nothing to output (this time). 677 } else { 678 const WebPDecBuffer* const output = dec->output_; 679 if (output->colorspace < MODE_YUV) { // convert to RGBA 680 const WebPRGBABuffer* const buf = &output->u.RGBA; 681 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride; 682 const int num_rows_out = io->use_scaling ? 683 EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h, 684 rgba, buf->stride) : 685 EmitRows(output->colorspace, rows_data, in_stride, 686 io->mb_w, io->mb_h, rgba, buf->stride); 687 // Update 'last_out_row_'. 688 dec->last_out_row_ += num_rows_out; 689 } else { // convert to YUVA 690 dec->last_out_row_ = io->use_scaling ? 691 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) : 692 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h); 693 } 694 assert(dec->last_out_row_ <= output->height); 695 } 696 } 697 698 // Update 'last_row_'. 699 dec->last_row_ = row; 700 assert(dec->last_row_ <= dec->height_); 701 } 702 703 // Row-processing for the special case when alpha data contains only one 704 // transform (color indexing), and trivial non-green literals. 705 static int Is8bOptimizable(const VP8LMetadata* const hdr) { 706 int i; 707 if (hdr->color_cache_size_ > 0) return 0; 708 // When the Huffman tree contains only one symbol, we can skip the 709 // call to ReadSymbol() for red/blue/alpha channels. 710 for (i = 0; i < hdr->num_htree_groups_; ++i) { 711 const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_; 712 if (htrees[RED].num_nodes_ > 1) return 0; 713 if (htrees[BLUE].num_nodes_ > 1) return 0; 714 if (htrees[ALPHA].num_nodes_ > 1) return 0; 715 } 716 return 1; 717 } 718 719 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) { 720 const int num_rows = row - dec->last_row_; 721 const uint8_t* const in = 722 (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_; 723 if (num_rows > 0) { 724 ApplyInverseTransformsAlpha(dec, num_rows, in); 725 } 726 dec->last_row_ = dec->last_out_row_ = row; 727 } 728 729 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data, 730 int width, int height, int last_row) { 731 int ok = 1; 732 int row = dec->last_pixel_ / width; 733 int col = dec->last_pixel_ % width; 734 VP8LBitReader* const br = &dec->br_; 735 VP8LMetadata* const hdr = &dec->hdr_; 736 const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row); 737 int pos = dec->last_pixel_; // current position 738 const int end = width * height; // End of data 739 const int last = width * last_row; // Last pixel to decode 740 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; 741 const int mask = hdr->huffman_mask_; 742 assert(htree_group != NULL); 743 assert(last_row <= height); 744 assert(Is8bOptimizable(hdr)); 745 746 while (!br->eos_ && pos < last) { 747 int code; 748 // Only update when changing tile. 749 if ((col & mask) == 0) { 750 htree_group = GetHtreeGroupForPos(hdr, col, row); 751 } 752 VP8LFillBitWindow(br); 753 code = ReadSymbol(&htree_group->htrees_[GREEN], br); 754 if (code < NUM_LITERAL_CODES) { // Literal 755 data[pos] = code; 756 ++pos; 757 ++col; 758 if (col >= width) { 759 col = 0; 760 ++row; 761 if (row % NUM_ARGB_CACHE_ROWS == 0) { 762 ExtractPalettedAlphaRows(dec, row); 763 } 764 } 765 } else if (code < len_code_limit) { // Backward reference 766 int dist_code, dist; 767 const int length_sym = code - NUM_LITERAL_CODES; 768 const int length = GetCopyLength(length_sym, br); 769 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); 770 VP8LFillBitWindow(br); 771 dist_code = GetCopyDistance(dist_symbol, br); 772 dist = PlaneCodeToDistance(width, dist_code); 773 if (pos >= dist && end - pos >= length) { 774 int i; 775 for (i = 0; i < length; ++i) data[pos + i] = data[pos + i - dist]; 776 } else { 777 ok = 0; 778 goto End; 779 } 780 pos += length; 781 col += length; 782 while (col >= width) { 783 col -= width; 784 ++row; 785 if (row % NUM_ARGB_CACHE_ROWS == 0) { 786 ExtractPalettedAlphaRows(dec, row); 787 } 788 } 789 if (pos < last && (col & mask)) { 790 htree_group = GetHtreeGroupForPos(hdr, col, row); 791 } 792 } else { // Not reached 793 ok = 0; 794 goto End; 795 } 796 ok = !br->error_; 797 if (!ok) goto End; 798 } 799 // Process the remaining rows corresponding to last row-block. 