github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/dsp/enc_sse2.c (about)

     1  // Copyright 2011 Google Inc. All Rights Reserved.
     2  //
     3  // Use of this source code is governed by a BSD-style license
     4  // that can be found in the COPYING file in the root of the source
     5  // tree. An additional intellectual property rights grant can be found
     6  // in the file PATENTS. All contributing project authors may
     7  // be found in the AUTHORS file in the root of the source tree.
     8  // -----------------------------------------------------------------------------
     9  //
    10  // SSE2 version of speed-critical encoding functions.
    11  //
    12  // Author: Christian Duvivier (cduvivier@google.com)
    13  
    14  #include "./dsp.h"
    15  
    16  #if defined(WEBP_USE_SSE2)
    17  #include <stdlib.h>  // for abs()
    18  #include <emmintrin.h>
    19  
    20  #include "../enc/vp8enci.h"
    21  
    22  //------------------------------------------------------------------------------
    23  // Quite useful macro for debugging. Left here for convenience.
    24  
    25  #if 0
    26  #include <stdio.h>
    27  static void PrintReg(const __m128i r, const char* const name, int size) {
    28    int n;
    29    union {
    30      __m128i r;
    31      uint8_t i8[16];
    32      uint16_t i16[8];
    33      uint32_t i32[4];
    34      uint64_t i64[2];
    35    } tmp;
    36    tmp.r = r;
    37    printf("%s\t: ", name);
    38    if (size == 8) {
    39      for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
    40    } else if (size == 16) {
    41      for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
    42    } else if (size == 32) {
    43      for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
    44    } else {
    45      for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
    46    }
    47    printf("\n");
    48  }
    49  #endif
    50  
    51  //------------------------------------------------------------------------------
    52  // Compute susceptibility based on DCT-coeff histograms:
    53  // the higher, the "easier" the macroblock is to compress.
    54  
    55  static void CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
    56                                   int start_block, int end_block,
    57                                   VP8Histogram* const histo) {
    58    const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
    59    int j;
    60    for (j = start_block; j < end_block; ++j) {
    61      int16_t out[16];
    62      int k;
    63  
    64      VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
    65  
    66      // Convert coefficients to bin (within out[]).
    67      {
    68        // Load.
    69        const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
    70        const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
    71        // sign(out) = out >> 15  (0x0000 if positive, 0xffff if negative)
    72        const __m128i sign0 = _mm_srai_epi16(out0, 15);
    73        const __m128i sign1 = _mm_srai_epi16(out1, 15);
    74        // abs(out) = (out ^ sign) - sign
    75        const __m128i xor0 = _mm_xor_si128(out0, sign0);
    76        const __m128i xor1 = _mm_xor_si128(out1, sign1);
    77        const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
    78        const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
    79        // v = abs(out) >> 3
    80        const __m128i v0 = _mm_srai_epi16(abs0, 3);
    81        const __m128i v1 = _mm_srai_epi16(abs1, 3);
    82        // bin = min(v, MAX_COEFF_THRESH)
    83        const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
    84        const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
    85        // Store.
    86        _mm_storeu_si128((__m128i*)&out[0], bin0);
    87        _mm_storeu_si128((__m128i*)&out[8], bin1);
    88      }
    89  
    90      // Convert coefficients to bin.
    91      for (k = 0; k < 16; ++k) {
    92        histo->distribution[out[k]]++;
    93      }
    94    }
    95  }
    96  
    97  //------------------------------------------------------------------------------
    98  // Transforms (Paragraph 14.4)
    99  
   100  // Does one or two inverse transforms.
   101  static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
   102                             int do_two) {
   103    // This implementation makes use of 16-bit fixed point versions of two
   104    // multiply constants:
   105    //    K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
   106    //    K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
   107    //
   108    // To be able to use signed 16-bit integers, we use the following trick to
   109    // have constants within range:
   110    // - Associated constants are obtained by subtracting the 16-bit fixed point
   111    //   version of one:
   112    //      k = K - (1 << 16)  =>  K = k + (1 << 16)
   113    //      K1 = 85267  =>  k1 =  20091
   114    //      K2 = 35468  =>  k2 = -30068
   115    // - The multiplication of a variable by a constant become the sum of the
   116    //   variable and the multiplication of that variable by the associated
   117    //   constant:
   118    //      (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
   119    const __m128i k1 = _mm_set1_epi16(20091);
   120    const __m128i k2 = _mm_set1_epi16(-30068);
   121    __m128i T0, T1, T2, T3;
   122  
   123    // Load and concatenate the transform coefficients (we'll do two inverse
   124    // transforms in parallel). In the case of only one inverse transform, the
   125    // second half of the vectors will just contain random value we'll never
   126    // use nor store.
