github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/dsp/dec_sse2.c (about) 1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // SSE2 version of some decoding functions (idct, loop filtering). 11 // 12 // Author: somnath@google.com (Somnath Banerjee) 13 // cduvivier@google.com (Christian Duvivier) 14 15 #include "./dsp.h" 16 17 #if defined(WEBP_USE_SSE2) 18 19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C 20 // one it seems => disable it by default. Uncomment the following to enable: 21 // #define USE_TRANSFORM_AC3 22 23 #include <emmintrin.h> 24 #include "../dec/vp8i.h" 25 26 //------------------------------------------------------------------------------ 27 // Transforms (Paragraph 14.4) 28 29 static void TransformSSE2(const int16_t* in, uint8_t* dst, int do_two) { 30 // This implementation makes use of 16-bit fixed point versions of two 31 // multiply constants: 32 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 33 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 34 // 35 // To be able to use signed 16-bit integers, we use the following trick to 36 // have constants within range: 37 // - Associated constants are obtained by subtracting the 16-bit fixed point 38 // version of one: 39 // k = K - (1 << 16) => K = k + (1 << 16) 40 // K1 = 85267 => k1 = 20091 41 // K2 = 35468 => k2 = -30068 42 // - The multiplication of a variable by a constant become the sum of the 43 // variable and the multiplication of that variable by the associated 44 // constant: 45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x 46 const __m128i k1 = _mm_set1_epi16(20091); 47 const __m128i k2 = _mm_set1_epi16(-30068); 48 __m128i T0, T1, T2, T3; 49 50 // Load and concatenate the transform coefficients (we'll do two transforms 51 // in parallel). In the case of only one transform, the second half of the 52 // vectors will just contain random value we'll never use nor store. 53 __m128i in0, in1, in2, in3; 54 { 55 in0 = _mm_loadl_epi64((__m128i*)&in[0]); 56 in1 = _mm_loadl_epi64((__m128i*)&in[4]); 57 in2 = _mm_loadl_epi64((__m128i*)&in[8]); 58 in3 = _mm_loadl_epi64((__m128i*)&in[12]); 59 // a00 a10 a20 a30 x x x x 60 // a01 a11 a21 a31 x x x x 61 // a02 a12 a22 a32 x x x x 62 // a03 a13 a23 a33 x x x x 63 if (do_two) { 64 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); 65 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); 66 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); 67 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); 68 in0 = _mm_unpacklo_epi64(in0, inB0); 69 in1 = _mm_unpacklo_epi64(in1, inB1); 70 in2 = _mm_unpacklo_epi64(in2, inB2); 71 in3 = _mm_unpacklo_epi64(in3, inB3); 72 // a00 a10 a20 a30 b00 b10 b20 b30 73 // a01 a11 a21 a31 b01 b11 b21 b31 74 // a02 a12 a22 a32 b02 b12 b22 b32 75 // a03 a13 a23 a33 b03 b13 b23 b33 76 } 77 } 78 79 // Vertical pass and subsequent transpose. 80 { 81 // First pass, c and d calculations are longer because of the "trick" 82 // multiplications. 83 const __m128i a = _mm_add_epi16(in0, in2); 84 const __m128i b = _mm_sub_epi16(in0, in2); 85 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 86 const __m128i c1 = _mm_mulhi_epi16(in1, k2); 87 const __m128i c2 = _mm_mulhi_epi16(in3, k1); 88 const __m128i c3 = _mm_sub_epi16(in1, in3); 89 const __m128i c4 = _mm_sub_epi16(c1, c2); 90 const __m128i c = _mm_add_epi16(c3, c4); 91 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 92 const __m128i d1 = _mm_mulhi_epi16(in1, k1); 93 const __m128i d2 = _mm_mulhi_epi16(in3, k2); 94 const __m128i d3 = _mm_add_epi16(in1, in3); 95 const __m128i d4 = _mm_add_epi16(d1, d2); 96 const __m128i d = _mm_add_epi16(d3, d4); 97 98 // Second pass. 99 const __m128i tmp0 = _mm_add_epi16(a, d); 100 const __m128i tmp1 = _mm_add_epi16(b, c); 101 const __m128i tmp2 = _mm_sub_epi16(b, c); 102 const __m128i tmp3 = _mm_sub_epi16(a, d); 103 104 // Transpose the two 4x4. 