800 ExtractPalettedAlphaRows(dec, row); 801 802 End: 803 if (br->error_ || !ok || (br->eos_ && pos < end)) { 804 ok = 0; 805 dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED 806 : VP8_STATUS_BITSTREAM_ERROR; 807 } else { 808 dec->last_pixel_ = (int)pos; 809 if (pos == end) dec->state_ = READ_DATA; 810 } 811 return ok; 812 } 813 814 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data, 815 int width, int height, int last_row, 816 ProcessRowsFunc process_func) { 817 int ok = 1; 818 int row = dec->last_pixel_ / width; 819 int col = dec->last_pixel_ % width; 820 VP8LBitReader* const br = &dec->br_; 821 VP8LMetadata* const hdr = &dec->hdr_; 822 HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row); 823 uint32_t* src = data + dec->last_pixel_; 824 uint32_t* last_cached = src; 825 uint32_t* const src_end = data + width * height; // End of data 826 uint32_t* const src_last = data + width * last_row; // Last pixel to decode 827 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; 828 const int color_cache_limit = len_code_limit + hdr->color_cache_size_; 829 VP8LColorCache* const color_cache = 830 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; 831 const int mask = hdr->huffman_mask_; 832 assert(htree_group != NULL); 833 assert(src_last <= src_end); 834 835 while (!br->eos_ && src < src_last) { 836 int code; 837 // Only update when changing tile. Note we could use this test: 838 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed 839 // but that's actually slower and needs storing the previous col/row. 840 if ((col & mask) == 0) { 841 htree_group = GetHtreeGroupForPos(hdr, col, row); 842 } 843 VP8LFillBitWindow(br); 844 code = ReadSymbol(&htree_group->htrees_[GREEN], br); 845 if (code < NUM_LITERAL_CODES) { // Literal 846 int red, green, blue, alpha; 847 red = ReadSymbol(&htree_group->htrees_[RED], br); 848 green = code; 849 VP8LFillBitWindow(br); 850 blue = ReadSymbol(&htree_group->htrees_[BLUE], br); 851 alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br); 852 *src = (alpha << 24) | (red << 16) | (green << 8) | blue; 853 AdvanceByOne: 854 ++src; 855 ++col; 856 if (col >= width) { 857 col = 0; 858 ++row; 859 if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) { 860 process_func(dec, row); 861 } 862 if (color_cache != NULL) { 863 while (last_cached < src) { 864 VP8LColorCacheInsert(color_cache, *last_cached++); 865 } 866 } 867 } 868 } else if (code < len_code_limit) { // Backward reference 869 int dist_code, dist; 870 const int length_sym = code - NUM_LITERAL_CODES; 871 const int length = GetCopyLength(length_sym, br); 872 const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br); 873 VP8LFillBitWindow(br); 874 dist_code = GetCopyDistance(dist_symbol, br); 875 dist = PlaneCodeToDistance(width, dist_code); 876 if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) { 877 ok = 0; 878 goto End; 879 } else { 880 int i; 881 for (i = 0; i < length; ++i) src[i] = src[i - dist]; 882 src += length; 883 } 884 col += length; 885 while (col >= width) { 886 col -= width; 887 ++row; 888 if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) { 889 process_func(dec, row); 890 } 891 } 892 if (src < src_last) { 893 if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row); 894 if (color_cache != NULL) { 895 while (last_cached < src) { 896 VP8LColorCacheInsert(color_cache, *last_cached++); 897 } 898 } 899 } 900 } else if (code < color_cache_limit) { // Color cache 901 const int key = code - len_code_limit; 902 assert(color_cache != NULL); 903 while (last_cached < src) { 904 VP8LColorCacheInsert(color_cache, *last_cached++); 905 } 906 *src = VP8LColorCacheLookup(color_cache, key); 907 goto AdvanceByOne; 908 } else { // Not reached 909 ok = 0; 910 goto End; 911 } 912 ok = !br->error_; 913 if (!ok) goto End; 914 } 915 // Process the remaining rows corresponding to last row-block. 916 if (process_func != NULL) process_func(dec, row); 917 918 End: 919 if (br->error_ || !ok || (br->eos_ && src < src_end)) { 920 ok = 0; 921 dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED 922 : VP8_STATUS_BITSTREAM_ERROR; 923 } else { 924 dec->last_pixel_ = (int)(src - data); 925 if (src == src_end) dec->state_ = READ_DATA; 926 } 927 return ok; 928 } 929 930 // ----------------------------------------------------------------------------- 931 // VP8LTransform 932 933 static void ClearTransform(VP8LTransform* const transform) { 934 free(transform->data_); 935 transform->data_ = NULL; 936 } 937 938 // For security reason, we need to remap the color map to span 939 // the total possible bundled values, and not just the num_colors. 940 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) { 941 int i; 942 const int final_num_colors = 1 << (8 >> transform->bits_); 943 uint32_t* const new_color_map = 944 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors, 945 sizeof(*new_color_map)); 946 if (new_color_map == NULL) { 947 return 0; 948 } else { 949 uint8_t* const data = (uint8_t*)transform->data_; 950 uint8_t* const new_data = (uint8_t*)new_color_map; 951 new_color_map[0] = transform->data_[0]; 952 for (i = 4; i < 4 * num_colors; ++i) { 953 // Equivalent to AddPixelEq(), on a byte-basis. 954 new_data[i] = (data[i] + new_data[i - 4]) & 0xff; 955 } 956 for (; i < 4 * final_num_colors; ++i) 957 new_data[i] = 0; // black tail. 958 free(transform->data_); 959 transform->data_ = new_color_map; 960 } 961 return 1; 962 } 963 964 static int ReadTransform(int* const xsize, int const* ysize, 965 VP8LDecoder* const dec) { 966 int ok = 1; 967 VP8LBitReader* const br = &dec->br_; 968 VP8LTransform* transform = &dec->transforms_[dec->next_transform_]; 969 const VP8LImageTransformType type = 970 (VP8LImageTransformType)VP8LReadBits(br, 2); 971 972 // Each transform type can only be present once in the stream. 973 if (dec->transforms_seen_ & (1U << type)) { 974 return 0; // Already there, let's not accept the second same transform. 975 } 976 dec->transforms_seen_ |= (1U << type); 977 978 transform->type_ = type; 979 transform->xsize_ = *xsize; 980 transform->ysize_ = *ysize; 981 transform->data_ = NULL; 982 ++dec->next_transform_; 983 assert(dec->next_transform_ <= NUM_TRANSFORMS); 984 985 switch (type) { 986 case PREDICTOR_TRANSFORM: 987 case CROSS_COLOR_TRANSFORM: 988 transform->bits_ = VP8LReadBits(br, 3) + 2; 989 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_, 990 transform->bits_), 991 VP8LSubSampleSize(transform->ysize_, 992 transform->bits_), 993 0, dec, &transform->data_); 994 break; 995 case COLOR_INDEXING_TRANSFORM: { 996 const int num_colors = VP8LReadBits(br, 8) + 1; 997 const int bits = (num_colors > 16) ? 0 998 : (num_colors > 4) ? 1 999 : (num_colors > 2) ? 