   127    __m128i in0, in1, in2, in3;
   128    {
   129      in0 = _mm_loadl_epi64((__m128i*)&in[0]);
   130      in1 = _mm_loadl_epi64((__m128i*)&in[4]);
   131      in2 = _mm_loadl_epi64((__m128i*)&in[8]);
   132      in3 = _mm_loadl_epi64((__m128i*)&in[12]);
   133      // a00 a10 a20 a30   x x x x
   134      // a01 a11 a21 a31   x x x x
   135      // a02 a12 a22 a32   x x x x
   136      // a03 a13 a23 a33   x x x x
   137      if (do_two) {
   138        const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
   139        const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
   140        const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
   141        const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
   142        in0 = _mm_unpacklo_epi64(in0, inB0);
   143        in1 = _mm_unpacklo_epi64(in1, inB1);
   144        in2 = _mm_unpacklo_epi64(in2, inB2);
   145        in3 = _mm_unpacklo_epi64(in3, inB3);
   146        // a00 a10 a20 a30   b00 b10 b20 b30
   147        // a01 a11 a21 a31   b01 b11 b21 b31
   148        // a02 a12 a22 a32   b02 b12 b22 b32
   149        // a03 a13 a23 a33   b03 b13 b23 b33
   150      }
   151    }
   152  
   153    // Vertical pass and subsequent transpose.
   154    {
   155      // First pass, c and d calculations are longer because of the "trick"
   156      // multiplications.
   157      const __m128i a = _mm_add_epi16(in0, in2);
   158      const __m128i b = _mm_sub_epi16(in0, in2);
   159      // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
   160      const __m128i c1 = _mm_mulhi_epi16(in1, k2);
   161      const __m128i c2 = _mm_mulhi_epi16(in3, k1);
   162      const __m128i c3 = _mm_sub_epi16(in1, in3);
   163      const __m128i c4 = _mm_sub_epi16(c1, c2);
   164      const __m128i c = _mm_add_epi16(c3, c4);
   165      // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
   166      const __m128i d1 = _mm_mulhi_epi16(in1, k1);
   167      const __m128i d2 = _mm_mulhi_epi16(in3, k2);
   168      const __m128i d3 = _mm_add_epi16(in1, in3);
   169      const __m128i d4 = _mm_add_epi16(d1, d2);
   170      const __m128i d = _mm_add_epi16(d3, d4);
   171  
   172      // Second pass.
   173      const __m128i tmp0 = _mm_add_epi16(a, d);
   174      const __m128i tmp1 = _mm_add_epi16(b, c);
   175      const __m128i tmp2 = _mm_sub_epi16(b, c);
   176      const __m128i tmp3 = _mm_sub_epi16(a, d);
   177  
   178      // Transpose the two 4x4.
   179      // a00 a01 a02 a03   b00 b01 b02 b03
   180      // a10 a11 a12 a13   b10 b11 b12 b13
   181      // a20 a21 a22 a23   b20 b21 b22 b23
   182      // a30 a31 a32 a33   b30 b31 b32 b33
   183      const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
   184      const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
   185      const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
   186      const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
   187      // a00 a10 a01 a11   a02 a12 a03 a13
   188      // a20 a30 a21 a31   a22 a32 a23 a33
   189      // b00 b10 b01 b11   b02 b12 b03 b13
   190      // b20 b30 b21 b31   b22 b32 b23 b33
   191      const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
   192      const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
   193      const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
   194      const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
   195      // a00 a10 a20 a30 a01 a11 a21 a31
   196      // b00 b10 b20 b30 b01 b11 b21 b31
   197      // a02 a12 a22 a32 a03 a13 a23 a33
   198      // b02 b12 a22 b32 b03 b13 b23 b33
   199      T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
   200      T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
   201      T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
   202      T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
   203      // a00 a10 a20 a30   b00 b10 b20 b30
   204      // a01 a11 a21 a31   b01 b11 b21 b31
   205      // a02 a12 a22 a32   b02 b12 b22 b32
   206      // a03 a13 a23 a33   b03 b13 b23 b33
   207    }
   208  
   209    // Horizontal pass and subsequent transpose.
   210    {
   211      // First pass, c and d calculations are longer because of the "trick"
   212      // multiplications.
   213      const __m128i four = _mm_set1_epi16(4);
   214      const __m128i dc = _mm_add_epi16(T0, four);
   215      const __m128i a =  _mm_add_epi16(dc, T2);
   216      const __m128i b =  _mm_sub_epi16(dc, T2);
   217      // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
   218      const __m128i c1 = _mm_mulhi_epi16(T1, k2);
   219      const __m128i c2 = _mm_mulhi_epi16(T3, k1);
   220      const __m128i c3 = _mm_sub_epi16(T1, T3);
   221      const __m128i c4 = _mm_sub_epi16(c1, c2);
   222      const __m128i c = _mm_add_epi16(c3, c4);
   223      // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
   224      const __m128i d1 = _mm_mulhi_epi16(T1, k1);
   225      const __m128i d2 = _mm_mulhi_epi16(T3, k2);
   226      const __m128i d3 = _mm_add_epi16(T1, T3);
   227      const __m128i d4 = _mm_add_epi16(d1, d2);
   228      const __m128i d = _mm_add_epi16(d3, d4);
   229  
   230      // Second pass.