105 // a00 a01 a02 a03 b00 b01 b02 b03 106 // a10 a11 a12 a13 b10 b11 b12 b13 107 // a20 a21 a22 a23 b20 b21 b22 b23 108 // a30 a31 a32 a33 b30 b31 b32 b33 109 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1); 110 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3); 111 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1); 112 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3); 113 // a00 a10 a01 a11 a02 a12 a03 a13 114 // a20 a30 a21 a31 a22 a32 a23 a33 115 // b00 b10 b01 b11 b02 b12 b03 b13 116 // b20 b30 b21 b31 b22 b32 b23 b33 117 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 118 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 119 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 120 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 121 // a00 a10 a20 a30 a01 a11 a21 a31 122 // b00 b10 b20 b30 b01 b11 b21 b31 123 // a02 a12 a22 a32 a03 a13 a23 a33 124 // b02 b12 a22 b32 b03 b13 b23 b33 125 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 126 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 127 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 128 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 129 // a00 a10 a20 a30 b00 b10 b20 b30 130 // a01 a11 a21 a31 b01 b11 b21 b31 131 // a02 a12 a22 a32 b02 b12 b22 b32 132 // a03 a13 a23 a33 b03 b13 b23 b33 133 } 134 135 // Horizontal pass and subsequent transpose. 136 { 137 // First pass, c and d calculations are longer because of the "trick" 138 // multiplications. 139 const __m128i four = _mm_set1_epi16(4); 140 const __m128i dc = _mm_add_epi16(T0, four); 141 const __m128i a = _mm_add_epi16(dc, T2); 142 const __m128i b = _mm_sub_epi16(dc, T2); 143 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 144 const __m128i c1 = _mm_mulhi_epi16(T1, k2); 145 const __m128i c2 = _mm_mulhi_epi16(T3, k1); 146 const __m128i c3 = _mm_sub_epi16(T1, T3); 147 const __m128i c4 = _mm_sub_epi16(c1, c2); 148 const __m128i c = _mm_add_epi16(c3, c4); 149 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 150 const __m128i d1 = _mm_mulhi_epi16(T1, k1); 151 const __m128i d2 = _mm_mulhi_epi16(T3, k2); 152 const __m128i d3 = _mm_add_epi16(T1, T3); 153 const __m128i d4 = _mm_add_epi16(d1, d2); 154 const __m128i d = _mm_add_epi16(d3, d4); 155 156 // Second pass. 157 const __m128i tmp0 = _mm_add_epi16(a, d); 158 const __m128i tmp1 = _mm_add_epi16(b, c); 159 const __m128i tmp2 = _mm_sub_epi16(b, c); 160 const __m128i tmp3 = _mm_sub_epi16(a, d); 161 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); 162 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); 163 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); 164 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); 165 166 // Transpose the two 4x4. 167 // a00 a01 a02 a03 b00 b01 b02 b03 168 // a10 a11 a12 a13 b10 b11 b12 b13 169 // a20 a21 a22 a23 b20 b21 b22 b23 170 // a30 a31 a32 a33 b30 b31 b32 b33 171 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1); 172 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3); 173 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1); 174 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3); 175 // a00 a10 a01 a11 a02 a12 a03 a13 176 // a20 a30 a21 a31 a22 a32 a23 a33 177 // b00 b10 b01 b11 b02 b12 b03 b13 178 // b20 b30 b21 b31 b22 b32 b23 b33 179 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1); 180 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3); 181 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1); 182 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3); 183 // a00 a10 a20 a30 a01 a11 a21 a31 184 // b00 b10 b20 b30 b01 b11 b21 b31 185 // a02 a12 a22 a32 a03 a13 a23 a33 186 // b02 b12 a22 b32 b03 b13 b23 b33 187 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1); 188 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1); 189 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3); 190 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); 191 // a00 a10 a20 a30 b00 b10 b20 b30 192 // a01 a11 a21 a31 b01 b11 b21 b31 193 // a02 a12 a22 a32 b02 b12 b22 b32 194 // a03 a13 a23 a33 b03 b13 b23 b33 195 } 196 197 // Add inverse transform to 'dst' and store. 198 { 199 const __m128i zero = _mm_setzero_si128(); 200 // Load the reference(s). 201 __m128i dst0, dst1, dst2, dst3; 202 if (do_two) { 203 // Load eight bytes/pixels per line. 204 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); 205 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); 206 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); 207 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); 208 } else { 209 // Load four bytes/pixels per line. 210 dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS)); 211 dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS)); 212 dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS)); 213 dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS)); 214 } 215 // Convert to 16b. 216 dst0 = _mm_unpacklo_epi8(dst0, zero); 217 dst1 = _mm_unpacklo_epi8(dst1, zero); 218 dst2 = _mm_unpacklo_epi8(dst2, zero); 219 dst3 = _mm_unpacklo_epi8(dst3, zero); 220 // Add the inverse transform(s). 