2 1000 : 3; 1001 *xsize = VP8LSubSampleSize(transform->xsize_, bits); 1002 transform->bits_ = bits; 1003 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_); 1004 ok = ok && ExpandColorMap(num_colors, transform); 1005 break; 1006 } 1007 case SUBTRACT_GREEN: 1008 break; 1009 default: 1010 assert(0); // can't happen 1011 break; 1012 } 1013 1014 return ok; 1015 } 1016 1017 // ----------------------------------------------------------------------------- 1018 // VP8LMetadata 1019 1020 static void InitMetadata(VP8LMetadata* const hdr) { 1021 assert(hdr); 1022 memset(hdr, 0, sizeof(*hdr)); 1023 } 1024 1025 static void ClearMetadata(VP8LMetadata* const hdr) { 1026 assert(hdr); 1027 1028 free(hdr->huffman_image_); 1029 DeleteHtreeGroups(hdr->htree_groups_, hdr->num_htree_groups_); 1030 VP8LColorCacheClear(&hdr->color_cache_); 1031 InitMetadata(hdr); 1032 } 1033 1034 // ----------------------------------------------------------------------------- 1035 // VP8LDecoder 1036 1037 VP8LDecoder* VP8LNew(void) { 1038 VP8LDecoder* const dec = (VP8LDecoder*)calloc(1, sizeof(*dec)); 1039 if (dec == NULL) return NULL; 1040 dec->status_ = VP8_STATUS_OK; 1041 dec->action_ = READ_DIM; 1042 dec->state_ = READ_DIM; 1043 1044 VP8LDspInit(); // Init critical function pointers. 1045 1046 return dec; 1047 } 1048 1049 void VP8LClear(VP8LDecoder* const dec) { 1050 int i; 1051 if (dec == NULL) return; 1052 ClearMetadata(&dec->hdr_); 1053 1054 free(dec->pixels_); 1055 dec->pixels_ = NULL; 1056 for (i = 0; i < dec->next_transform_; ++i) { 1057 ClearTransform(&dec->transforms_[i]); 1058 } 1059 dec->next_transform_ = 0; 1060 dec->transforms_seen_ = 0; 1061 1062 free(dec->rescaler_memory); 1063 dec->rescaler_memory = NULL; 1064 1065 dec->output_ = NULL; // leave no trace behind 1066 } 1067 1068 void VP8LDelete(VP8LDecoder* const dec) { 1069 if (dec != NULL) { 1070 VP8LClear(dec); 1071 free(dec); 1072 } 1073 } 1074 1075 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) { 1076 VP8LMetadata* const hdr = &dec->hdr_; 1077 const int num_bits = hdr->huffman_subsample_bits_; 1078 dec->width_ = width; 1079 dec->height_ = height; 1080 1081 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits); 1082 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1; 1083 } 1084 1085 static int DecodeImageStream(int xsize, int ysize, 1086 int is_level0, 1087 VP8LDecoder* const dec, 1088 uint32_t** const decoded_data) { 1089 int ok = 1; 1090 int transform_xsize = xsize; 1091 int transform_ysize = ysize; 1092 VP8LBitReader* const br = &dec->br_; 1093 VP8LMetadata* const hdr = &dec->hdr_; 1094 uint32_t* data = NULL; 1095 int color_cache_bits = 0; 1096 1097 // Read the transforms (may recurse). 1098 if (is_level0) { 1099 while (ok && VP8LReadBits(br, 1)) { 1100 ok = ReadTransform(&transform_xsize, &transform_ysize, dec); 1101 } 1102 } 1103 1104 // Color cache 1105 if (ok && VP8LReadBits(br, 1)) { 1106 color_cache_bits = VP8LReadBits(br, 4); 1107 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS); 1108 if (!ok) { 1109 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1110 goto End; 1111 } 1112 } 1113 1114 // Read the Huffman codes (may recurse). 1115 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize, 1116 color_cache_bits, is_level0); 1117 if (!ok) { 1118 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1119 goto End; 1120 } 1121 1122 // Finish setting up the color-cache 1123 if (color_cache_bits > 0) { 1124 hdr->color_cache_size_ = 1 << color_cache_bits; 1125 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) { 1126 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1127 ok = 0; 1128 goto End; 1129 } 1130 } else { 1131 hdr->color_cache_size_ = 0; 1132 } 1133 UpdateDecoder(dec, transform_xsize, transform_ysize); 1134 1135 if (is_level0) { // level 0 complete 1136 dec->state_ = READ_HDR; 1137 goto End; 1138 } 1139 1140 { 1141 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize; 1142 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data)); 1143 if (data == NULL) { 1144 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1145 ok = 0; 1146 goto End; 1147 } 1148 } 1149 1150 // Use the Huffman trees to decode the LZ77 encoded data. 1151 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, 1152 transform_ysize, NULL); 1153 ok = ok && !br->error_; 1154 1155 End: 1156 1157 if (!ok) { 1158 free(data); 1159 ClearMetadata(hdr); 1160 // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the 1161 // status appropriately. 