   231      const __m128i tmp0 = _mm_add_epi16(a, d);
   232      const __m128i tmp1 = _mm_add_epi16(b, c);
   233      const __m128i tmp2 = _mm_sub_epi16(b, c);
   234      const __m128i tmp3 = _mm_sub_epi16(a, d);
   235      const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
   236      const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
   237      const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
   238      const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
   239  
   240      // Transpose the two 4x4.
   241      // a00 a01 a02 a03   b00 b01 b02 b03
   242      // a10 a11 a12 a13   b10 b11 b12 b13
   243      // a20 a21 a22 a23   b20 b21 b22 b23
   244      // a30 a31 a32 a33   b30 b31 b32 b33
   245      const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
   246      const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
   247      const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
   248      const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
   249      // a00 a10 a01 a11   a02 a12 a03 a13
   250      // a20 a30 a21 a31   a22 a32 a23 a33
   251      // b00 b10 b01 b11   b02 b12 b03 b13
   252      // b20 b30 b21 b31   b22 b32 b23 b33
   253      const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
   254      const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
   255      const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
   256      const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
   257      // a00 a10 a20 a30 a01 a11 a21 a31
   258      // b00 b10 b20 b30 b01 b11 b21 b31
   259      // a02 a12 a22 a32 a03 a13 a23 a33
   260      // b02 b12 a22 b32 b03 b13 b23 b33
   261      T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
   262      T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
   263      T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
   264      T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
   265      // a00 a10 a20 a30   b00 b10 b20 b30
   266      // a01 a11 a21 a31   b01 b11 b21 b31
   267      // a02 a12 a22 a32   b02 b12 b22 b32
   268      // a03 a13 a23 a33   b03 b13 b23 b33
   269    }
   270  
   271    // Add inverse transform to 'ref' and store.
   272    {
   273      const __m128i zero = _mm_setzero_si128();
   274      // Load the reference(s).
   275      __m128i ref0, ref1, ref2, ref3;
   276      if (do_two) {
   277        // Load eight bytes/pixels per line.
   278        ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
   279        ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
   280        ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
   281        ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
   282      } else {
   283        // Load four bytes/pixels per line.
   284        ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
   285        ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
   286        ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
   287        ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
   288      }
   289      // Convert to 16b.
   290      ref0 = _mm_unpacklo_epi8(ref0, zero);
   291      ref1 = _mm_unpacklo_epi8(ref1, zero);
   292      ref2 = _mm_unpacklo_epi8(ref2, zero);
   293      ref3 = _mm_unpacklo_epi8(ref3, zero);
   294      // Add the inverse transform(s).
   295      ref0 = _mm_add_epi16(ref0, T0);
   296      ref1 = _mm_add_epi16(ref1, T1);
   297      ref2 = _mm_add_epi16(ref2, T2);
   298      ref3 = _mm_add_epi16(ref3, T3);
   299      // Unsigned saturate to 8b.
   300      ref0 = _mm_packus_epi16(ref0, ref0);
   301      ref1 = _mm_packus_epi16(ref1, ref1);
   302      ref2 = _mm_packus_epi16(ref2, ref2);
   303      ref3 = _mm_packus_epi16(ref3, ref3);
   304      // Store the results.
   305      if (do_two) {
   306        // Store eight bytes/pixels per line.
   307        _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
   308        _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
   309        _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
   310        _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
   311      } else {
   312        // Store four bytes/pixels per line.
   313        *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
   314        *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
   315        *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
   316        *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
   317      }
   318    }
   319  }
   320  
   321  static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
   322                             int16_t* out) {
   323    const __m128i zero = _mm_setzero_si128();
   324    const __m128i seven = _mm_set1_epi16(7);
   325    const __m128i k937 = _mm_set1_epi32(937);
   326    const __m128i k1812 = _mm_set1_epi32(1812);
   327    const __m128i k51000 = _mm_set1_epi32(51000);
   328    const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
   329    const __m128i k5352_2217 = _mm_set_epi16(5352,  2217, 5352,  2217,
   330                                             5352,  2217, 5352,  2217);
   331    const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
   332                                             2217, -5352, 2217, -5352);
   333    const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
   334    const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
   335    const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
   336                                              2217, 5352, 2217, 5352);
   337    const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
   338                                              -5352, 2217, -5352, 2217);
   339    __m128i v01, v32;
   340  
   341  
   342    // Difference between src and ref and initial transpose.
   343    {
   344      // Load src and convert to 16b.