221 dst0 = _mm_add_epi16(dst0, T0); 222 dst1 = _mm_add_epi16(dst1, T1); 223 dst2 = _mm_add_epi16(dst2, T2); 224 dst3 = _mm_add_epi16(dst3, T3); 225 // Unsigned saturate to 8b. 226 dst0 = _mm_packus_epi16(dst0, dst0); 227 dst1 = _mm_packus_epi16(dst1, dst1); 228 dst2 = _mm_packus_epi16(dst2, dst2); 229 dst3 = _mm_packus_epi16(dst3, dst3); 230 // Store the results. 231 if (do_two) { 232 // Store eight bytes/pixels per line. 233 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); 234 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); 235 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); 236 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); 237 } else { 238 // Store four bytes/pixels per line. 239 *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0); 240 *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1); 241 *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2); 242 *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3); 243 } 244 } 245 } 246 247 #if defined(USE_TRANSFORM_AC3) 248 #define MUL(a, b) (((a) * (b)) >> 16) 249 static void TransformAC3SSE2(const int16_t* in, uint8_t* dst) { 250 static const int kC1 = 20091 + (1 << 16); 251 static const int kC2 = 35468; 252 const __m128i A = _mm_set1_epi16(in[0] + 4); 253 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); 254 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); 255 const int c1 = MUL(in[1], kC2); 256 const int d1 = MUL(in[1], kC1); 257 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); 258 const __m128i B = _mm_adds_epi16(A, CD); 259 const __m128i m0 = _mm_adds_epi16(B, d4); 260 const __m128i m1 = _mm_adds_epi16(B, c4); 261 const __m128i m2 = _mm_subs_epi16(B, c4); 262 const __m128i m3 = _mm_subs_epi16(B, d4); 263 const __m128i zero = _mm_setzero_si128(); 264 // Load the source pixels. 265 __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS)); 266 __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS)); 267 __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS)); 268 __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS)); 269 // Convert to 16b. 270 dst0 = _mm_unpacklo_epi8(dst0, zero); 271 dst1 = _mm_unpacklo_epi8(dst1, zero); 272 dst2 = _mm_unpacklo_epi8(dst2, zero); 273 dst3 = _mm_unpacklo_epi8(dst3, zero); 274 // Add the inverse transform. 275 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); 276 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); 277 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); 278 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); 279 // Unsigned saturate to 8b. 280 dst0 = _mm_packus_epi16(dst0, dst0); 281 dst1 = _mm_packus_epi16(dst1, dst1); 282 dst2 = _mm_packus_epi16(dst2, dst2); 283 dst3 = _mm_packus_epi16(dst3, dst3); 284 // Store the results. 285 *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0); 286 *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1); 287 *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2); 288 *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3); 289 } 290 #undef MUL 291 #endif // USE_TRANSFORM_AC3 292 293 //------------------------------------------------------------------------------ 294 // Loop Filter (Paragraph 15) 295 296 // Compute abs(p - q) = subs(p - q) OR subs(q - p) 297 #define MM_ABS(p, q) _mm_or_si128( \ 298 _mm_subs_epu8((q), (p)), \ 299 _mm_subs_epu8((p), (q))) 300 301 // Shift each byte of "a" by N bits while preserving by the sign bit. 302 // 303 // It first shifts the lower bytes of the words and then the upper bytes and 304 // then merges the results together. 