1162 if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) { 1163 dec->status_ = VP8_STATUS_SUSPENDED; 1164 } 1165 } else { 1166 if (decoded_data != NULL) { 1167 *decoded_data = data; 1168 } else { 1169 // We allocate image data in this function only for transforms. At level 0 1170 // (that is: not the transforms), we shouldn't have allocated anything. 1171 assert(data == NULL); 1172 assert(is_level0); 1173 } 1174 dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls. 1175 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind. 1176 } 1177 return ok; 1178 } 1179 1180 //------------------------------------------------------------------------------ 1181 // Allocate internal buffers dec->pixels_ and dec->argb_cache_. 1182 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) { 1183 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_; 1184 // Scratch buffer corresponding to top-prediction row for transforming the 1185 // first row in the row-blocks. Not needed for paletted alpha. 1186 const uint64_t cache_top_pixels = (uint16_t)final_width; 1187 // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha. 1188 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS; 1189 const uint64_t total_num_pixels = 1190 num_pixels + cache_top_pixels + cache_pixels; 1191 1192 assert(dec->width_ <= final_width); 1193 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t)); 1194 if (dec->pixels_ == NULL) { 1195 dec->argb_cache_ = NULL; // for sanity check 1196 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1197 return 0; 1198 } 1199 dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels; 1200 return 1; 1201 } 1202 1203 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) { 1204 const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_; 1205 dec->argb_cache_ = NULL; // for sanity check 1206 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t)); 1207 if (dec->pixels_ == NULL) { 1208 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1209 return 0; 1210 } 1211 return 1; 1212 } 1213 1214 //------------------------------------------------------------------------------ 1215 1216 // Special row-processing that only stores the alpha data. 1217 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) { 1218 const int num_rows = row - dec->last_row_; 1219 const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_; 1220 1221 if (num_rows <= 0) return; // Nothing to be done. 1222 ApplyInverseTransforms(dec, num_rows, in); 1223 1224 // Extract alpha (which is stored in the green plane). 1225 { 1226 const int width = dec->io_->width; // the final width (!= dec->width_) 1227 const int cache_pixs = width * num_rows; 1228 uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_; 1229 const uint32_t* const src = dec->argb_cache_; 1230 int i; 1231 for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff; 1232 } 1233 dec->last_row_ = dec->last_out_row_ = row; 1234 } 1235 1236 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec, 1237 const uint8_t* const data, size_t data_size, 1238 uint8_t* const output) { 1239 int ok = 0; 1240 VP8LDecoder* dec; 1241 VP8Io* io; 1242 assert(alph_dec != NULL); 1243 alph_dec->vp8l_dec_ = VP8LNew(); 1244 if (alph_dec->vp8l_dec_ == NULL) return 0; 1245 dec = alph_dec->vp8l_dec_; 1246 1247 dec->width_ = alph_dec->width_; 1248 dec->height_ = alph_dec->height_; 1249 dec->io_ = &alph_dec->io_; 1250 io = dec->io_; 1251 