   345      const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
   346      const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
   347      const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
   348      const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
   349      const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
   350      const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
   351      const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
   352      const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
   353      // Load ref and convert to 16b.
   354      const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
   355      const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
   356      const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
   357      const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
   358      const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
   359      const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
   360      const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
   361      const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
   362      // Compute difference. -> 00 01 02 03 00 00 00 00
   363      const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
   364      const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
   365      const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
   366      const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
   367  
   368  
   369      // Unpack and shuffle
   370      // 00 01 02 03   0 0 0 0
   371      // 10 11 12 13   0 0 0 0
   372      // 20 21 22 23   0 0 0 0
   373      // 30 31 32 33   0 0 0 0
   374      const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
   375      const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
   376      // 00 01 10 11 02 03 12 13
   377      // 20 21 30 31 22 23 32 33
   378      const __m128i shuf01_p =
   379          _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
   380      const __m128i shuf23_p =
   381          _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
   382      // 00 01 10 11 03 02 13 12
   383      // 20 21 30 31 23 22 33 32
   384      const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
   385      const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
   386      // 00 01 10 11 20 21 30 31
   387      // 03 02 13 12 23 22 33 32
   388      const __m128i a01 = _mm_add_epi16(s01, s32);
   389      const __m128i a32 = _mm_sub_epi16(s01, s32);
   390      // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
   391      // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
   392  
   393      const __m128i tmp0 = _mm_madd_epi16(a01, k88p);  // [ (a0 + a1) << 3, ... ]
   394      const __m128i tmp2 = _mm_madd_epi16(a01, k88m);  // [ (a0 - a1) << 3, ... ]
   395      const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
   396      const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
   397      const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
   398      const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
   399      const __m128i tmp1   = _mm_srai_epi32(tmp1_2, 9);
   400      const __m128i tmp3   = _mm_srai_epi32(tmp3_2, 9);
   401      const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
   402      const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
   403      const __m128i s_lo = _mm_unpacklo_epi16(s03, s12);   // 0 1 0 1 0 1...
   404      const __m128i s_hi = _mm_unpackhi_epi16(s03, s12);   // 2 3 2 3 2 3
   405      const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
   406      v01 = _mm_unpacklo_epi32(s_lo, s_hi);
   407      v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));  // 3 2 3 2 3 2..
   408    }
   409  
   410    // Second pass
   411    {
   412      // Same operations are done on the (0,3) and (1,2) pairs.
   413      // a0 = v0 + v3
   414      // a1 = v1 + v2
   415      // a3 = v0 - v3
   416      // a2 = v1 - v2
   417      const __m128i a01 = _mm_add_epi16(v01, v32);
   418      const __m128i a32 = _mm_sub_epi16(v01, v32);
   419      const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
   420      const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
   421      const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
   422  
   423      // d0 = (a0 + a1 + 7) >> 4;
   424      // d2 = (a0 - a1 + 7) >> 4;
   425      const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
   426      const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
   427      const __m128i d0 = _mm_srai_epi16(c0, 4);
   428      const __m128i d2 = _mm_srai_epi16(c2, 4);
   429  
   430      // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
   431      // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
   432      const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
   433      const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
   434      const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
   435      const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
   436      const __m128i d3 = _mm_add_epi32(c3, k51000);
   437      const __m128i e1 = _mm_srai_epi32(d1, 16);
   438      const __m128i e3 = _mm_srai_epi32(d3, 16);
   439      const __m128i f1 = _mm_packs_epi32(e1, e1);
   440      const __m128i f3 = _mm_packs_epi32(e3, e3);
   441      // f1 = f1 + (a3 != 0);
   442      // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
   443      // desired (0, 1), we add one earlier through k12000_plus_one.