305 #define SIGNED_SHIFT_N(a, N) { \ 306 __m128i t = a; \ 307 t = _mm_slli_epi16(t, 8); \ 308 t = _mm_srai_epi16(t, N); \ 309 t = _mm_srli_epi16(t, 8); \ 310 \ 311 a = _mm_srai_epi16(a, N + 8); \ 312 a = _mm_slli_epi16(a, 8); \ 313 \ 314 a = _mm_or_si128(t, a); \ 315 } 316 317 #define FLIP_SIGN_BIT2(a, b) { \ 318 a = _mm_xor_si128(a, sign_bit); \ 319 b = _mm_xor_si128(b, sign_bit); \ 320 } 321 322 #define FLIP_SIGN_BIT4(a, b, c, d) { \ 323 FLIP_SIGN_BIT2(a, b); \ 324 FLIP_SIGN_BIT2(c, d); \ 325 } 326 327 #define GET_NOTHEV(p1, p0, q0, q1, hev_thresh, not_hev) { \ 328 const __m128i zero = _mm_setzero_si128(); \ 329 const __m128i t_1 = MM_ABS(p1, p0); \ 330 const __m128i t_2 = MM_ABS(q1, q0); \ 331 \ 332 const __m128i h = _mm_set1_epi8(hev_thresh); \ 333 const __m128i t_3 = _mm_subs_epu8(t_1, h); /* abs(p1 - p0) - hev_tresh */ \ 334 const __m128i t_4 = _mm_subs_epu8(t_2, h); /* abs(q1 - q0) - hev_tresh */ \ 335 \ 336 not_hev = _mm_or_si128(t_3, t_4); \ 337 not_hev = _mm_cmpeq_epi8(not_hev, zero); /* not_hev <= t1 && not_hev <= t2 */\ 338 } 339 340 #define GET_BASE_DELTA(p1, p0, q0, q1, o) { \ 341 const __m128i qp0 = _mm_subs_epi8(q0, p0); /* q0 - p0 */ \ 342 o = _mm_subs_epi8(p1, q1); /* p1 - q1 */ \ 343 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 1 * (q0 - p0) */ \ 344 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 2 * (q0 - p0) */ \ 345 o = _mm_adds_epi8(o, qp0); /* p1 - q1 + 3 * (q0 - p0) */ \ 346 } 347 348 #define DO_SIMPLE_FILTER(p0, q0, fl) { \ 349 const __m128i three = _mm_set1_epi8(3); \ 350 const __m128i four = _mm_set1_epi8(4); \ 351 __m128i v3 = _mm_adds_epi8(fl, three); \ 352 __m128i v4 = _mm_adds_epi8(fl, four); \ 353 \ 354 /* Do +4 side */ \ 355 SIGNED_SHIFT_N(v4, 3); /* v4 >> 3 */ \ 356 q0 = _mm_subs_epi8(q0, v4); /* q0 -= v4 */ \ 357 \ 358 /* Now do +3 side */ \ 359 SIGNED_SHIFT_N(v3, 3); /* v3 >> 3 */ \ 360 p0 = _mm_adds_epi8(p0, v3); /* p0 += v3 */ \ 361 } 362 363 // Updates values of 2 pixels at MB edge during complex filtering. 364 // Update operations: 365 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] 366 #define UPDATE_2PIXELS(pi, qi, a_lo, a_hi) { \ 367 const __m128i a_lo7 = _mm_srai_epi16(a_lo, 7); \ 368 const __m128i a_hi7 = _mm_srai_epi16(a_hi, 7); \ 369 const __m128i delta = _mm_packs_epi16(a_lo7, a_hi7); \ 370 pi = _mm_adds_epi8(pi, delta); \ 371 qi = _mm_subs_epi8(qi, delta); \ 372 } 373 374 static void NeedsFilter(const __m128i* p1, const __m128i* p0, const __m128i* q0, 375 const __m128i* q1, int thresh, __m128i *mask) { 376 __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1) 377 *mask = _mm_set1_epi8(0xFE); 378 t1 = _mm_and_si128(t1, *mask); // set lsb of each byte to zero 379 t1 = _mm_srli_epi16(t1, 1); // abs(p1 - q1) / 2 380 381 *mask = MM_ABS(*p0, *q0); // abs(p0 - q0) 382 *mask = _mm_adds_epu8(*mask, *mask); // abs(p0 - q0) * 2 383 *mask = _mm_adds_epu8(*mask, t1); // abs(p0 - q0) * 2 + abs(p1 - q1) / 2 384 385 t1 = _mm_set1_epi8(thresh); 386 *mask = _mm_subs_epu8(*mask, t1); // mask <= thresh 387 *mask = _mm_cmpeq_epi8(*mask, _mm_setzero_si128()); 388 } 389 390 //------------------------------------------------------------------------------ 391 // Edge filtering functions 392 393 // Applies filter on 2 pixels (p0 and q0) 394 static WEBP_INLINE void DoFilter2(const __m128i* p1, __m128i* p0, __m128i* q0, 395 const __m128i* q1, int thresh) { 396 __m128i a, mask; 397 const __m128i sign_bit = _mm_set1_epi8(0x80); 398 const __m128i p1s = _mm_xor_si128(*p1, sign_bit); 399 const __m128i q1s = _mm_xor_si128(*q1, sign_bit); 400 401 NeedsFilter(p1, p0, q0, q1, thresh, &mask); 402 403 // convert to signed values 404 FLIP_SIGN_BIT2(*p0, *q0); 405 406 GET_BASE_DELTA(p1s, *p0, *q0, q1s, a); 407 a = _mm_and_si128(a, mask); // mask filter values we don't care about 408 DO_SIMPLE_FILTER(*p0, *q0, a); 409 410 // unoffset 411 FLIP_SIGN_BIT2(*p0, *q0); 412 } 413 414 // Applies filter on 4 pixels (p1, p0, q0 and q1) 415 static WEBP_INLINE void DoFilter4(__m128i* p1, __m128i *p0, 416 __m128i* q0, __m128i* q1, 417 const __m128i* mask, int hev_thresh) { 418 __m128i not_hev; 419 __m128i t1, t2, t3; 420 const __m128i sign_bit = _mm_set1_epi8(0x80); 421 422 // compute hev mask 423 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev); 424 425 // convert to signed values 426 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 427 428 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 429 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) 430 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 431 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) 432 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) 433 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) 434 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about 435 436 // Do +4 side 437 t2 = _mm_set1_epi8(4); 438 t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 4 439 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 