1252 VP8InitIo(io); 1253 WebPInitCustomIo(NULL, io); // Just a sanity Init. io won't be used. 1254 io->opaque = output; 1255 io->width = alph_dec->width_; 1256 io->height = alph_dec->height_; 1257 1258 dec->status_ = VP8_STATUS_OK; 1259 VP8LInitBitReader(&dec->br_, data, data_size); 1260 1261 dec->action_ = READ_HDR; 1262 if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) { 1263 goto Err; 1264 } 1265 1266 // Special case: if alpha data uses only the color indexing transform and 1267 // doesn't use color cache (a frequent case), we will use DecodeAlphaData() 1268 // method that only needs allocation of 1 byte per pixel (alpha channel). 1269 if (dec->next_transform_ == 1 && 1270 dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM && 1271 Is8bOptimizable(&dec->hdr_)) { 1272 alph_dec->use_8b_decode = 1; 1273 ok = AllocateInternalBuffers8b(dec); 1274 } else { 1275 // Allocate internal buffers (note that dec->width_ may have changed here). 1276 alph_dec->use_8b_decode = 0; 1277 ok = AllocateInternalBuffers32b(dec, alph_dec->width_); 1278 } 1279 1280 if (!ok) goto Err; 1281 1282 dec->action_ = READ_DATA; 1283 return 1; 1284 1285 Err: 1286 VP8LDelete(alph_dec->vp8l_dec_); 1287 alph_dec->vp8l_dec_ = NULL; 1288 return 0; 1289 } 1290 1291 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) { 1292 VP8LDecoder* const dec = alph_dec->vp8l_dec_; 1293 assert(dec != NULL); 1294 assert(dec->action_ == READ_DATA); 1295 assert(last_row <= dec->height_); 1296 1297 // Decode (with special row processing). 1298 return alph_dec->use_8b_decode ? 1299 DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_, 1300 last_row) : 1301 DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, 1302 last_row, ExtractAlphaRows); 1303 } 1304 1305 //------------------------------------------------------------------------------ 1306 1307 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) { 1308 int width, height, has_alpha; 1309 1310 if (dec == NULL) return 0; 1311 if (io == NULL) { 1312 dec->status_ = VP8_STATUS_INVALID_PARAM; 1313 return 0; 1314 } 1315 1316 dec->io_ = io; 1317 dec->status_ = VP8_STATUS_OK; 1318 VP8LInitBitReader(&dec->br_, io->data, io->data_size); 1319 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) { 1320 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1321 goto Error; 1322 } 1323 dec->state_ = READ_DIM; 1324 io->width = width; 1325 io->height = height; 1326 1327 dec->action_ = READ_HDR; 1328 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error; 1329 return 1; 1330 1331 Error: 1332 VP8LClear(dec); 1333 assert(dec->status_ != VP8_STATUS_OK); 1334 return 0; 1335 } 1336 1337 int VP8LDecodeImage(VP8LDecoder* const dec) { 1338 VP8Io* io = NULL; 1339 WebPDecParams* params = NULL; 1340 1341 // Sanity checks. 1342 if (dec == NULL) return 0; 1343 1344 io = dec->io_; 1345 assert(io != NULL); 1346 params = (WebPDecParams*)io->opaque; 1347 assert(params != NULL); 1348 dec->output_ = params->output; 1349 assert(dec->output_ != NULL); 1350 1351 // Initialization. 1352 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) { 1353 dec->status_ = VP8_STATUS_INVALID_PARAM; 1354 goto Err; 1355 } 1356 1357 if (!AllocateInternalBuffers32b(dec, io->width)) goto Err; 1358 1359 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err; 1360 1361 // Decode. 1362 dec->action_ = READ_DATA; 1363 if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, 1364 dec->height_, ProcessRows)) { 1365 goto Err; 1366 } 1367 1368 // Cleanup. 1369 params->last_y = dec->last_out_row_; 1370 VP8LClear(dec); 1371 return 1; 1372 1373 Err: 1374 VP8LClear(dec); 1375 assert(dec->status_ != VP8_STATUS_OK); 1376 return 0; 1377 } 1378 1379 //------------------------------------------------------------------------------ 1380