   444      // -> f1 = f1 + 1 - (a3 == 0)
   445      const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
   446  
   447      _mm_storel_epi64((__m128i*)&out[ 0], d0);
   448      _mm_storel_epi64((__m128i*)&out[ 4], g1);
   449      _mm_storel_epi64((__m128i*)&out[ 8], d2);
   450      _mm_storel_epi64((__m128i*)&out[12], f3);
   451    }
   452  }
   453  
   454  static void FTransformWHTSSE2(const int16_t* in, int16_t* out) {
   455    int32_t tmp[16];
   456    int i;
   457    for (i = 0; i < 4; ++i, in += 64) {
   458      const int a0 = (in[0 * 16] + in[2 * 16]);
   459      const int a1 = (in[1 * 16] + in[3 * 16]);
   460      const int a2 = (in[1 * 16] - in[3 * 16]);
   461      const int a3 = (in[0 * 16] - in[2 * 16]);
   462      tmp[0 + i * 4] = a0 + a1;
   463      tmp[1 + i * 4] = a3 + a2;
   464      tmp[2 + i * 4] = a3 - a2;
   465      tmp[3 + i * 4] = a0 - a1;
   466    }
   467    {
   468      const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
   469      const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
   470      const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
   471      const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
   472      const __m128i a0 = _mm_add_epi32(src0, src2);
   473      const __m128i a1 = _mm_add_epi32(src1, src3);
   474      const __m128i a2 = _mm_sub_epi32(src1, src3);
   475      const __m128i a3 = _mm_sub_epi32(src0, src2);
   476      const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
   477      const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
   478      const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
   479      const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
   480      const __m128i out0 = _mm_packs_epi32(b0, b1);
   481      const __m128i out1 = _mm_packs_epi32(b2, b3);
   482      _mm_storeu_si128((__m128i*)&out[0], out0);
   483      _mm_storeu_si128((__m128i*)&out[8], out1);
   484    }
   485  }
   486  
   487  //------------------------------------------------------------------------------
   488  // Metric
   489  
   490  static int SSE_Nx4SSE2(const uint8_t* a, const uint8_t* b,
   491                         int num_quads, int do_16) {
   492    const __m128i zero = _mm_setzero_si128();
   493    __m128i sum1 = zero;
   494    __m128i sum2 = zero;
   495  
   496    while (num_quads-- > 0) {
   497      // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
   498      // thanks to buffer over-allocation to that effect.
   499      const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
   500      const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
   501      const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
   502      const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
   503      const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
   504      const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
   505      const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
   506      const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
   507  
   508      // compute clip0(a-b) and clip0(b-a)
   509      const __m128i a0p = _mm_subs_epu8(a0, b0);
   510      const __m128i a0m = _mm_subs_epu8(b0, a0);
   511      const __m128i a1p = _mm_subs_epu8(a1, b1);
   512      const __m128i a1m = _mm_subs_epu8(b1, a1);
   513      const __m128i a2p = _mm_subs_epu8(a2, b2);
   514      const __m128i a2m = _mm_subs_epu8(b2, a2);
   515      const __m128i a3p = _mm_subs_epu8(a3, b3);
   516      const __m128i a3m = _mm_subs_epu8(b3, a3);
   517  
   518      // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
   519      const __m128i diff0 = _mm_or_si128(a0p, a0m);
   520      const __m128i diff1 = _mm_or_si128(a1p, a1m);
   521      const __m128i diff2 = _mm_or_si128(a2p, a2m);
   522      const __m128i diff3 = _mm_or_si128(a3p, a3m);
   523  
   524      // unpack (only four operations, instead of eight)
   525      const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
   526      const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
   527      const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
   528      const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
   529  
   530      // multiply with self
   531      const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
   532      const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
   533      const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
   534      const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
   535  
   536      // collect in a cascading way
   537      const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
   538      const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
   539      sum1 = _mm_add_epi32(sum1, low_sum0);
   540      sum2 = _mm_add_epi32(sum2, low_sum1);
   541  
   542      if (do_16) {  // if necessary, process the higher 8 bytes similarly
   543        const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
   544        const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
   545        const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
   546        const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
   547  
   548        const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
   549        const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
   550        const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
   551        const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
   552        const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
   553        const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
   554        sum1 = _mm_add_epi32(sum1, hi_sum0);
   555        sum2 = _mm_add_epi32(sum2, hi_sum1);
   556      }
   557      a += 4 * BPS;
   558      b += 4 * BPS;
   559    }
   560    {
   561      int32_t tmp[4];
   562      const __m128i sum = _mm_add_epi32(sum1, sum2);
   563      _mm_storeu_si128((__m128i*)tmp, sum);
   564      return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
   565    }
   566  }
   567  
   568  static int SSE16x16SSE2(const uint8_t* a, const uint8_t* b) {
   569    return SSE_Nx4SSE2(a, b, 4, 1);
   570  }
   571  
   572  static int SSE16x8SSE2(const uint8_t* a, const uint8_t* b) {
   573    return SSE_Nx4SSE2(a, b, 2, 1);
   574  }
   575  
   576  static int SSE8x8SSE2(const uint8_t* a, const uint8_t* b) {
   577    return SSE_Nx4SSE2(a, b, 2, 0);
   578  }
   579  
   580  static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
   581    const __m128i zero = _mm_setzero_si128();
   582  
   583    // Load values. Note that we read 8 pixels instead of 4,
   584    // but the a/b buffers are over-allocated to that effect.
   585    const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
   586    const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
   587    const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
   588    const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
   589    const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
   590    const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
   591    const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
   592    const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
   593  
   594    // Combine pair of lines and convert to 16b.
   595    const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
   596    const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
   597    const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
   598    const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
   599    const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
   600    const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
   601    const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
   602    const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
   603  
   604    // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
   605    // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
   606    //                  need absolute values, there is no need to do calculation
   607    //                  in 8bit as we are already in 16bit, ... Yet this is what
   608    //                  benchmarks the fastest!