440 t3 = t2; // save t2 441 *q0 = _mm_subs_epi8(*q0, t2); // q0 -= t2 442 443 // Now do +3 side 444 t2 = _mm_set1_epi8(3); 445 t2 = _mm_adds_epi8(t1, t2); // +3 instead of +4 446 SIGNED_SHIFT_N(t2, 3); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 447 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 448 449 t2 = _mm_set1_epi8(1); 450 t3 = _mm_adds_epi8(t3, t2); 451 SIGNED_SHIFT_N(t3, 1); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 4 452 453 t3 = _mm_and_si128(not_hev, t3); // if !hev 454 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3 455 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3 456 457 // unoffset 458 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 459 } 460 461 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2) 462 static WEBP_INLINE void DoFilter6(__m128i *p2, __m128i* p1, __m128i *p0, 463 __m128i* q0, __m128i* q1, __m128i *q2, 464 const __m128i* mask, int hev_thresh) { 465 __m128i a, not_hev; 466 const __m128i sign_bit = _mm_set1_epi8(0x80); 467 468 // compute hev mask 469 GET_NOTHEV(*p1, *p0, *q0, *q1, hev_thresh, not_hev); 470 471 // convert to signed values 472 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 473 FLIP_SIGN_BIT2(*p2, *q2); 474 475 GET_BASE_DELTA(*p1, *p0, *q0, *q1, a); 476 477 { // do simple filter on pixels with hev 478 const __m128i m = _mm_andnot_si128(not_hev, *mask); 479 const __m128i f = _mm_and_si128(a, m); 480 DO_SIMPLE_FILTER(*p0, *q0, f); 481 } 482 { // do strong filter on pixels with not hev 483 const __m128i zero = _mm_setzero_si128(); 484 const __m128i nine = _mm_set1_epi16(0x0900); 485 const __m128i sixty_three = _mm_set1_epi16(63); 486 487 const __m128i m = _mm_and_si128(not_hev, *mask); 488 const __m128i f = _mm_and_si128(a, m); 489 const __m128i f_lo = _mm_unpacklo_epi8(zero, f); 490 const __m128i f_hi = _mm_unpackhi_epi8(zero, f); 491 492 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, nine); // Filter (lo) * 9 493 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, nine); // Filter (hi) * 9 494 const __m128i f18_lo = _mm_add_epi16(f9_lo, f9_lo); // Filter (lo) * 18 495 const __m128i f18_hi = _mm_add_epi16(f9_hi, f9_hi); // Filter (hi) * 18 496 497 const __m128i a2_lo = _mm_add_epi16(f9_lo, sixty_three); // Filter * 9 + 63 498 const __m128i a2_hi = _mm_add_epi16(f9_hi, sixty_three); // Filter * 9 + 63 499 500 const __m128i a1_lo = _mm_add_epi16(f18_lo, sixty_three); // F... * 18 + 63 501 const __m128i a1_hi = _mm_add_epi16(f18_hi, sixty_three); // F... * 18 + 63 502 503 const __m128i a0_lo = _mm_add_epi16(f18_lo, a2_lo); // Filter * 27 + 63 504 const __m128i a0_hi = _mm_add_epi16(f18_hi, a2_hi); // Filter * 27 + 63 505 506 UPDATE_2PIXELS(*p2, *q2, a2_lo, a2_hi); 507 UPDATE_2PIXELS(*p1, *q1, a1_lo, a1_hi); 508 UPDATE_2PIXELS(*p0, *q0, a0_lo, a0_hi); 509 } 510 511 // unoffset 512 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 513 FLIP_SIGN_BIT2(*p2, *q2); 514 } 515 516 // reads 8 rows across a vertical edge. 517 // 518 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into 519 // two Load4x4() to avoid code duplication. 520 static WEBP_INLINE void Load8x4(const uint8_t* b, int stride, 521 __m128i* p, __m128i* q) { 522 __m128i t1, t2; 523 524 // Load 0th, 1st, 4th and 5th rows 525 __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00 526 __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10 527 __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40 528 __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50 529 530 r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00 531 r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10 532 533 // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 534 t1 = _mm_unpacklo_epi8(r0, r1); 535 536 // Load 2nd, 3rd, 6th and 7th rows 537 r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22 538 r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30 539 r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60 540 r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70 541 542 r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20 543 r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30 544 545 // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20 546 t2 = _mm_unpacklo_epi8(r0, r1); 547 548 // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00 549 // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40 550 r0 = t1; 551 t1 = _mm_unpacklo_epi16(t1, t2); 552 t2 = _mm_unpackhi_epi16(r0, t2); 553 554 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 555 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 556 *p = _mm_unpacklo_epi32(t1, t2); 557 *q = _mm_unpackhi_epi32(t1, t2); 558 } 559 560 static WEBP_INLINE void Load16x4(const uint8_t* r0, const uint8_t* r8, 561 int stride, 562 __m128i* p1, __m128i* p0, 563 __m128i* q0, __m128i* q1) { 564 __m128i t1, t2; 565 // Assume the pixels around the edge (|) are numbered as follows 566 // 00 01 | 02 03 567 // 10 11 | 12 13 568 // ... | ... 