   609    const __m128i d0 = _mm_subs_epu8(a01s, b01s);
   610    const __m128i d1 = _mm_subs_epu8(b01s, a01s);
   611    const __m128i d2 = _mm_subs_epu8(a23s, b23s);
   612    const __m128i d3 = _mm_subs_epu8(b23s, a23s);
   613  
   614    // Square and add them all together.
   615    const __m128i madd0 = _mm_madd_epi16(d0, d0);
   616    const __m128i madd1 = _mm_madd_epi16(d1, d1);
   617    const __m128i madd2 = _mm_madd_epi16(d2, d2);
   618    const __m128i madd3 = _mm_madd_epi16(d3, d3);
   619    const __m128i sum0 = _mm_add_epi32(madd0, madd1);
   620    const __m128i sum1 = _mm_add_epi32(madd2, madd3);
   621    const __m128i sum2 = _mm_add_epi32(sum0, sum1);
   622  
   623    int32_t tmp[4];
   624    _mm_storeu_si128((__m128i*)tmp, sum2);
   625    return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
   626  }
   627  
   628  //------------------------------------------------------------------------------
   629  // Texture distortion
   630  //
   631  // We try to match the spectral content (weighted) between source and
   632  // reconstructed samples.
   633  
   634  // Hadamard transform
   635  // Returns the difference between the weighted sum of the absolute value of
   636  // transformed coefficients.
   637  static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
   638                            const uint16_t* const w) {
   639    int32_t sum[4];
   640    __m128i tmp_0, tmp_1, tmp_2, tmp_3;
   641    const __m128i zero = _mm_setzero_si128();
   642  
   643    // Load, combine and transpose inputs.
   644    {
   645      const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
   646      const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
   647      const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
   648      const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
   649      const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
   650      const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
   651      const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
   652      const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
   653  
   654      // Combine inA and inB (we'll do two transforms in parallel).
   655      const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
   656      const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
   657      const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
   658      const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
   659      // a00 b00 a01 b01 a02 b03 a03 b03   0 0 0 0 0 0 0 0
   660      // a10 b10 a11 b11 a12 b12 a13 b13   0 0 0 0 0 0 0 0
   661      // a20 b20 a21 b21 a22 b22 a23 b23   0 0 0 0 0 0 0 0
   662      // a30 b30 a31 b31 a32 b32 a33 b33   0 0 0 0 0 0 0 0
   663  
   664      // Transpose the two 4x4, discarding the filling zeroes.
   665      const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
   666      const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
   667      // a00 a20  b00 b20  a01 a21  b01 b21  a02 a22  b02 b22  a03 a23  b03 b23
   668      // a10 a30  b10 b30  a11 a31  b11 b31  a12 a32  b12 b32  a13 a33  b13 b33
   669      const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
   670      const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
   671      // a00 a10 a20 a30  b00 b10 b20 b30  a01 a11 a21 a31  b01 b11 b21 b31
   672      // a02 a12 a22 a32  b02 b12 b22 b32  a03 a13 a23 a33  b03 b13 b23 b33
   673  
   674      // Convert to 16b.
   675      tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
   676      tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
   677      tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
   678      tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
   679      // a00 a10 a20 a30   b00 b10 b20 b30
   680      // a01 a11 a21 a31   b01 b11 b21 b31
   681      // a02 a12 a22 a32   b02 b12 b22 b32
   682      // a03 a13 a23 a33   b03 b13 b23 b33
   683    }
   684  
   685    // Horizontal pass and subsequent transpose.
   686    {
   687      // Calculate a and b (two 4x4 at once).
   688      const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
   689      const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
   690      const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
   691      const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
   692      const __m128i b0 = _mm_add_epi16(a0, a1);
   693      const __m128i b1 = _mm_add_epi16(a3, a2);
   694      const __m128i b2 = _mm_sub_epi16(a3, a2);
   695      const __m128i b3 = _mm_sub_epi16(a0, a1);
   696      // a00 a01 a02 a03   b00 b01 b02 b03
   697      // a10 a11 a12 a13   b10 b11 b12 b13
   698      // a20 a21 a22 a23   b20 b21 b22 b23
   699      // a30 a31 a32 a33   b30 b31 b32 b33
   700  
   701      // Transpose the two 4x4.
   702      const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
   703      const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
   704      const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
   705      const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
   706      // a00 a10 a01 a11   a02 a12 a03 a13
   707      // a20 a30 a21 a31   a22 a32 a23 a33
   708      // b00 b10 b01 b11   b02 b12 b03 b13
   709      // b20 b30 b21 b31   b22 b32 b23 b33
   710      const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
   711      const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
   712      const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
   713      const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
   714      // a00 a10 a20 a30 a01 a11 a21 a31
   715      // b00 b10 b20 b30 b01 b11 b21 b31
   716      // a02 a12 a22 a32 a03 a13 a23 a33
   717      // b02 b12 a22 b32 b03 b13 b23 b33
   718      tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
   719      tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
   720      tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
   721      tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
   722      // a00 a10 a20 a30   b00 b10 b20 b30
   723      // a01 a11 a21 a31   b01 b11 b21 b31
   724      // a02 a12 a22 a32   b02 b12 b22 b32
   725      // a03 a13 a23 a33   b03 b13 b23 b33
   726    }
   727  
   728    // Vertical pass and difference of weighted sums.
   729    {
   730      // Load all inputs.
   731      // TODO(cduvivier): Make variable declarations and allocations aligned so
   732      //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
   733      const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
   734      const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
   735  
   736      // Calculate a and b (two 4x4 at once).
   737      const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
   738      const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
   739      const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
   740      const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
   741      const __m128i b0 = _mm_add_epi16(a0, a1);
   742      const __m128i b1 = _mm_add_epi16(a3, a2);
   743      const __m128i b2 = _mm_sub_epi16(a3, a2);
   744      const __m128i b3 = _mm_sub_epi16(a0, a1);
   745  
   746      // Separate the transforms of inA and inB.
   747      __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
   748      __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
   749      __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
   750      __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
   751  
   752      {
   753        // sign(b) = b >> 15  (0x0000 if positive, 0xffff if negative)
   754        const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
   755        const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
   756        const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
   757        const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
   758  
   759        // b = abs(b) = (b ^ sign) - sign
   760        A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
   761        A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
   762        B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
   763        B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
   764        A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
   765        A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
   766        B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
   767        B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
   768      }
   769  
   770      // weighted sums
   771      A_b0 = _mm_madd_epi16(A_b0, w_0);
   772      A_b2 = _mm_madd_epi16(A_b2, w_8);
   773      B_b0 = _mm_madd_epi16(B_b0, w_0);
   774      B_b2 = _mm_madd_epi16(B_b2, w_8);
   775      A_b0 = _mm_add_epi32(A_b0, A_b2);
   776      B_b0 = _mm_add_epi32(B_b0, B_b2);
   777  
   778      // difference of weighted sums
   779      A_b0 = _mm_sub_epi32(A_b0, B_b0);
   780      _mm_storeu_si128((__m128i*)&sum[0], A_b0);
   781    }
   782    return sum[0] + sum[1] + sum[2] + sum[3];
   783  }
   784  
   785  static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
   786                          const uint16_t* const w) {
   787    const int diff_sum = TTransformSSE2(a, b, w);
   788    return abs(diff_sum) >> 5;
   789  }
   790  
   791  static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
   792                            const uint16_t* const w) {
   793    int D = 0;
   794    int x, y;
   795    for (y = 0; y < 16 * BPS; y += 4 * BPS) {
   796      for (x = 0; x < 16; x += 4) {
   797        D += Disto4x4SSE2(a + x + y, b + x + y, w);
   798      }
   799    }
   800    return D;
   801  }
   802  
   803  //------------------------------------------------------------------------------
   804  // Quantization
   805  //
   806  
   807  // Simple quantization
   808  static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
   809                               int n, const VP8Matrix* const mtx) {
   810    const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
   811    const __m128i zero = _mm_setzero_si128();
   812    __m128i coeff0, coeff8;
   813    __m128i out0, out8;
   814    __m128i packed_out;
   815  
   816    // Load all inputs.
   817    // TODO(cduvivier): Make variable declarations and allocations aligned so that
   818    //                  we can use _mm_load_si128 instead of _mm_loadu_si128.