569 // e0 e1 | e2 e3 570 // f0 f1 | f2 f3 571 // 572 // r0 is pointing to the 0th row (00) 573 // r8 is pointing to the 8th row (80) 574 575 // Load 576 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 577 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 578 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 579 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 580 Load8x4(r0, stride, p1, q0); 581 Load8x4(r8, stride, p0, q1); 582 583 t1 = *p1; 584 t2 = *q0; 585 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 586 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 587 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 588 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 589 *p1 = _mm_unpacklo_epi64(t1, *p0); 590 *p0 = _mm_unpackhi_epi64(t1, *p0); 591 *q0 = _mm_unpacklo_epi64(t2, *q1); 592 *q1 = _mm_unpackhi_epi64(t2, *q1); 593 } 594 595 static WEBP_INLINE void Store4x4(__m128i* x, uint8_t* dst, int stride) { 596 int i; 597 for (i = 0; i < 4; ++i, dst += stride) { 598 *((int32_t*)dst) = _mm_cvtsi128_si32(*x); 599 *x = _mm_srli_si128(*x, 4); 600 } 601 } 602 603 // Transpose back and store 604 static WEBP_INLINE void Store16x4(uint8_t* r0, uint8_t* r8, int stride, 605 __m128i* p1, __m128i* p0, 606 __m128i* q0, __m128i* q1) { 607 __m128i t1; 608 609 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00 610 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80 611 t1 = *p0; 612 *p0 = _mm_unpacklo_epi8(*p1, t1); 613 *p1 = _mm_unpackhi_epi8(*p1, t1); 614 615 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02 616 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82 617 t1 = *q0; 618 *q0 = _mm_unpacklo_epi8(t1, *q1); 619 *q1 = _mm_unpackhi_epi8(t1, *q1); 620 621 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00 622 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40 623 t1 = *p0; 624 *p0 = _mm_unpacklo_epi16(t1, *q0); 625 *q0 = _mm_unpackhi_epi16(t1, *q0); 626 627 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80 628 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0 629 t1 = *p1; 630 *p1 = _mm_unpacklo_epi16(t1, *q1); 631 *q1 = _mm_unpackhi_epi16(t1, *q1); 632 633 Store4x4(p0, r0, stride); 634 r0 += 4 * stride; 635 Store4x4(q0, r0, stride); 636 637 Store4x4(p1, r8, stride); 638 r8 += 4 * stride; 639 Store4x4(q1, r8, stride); 640 } 641 642 //------------------------------------------------------------------------------ 643 // Simple In-loop filtering (Paragraph 15.2) 644 645 static void SimpleVFilter16SSE2(uint8_t* p, int stride, int thresh) { 646 // Load 647 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]); 648 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]); 649 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]); 650 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]); 651 652 DoFilter2(&p1, &p0, &q0, &q1, thresh); 653 654 // Store 655 _mm_storeu_si128((__m128i*)&p[-stride], p0); 656 _mm_storeu_si128((__m128i*)p, q0); 657 } 658 659 static void SimpleHFilter16SSE2(uint8_t* p, int stride, int thresh) { 660 __m128i p1, p0, q0, q1; 661 662 p -= 2; // beginning of p1 663 664 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); 665 DoFilter2(&p1, &p0, &q0, &q1, thresh); 666 Store16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1); 667 } 668 669 static void SimpleVFilter16iSSE2(uint8_t* p, int stride, int thresh) { 670 int k; 671 for (k = 3; k > 0; --k) { 672 p += 4 * stride; 673 SimpleVFilter16SSE2(p, stride, thresh); 674 } 675 } 676 677 static void SimpleHFilter16iSSE2(uint8_t* p, int stride, int thresh) { 678 int k; 679 for (k = 3; k > 0; --k) { 680 p += 4; 681 SimpleHFilter16SSE2(p, stride, thresh); 682 } 683 } 684 685 //------------------------------------------------------------------------------ 686 // Complex In-loop