   819    __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
   820    __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
   821    const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
   822    const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
   823    const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
   824    const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
   825    const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
   826    const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
   827    const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
   828    const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
   829  
   830    // sign(in) = in >> 15  (0x0000 if positive, 0xffff if negative)
   831    const __m128i sign0 = _mm_srai_epi16(in0, 15);
   832    const __m128i sign8 = _mm_srai_epi16(in8, 15);
   833  
   834    // coeff = abs(in) = (in ^ sign) - sign
   835    coeff0 = _mm_xor_si128(in0, sign0);
   836    coeff8 = _mm_xor_si128(in8, sign8);
   837    coeff0 = _mm_sub_epi16(coeff0, sign0);
   838    coeff8 = _mm_sub_epi16(coeff8, sign8);
   839  
   840    // coeff = abs(in) + sharpen
   841    coeff0 = _mm_add_epi16(coeff0, sharpen0);
   842    coeff8 = _mm_add_epi16(coeff8, sharpen8);
   843  
   844    // out = (coeff * iQ + B) >> QFIX;
   845    {
   846      // doing calculations with 32b precision (QFIX=17)
   847      // out = (coeff * iQ)
   848      __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
   849      __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
   850      __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
   851      __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
   852      __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
   853      __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
   854      __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
   855      __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
   856      // expand bias from 16b to 32b
   857      __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
   858      __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
   859      __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
   860      __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
   861      // out = (coeff * iQ + B)
   862      out_00 = _mm_add_epi32(out_00, bias_00);
   863      out_04 = _mm_add_epi32(out_04, bias_04);
   864      out_08 = _mm_add_epi32(out_08, bias_08);
   865      out_12 = _mm_add_epi32(out_12, bias_12);
   866      // out = (coeff * iQ + B) >> QFIX;
   867      out_00 = _mm_srai_epi32(out_00, QFIX);
   868      out_04 = _mm_srai_epi32(out_04, QFIX);
   869      out_08 = _mm_srai_epi32(out_08, QFIX);
   870      out_12 = _mm_srai_epi32(out_12, QFIX);
   871  
   872      // pack result as 16b
   873      out0 = _mm_packs_epi32(out_00, out_04);
   874      out8 = _mm_packs_epi32(out_08, out_12);
   875  
   876      // if (coeff > 2047) coeff = 2047
   877      out0 = _mm_min_epi16(out0, max_coeff_2047);
   878      out8 = _mm_min_epi16(out8, max_coeff_2047);
   879    }
   880  
   881    // get sign back (if (sign[j]) out_n = -out_n)
   882    out0 = _mm_xor_si128(out0, sign0);
   883    out8 = _mm_xor_si128(out8, sign8);
   884    out0 = _mm_sub_epi16(out0, sign0);
   885    out8 = _mm_sub_epi16(out8, sign8);
   886  
   887    // in = out * Q
   888    in0 = _mm_mullo_epi16(out0, q0);
   889    in8 = _mm_mullo_epi16(out8, q8);
   890  
   891    _mm_storeu_si128((__m128i*)&in[0], in0);
   892    _mm_storeu_si128((__m128i*)&in[8], in8);
   893  
   894    // zigzag the output before storing it.
   895    //
   896    // The zigzag pattern can almost be reproduced with a small sequence of
   897    // shuffles. After it, we only need to swap the 7th (ending up in third
   898    // position instead of twelfth) and 8th values.
   899    {
   900      __m128i outZ0, outZ8;
   901      outZ0 = _mm_shufflehi_epi16(out0,  _MM_SHUFFLE(2, 1, 3, 0));
   902      outZ0 = _mm_shuffle_epi32  (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
   903      outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
   904      outZ8 = _mm_shufflelo_epi16(out8,  _MM_SHUFFLE(3, 0, 2, 1));
   905      outZ8 = _mm_shuffle_epi32  (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
   906      outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
   907      _mm_storeu_si128((__m128i*)&out[0], outZ0);
   908      _mm_storeu_si128((__m128i*)&out[8], outZ8);
   909      packed_out = _mm_packs_epi16(outZ0, outZ8);
   910    }
   911    {
   912      const int16_t outZ_12 = out[12];
   913      const int16_t outZ_3 = out[3];
   914      out[3] = outZ_12;
   915      out[12] = outZ_3;
   916    }
   917  
   918    // detect if all 'out' values are zeroes or not
   919    {
   920      int32_t tmp[4];
   921      _mm_storeu_si128((__m128i*)tmp, packed_out);
   922      if (n) {
   923        tmp[0] &= ~0xff;
   924      }
   925      return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
   926    }
   927  }
   928  
   929  static int QuantizeBlockWHTSSE2(int16_t in[16], int16_t out[16],
   930                                  const VP8Matrix* const mtx) {
   931    return QuantizeBlockSSE2(in, out, 0, mtx);
   932  }
   933  
   934  #endif   // WEBP_USE_SSE2
   935  
   936  //------------------------------------------------------------------------------
   937  // Entry point
   938  
   939  extern void VP8EncDspInitSSE2(void);
   940  
   941  void VP8EncDspInitSSE2(void) {
   942  #if defined(WEBP_USE_SSE2)
   943    VP8CollectHistogram = CollectHistogramSSE2;
   944    VP8EncQuantizeBlock = QuantizeBlockSSE2;
   945    VP8EncQuantizeBlockWHT = QuantizeBlockWHTSSE2;
   946    VP8ITransform = ITransformSSE2;
   947    VP8FTransform = FTransformSSE2;
   948    VP8FTransformWHT = FTransformWHTSSE2;
   949    VP8SSE16x16 = SSE16x16SSE2;
   950    VP8SSE16x8 = SSE16x8SSE2;
   951    VP8SSE8x8 = SSE8x8SSE2;
   952    VP8SSE4x4 = SSE4x4SSE2;
   953    VP8TDisto4x4 = Disto4x4SSE2;
   954    VP8TDisto16x16 = Disto16x16SSE2;
   955  #endif   // WEBP_USE_SSE2
   956  }
   957