filtering (Paragraph 15.3) 687 688 #define MAX_DIFF1(p3, p2, p1, p0, m) { \ 689 m = MM_ABS(p3, p2); \ 690 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 691 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \ 692 } 693 694 #define MAX_DIFF2(p3, p2, p1, p0, m) { \ 695 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \ 696 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \ 697 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \ 698 } 699 700 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \ 701 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \ 702 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \ 703 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \ 704 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \ 705 } 706 707 #define LOADUV_H_EDGE(p, u, v, stride) { \ 708 p = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \ 709 p = _mm_unpacklo_epi64(p, _mm_loadl_epi64((__m128i*)&(v)[(stride)])); \ 710 } 711 712 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \ 713 LOADUV_H_EDGE(e1, u, v, 0 * stride); \ 714 LOADUV_H_EDGE(e2, u, v, 1 * stride); \ 715 LOADUV_H_EDGE(e3, u, v, 2 * stride); \ 716 LOADUV_H_EDGE(e4, u, v, 3 * stride); \ 717 } 718 719 #define STOREUV(p, u, v, stride) { \ 720 _mm_storel_epi64((__m128i*)&u[(stride)], p); \ 721 p = _mm_srli_si128(p, 8); \ 722 _mm_storel_epi64((__m128i*)&v[(stride)], p); \ 723 } 724 725 #define COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask) { \ 726 __m128i fl_yes; \ 727 const __m128i it = _mm_set1_epi8(ithresh); \ 728 mask = _mm_subs_epu8(mask, it); \ 729 mask = _mm_cmpeq_epi8(mask, _mm_setzero_si128()); \ 730 NeedsFilter(&p1, &p0, &q0, &q1, thresh, &fl_yes); \ 731 mask = _mm_and_si128(mask, fl_yes); \ 732 } 733 734 // on macroblock edges 735 static void VFilter16SSE2(uint8_t* p, int stride, 736 int thresh, int ithresh, int hev_thresh) { 737 __m128i t1; 738 __m128i mask; 739 __m128i p2, p1, p0, q0, q1, q2; 740 741 // Load p3, p2, p1, p0 742 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0); 743 MAX_DIFF1(t1, p2, p1, p0, mask); 744 745 // Load q0, q1, q2, q3 746 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1); 747 MAX_DIFF2(t1, q2, q1, q0, mask); 748 749 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 750 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 751 752 // Store 753 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2); 754 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); 755 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); 756 _mm_storeu_si128((__m128i*)&p[0 * stride], q0); 757 _mm_storeu_si128((__m128i*)&p[1 * stride], q1); 758 _mm_storeu_si128((__m128i*)&p[2 * stride], q2); 759 } 760 761 static void HFilter16SSE2(uint8_t* p, int stride, 762 int thresh, int ithresh, int hev_thresh) { 763 __m128i mask; 764 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 765 766 uint8_t* const b = p - 4; 767 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 768 MAX_DIFF1(p3, p2, p1, p0, mask); 769 770 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 771 MAX_DIFF2(q3, q2, q1, q0, mask); 772 773 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 774 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 775 776 Store16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); 777 Store16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); 778 } 779 780 // on three inner edges 781 static void VFilter16iSSE2(uint8_t* p, int stride, 782 int thresh, int ithresh, int hev_thresh) { 783 int k; 784 __m128i mask; 785 __m128i t1, t2, p1, p0, q0, q1; 786 787 for (k = 3; k > 0; --k) { 788 // Load p3, p2, p1, p0 789 LOAD_H_EDGES4(p, stride, t2, t1, p1, p0); 790 MAX_DIFF1(t2, t1, p1, p0, mask); 791 792 p += 4 * stride; 793 794 // Load q0, q1, q2, q3 795 LOAD_H_EDGES4(p, stride, q0, q1, t1, t2); 796 MAX_DIFF2(t2, t1, q1, q0, mask); 797 798 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 799 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 800 801 // Store 802 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1); 803 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0); 804 _mm_storeu_si128((__m128i*)&p[0 * stride], q0); 805 _mm_storeu_si128((__m128i*)&p[1 * stride], q1); 806 } 807 } 808 809 static void HFilter16iSSE2(uint8_t* p, int stride, 810 int thresh, int ithresh, int hev_thresh) { 811 int k; 812 uint8_t* b; 813 __m128i mask; 814 __m128i t1, t2, p1, p0, q0, q1; 815 816 for (k = 3; k > 0; --k) { 817 b = p; 818 Load16x4(b, b + 8 * stride, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 819 MAX_DIFF1(t2, t1, p1, p0, mask); 820 821 b += 4; // beginning of q0 822 Load16x4(b, b + 8 * stride, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 823 MAX_DIFF2(t2, t1, q1, q0, mask); 824 825 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 826 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 827 828 b -= 2; // beginning of p1 829 Store16x4(b, b + 8 * stride, stride, &p1, &p0, &q0, &q1); 830 831 p += 4; 832 } 833 } 834 835 // 8-pixels wide variant, for chroma filtering 836 static void VFilter8SSE2(uint8_t* u, uint8_t* v, int stride, 837 int thresh, int ithresh, int hev_thresh) { 838 __m128i mask; 839 __m128i t1, p2, p1, p0, q0, q1, q2; 840 841 // Load p3, p2, p1, p0 842 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0); 843 MAX_DIFF1(t1, p2, p1, p0, mask); 844 845 // Load q0, q1, q2, q3 846 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1); 847 MAX_DIFF2(t1, q2, q1, q0, mask); 848 849 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 850 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 851 852 // Store 853 STOREUV(p2, u, v, -3 * stride); 854 STOREUV(p1, u, v, -2 * stride); 855 STOREUV(p0, u, v, -1 * stride); 856 STOREUV(q0, u, v, 0 * stride); 857 STOREUV(q1, u, v, 1 * stride); 858 STOREUV(q2, u, v, 2 * stride); 859 } 860 861 static void HFilter8SSE2(uint8_t* u, uint8_t* v, int stride, 862 int thresh, int ithresh, int hev_thresh) { 863 __m128i mask; 864 __m128i p3, p2, p1, p0, q0, q1, q2, q3; 865 866 uint8_t* const tu = u - 4; 867 uint8_t* const tv = v - 4; 868 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0 869 MAX_DIFF1(p3, p2, p1, p0, mask); 870 871 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3 872 MAX_DIFF2(q3, q2, q1, q0, mask); 873 874 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 875 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh); 876 877 Store16x4(tu, tv, stride, &p3, &p2, &p1, &p0); 878 Store16x4(u, v, stride, &q0, &q1, &q2, &q3); 879 } 880 881 static void VFilter8iSSE2(uint8_t* u, uint8_t* v, int stride, 882 int thresh, int ithresh, int hev_thresh) { 883 __m128i mask; 884 __m128i t1, t2, p1, p0, q0, q1; 885 886 // Load p3, p2, p1, p0 887 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0); 888 MAX_DIFF1(t2, t1, p1, p0, mask); 889 890 u += 4 * stride; 891 v += 4 * stride; 892 893 // Load q0, q1, q2, q3 894 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2); 895 MAX_DIFF2(t2, t1, q1, q0, mask); 896 897 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 898 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 899 900 // Store 901 STOREUV(p1, u, v, -2 * stride); 902 STOREUV(p0, u, v, -1 * stride); 903 STOREUV(q0, u, v, 0 * stride); 904 STOREUV(q1, u, v, 1 * stride); 905 } 906 907 static void HFilter8iSSE2(uint8_t* u, uint8_t* v, int stride, 908 int thresh, int ithresh, int hev_thresh) { 909 __m128i mask; 910 __m128i t1, t2, p1, p0, q0, q1; 911 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0 912 MAX_DIFF1(t2, t1, p1, p0, mask); 913 914 u += 4; // beginning of q0 915 v += 4; 916 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3 917 MAX_DIFF2(t2, t1, q1, q0, mask); 918 919 COMPLEX_FL_MASK(p1, p0, q0, q1, thresh, ithresh, mask); 920 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 921 922 u -= 2; // beginning of p1 923 v -= 2; 924 Store16x4(u, v, stride, &p1, &p0, &q0, &q1); 925 } 926 927 #endif // WEBP_USE_SSE2 928 929 //------------------------------------------------------------------------------ 930 // Entry point 931 932 extern void VP8DspInitSSE2(void); 933 934 void VP8DspInitSSE2(void) { 935 #if defined(WEBP_USE_SSE2) 936 VP8Transform = TransformSSE2; 937 #if defined(USE_TRANSFORM_AC3) 938 VP8TransformAC3 = TransformAC3SSE2; 939 #endif 940 941 VP8VFilter16 = VFilter16SSE2; 942 VP8HFilter16 = HFilter16SSE2; 943 VP8VFilter8 = VFilter8SSE2; 944 VP8HFilter8 = HFilter8SSE2; 945 VP8VFilter16i = VFilter16iSSE2; 946 VP8HFilter16i = HFilter16iSSE2; 947 VP8VFilter8i = VFilter8iSSE2; 948 VP8HFilter8i = HFilter8iSSE2; 949 950 VP8SimpleVFilter16 = SimpleVFilter16SSE2; 951 VP8SimpleHFilter16 = SimpleHFilter16SSE2; 952 VP8SimpleVFilter16i = SimpleVFilter16iSSE2; 953 VP8SimpleHFilter16i = SimpleHFilter16iSSE2; 954 #endif // WEBP_USE_SSE2 955 } 956