github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/dsp/yuv.c (about)

     1  // Copyright 2010 Google Inc. All Rights Reserved.
     2  //
     3  // Use of this source code is governed by a BSD-style license
     4  // that can be found in the COPYING file in the root of the source
     5  // tree. An additional intellectual property rights grant can be found
     6  // in the file PATENTS. All contributing project authors may
     7  // be found in the AUTHORS file in the root of the source tree.
     8  // -----------------------------------------------------------------------------
     9  //
    10  // YUV->RGB conversion function
    11  //
    12  // Author: Skal (pascal.massimino@gmail.com)
    13  
    14  #include "./yuv.h"
    15  
    16  
    17  #if defined(WEBP_YUV_USE_TABLE)
    18  
    19  static int done = 0;
    20  
    21  static WEBP_INLINE uint8_t clip(int v, int max_value) {
    22    return v < 0 ? 0 : v > max_value ? max_value : v;
    23  }
    24  
    25  int16_t VP8kVToR[256], VP8kUToB[256];
    26  int32_t VP8kVToG[256], VP8kUToG[256];
    27  uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
    28  uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
    29  
    30  void VP8YUVInit(void) {
    31    int i;
    32    if (done) {
    33      return;
    34    }
    35  #ifndef USE_YUVj
    36    for (i = 0; i < 256; ++i) {
    37      VP8kVToR[i] = (89858 * (i - 128) + YUV_HALF) >> YUV_FIX;
    38      VP8kUToG[i] = -22014 * (i - 128) + YUV_HALF;
    39      VP8kVToG[i] = -45773 * (i - 128);
    40      VP8kUToB[i] = (113618 * (i - 128) + YUV_HALF) >> YUV_FIX;
    41    }
    42    for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
    43      const int k = ((i - 16) * 76283 + YUV_HALF) >> YUV_FIX;
    44      VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
    45      VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
    46    }
    47  #else
    48    for (i = 0; i < 256; ++i) {
    49      VP8kVToR[i] = (91881 * (i - 128) + YUV_HALF) >> YUV_FIX;
    50      VP8kUToG[i] = -22554 * (i - 128) + YUV_HALF;
    51      VP8kVToG[i] = -46802 * (i - 128);
    52      VP8kUToB[i] = (116130 * (i - 128) + YUV_HALF) >> YUV_FIX;
    53    }
    54    for (i = YUV_RANGE_MIN; i < YUV_RANGE_MAX; ++i) {
    55      const int k = i;
    56      VP8kClip[i - YUV_RANGE_MIN] = clip(k, 255);
    57      VP8kClip4Bits[i - YUV_RANGE_MIN] = clip((k + 8) >> 4, 15);
    58    }
    59  #endif
    60  
    61    done = 1;
    62  }
    63  
    64  #else
    65  
    66  void VP8YUVInit(void) {}
    67  
    68  #endif  // WEBP_YUV_USE_TABLE
    69  
    70  //-----------------------------------------------------------------------------
    71  // SSE2 extras
    72  
    73  #if defined(WEBP_USE_SSE2)
    74  
    75  #ifdef FANCY_UPSAMPLING
    76  
    77  #include <emmintrin.h>
    78  #include <string.h>   // for memcpy
    79  
    80  typedef union {   // handy struct for converting SSE2 registers
    81    int32_t i32[4];
    82    uint8_t u8[16];
    83    __m128i m;
    84  } VP8kCstSSE2;
    85  
    86  static int done_sse2 = 0;
    87  static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];
    88  
    89  void VP8YUVInitSSE2(void) {
    90    if (!done_sse2) {
    91      int i;
    92      for (i = 0; i < 256; ++i) {
    93        VP8kYtoRGBA[i].i32[0] =
    94          VP8kYtoRGBA[i].i32[1] =
    95          VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
    96        VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;
    97  
    98        VP8kUtoRGBA[i].i32[0] = 0;
    99        VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
   100        VP8kUtoRGBA[i].i32[2] =  kUToB * (i - 128);
   101        VP8kUtoRGBA[i].i32[3] = 0;
   102  
   103        VP8kVtoRGBA[i].i32[0] =  kVToR * (i - 128);
   104        VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
   105        VP8kVtoRGBA[i].i32[2] = 0;
   106        VP8kVtoRGBA[i].i32[3] = 0;
   107      }
   108      done_sse2 = 1;
   109    }
   110  }
   111  
   112  static WEBP_INLINE __m128i VP8GetRGBA32b(int y, int u, int v) {
   113    const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
   114    const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
   115    const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
   116    const __m128i uv_part = _mm_add_epi32(u_part, v_part);
   117    const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
   118    const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
   119    return rgba2;
   120  }
   121  
   122  static WEBP_INLINE void VP8YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
   123                                          uint8_t* const rgb) {
   124    const __m128i tmp0 = VP8GetRGBA32b(y, u, v);
   125    const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
   126    const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
   127    // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
   128    _mm_storel_epi64((__m128i*)rgb, tmp2);
   129  }
   130  
   131  static WEBP_INLINE void VP8YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
   132                                          uint8_t* const bgr) {
   133    const __m128i tmp0 = VP8GetRGBA32b(y, u, v);
   134    const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
   135    const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
   136    const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
   137    // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
   138    _mm_storel_epi64((__m128i*)bgr, tmp3);
   139  }
   140  
   141  void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
   142                      uint8_t* dst) {
   143    int n;
   144    for (n = 0; n < 32; n += 4) {
   145      const __m128i tmp0_1 = VP8GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
   146      const __m128i tmp0_2 = VP8GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
   147      const __m128i tmp0_3 = VP8GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
   148      const __m128i tmp0_4 = VP8GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
   149      const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
   150      const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
   151      const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
   152      _mm_storeu_si128((__m128i*)dst, tmp2);
   153      dst += 4 * 4;
   154    }
   155  }
   156  
   157  void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
   158                      uint8_t* dst) {
   159    int n;
   160    for (n = 0; n < 32; n += 2) {
   161      const __m128i tmp0_1 = VP8GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
   162      const __m128i tmp0_2 = VP8GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
   163      const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
   164      const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
   165      const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
   166      const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
   167      _mm_storel_epi64((__m128i*)dst, tmp3);
   168      dst += 4 * 2;
   169    }
   170  }
   171  
   172  void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
   173                     uint8_t* dst) {
   174    int n;
   175    uint8_t tmp0[2 * 3 + 5 + 15];
   176    uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15);  // align
   177    for (n = 0; n < 30; ++n) {   // we directly stomp the *dst memory
   178      VP8YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
   179    }
   180    // Last two pixels are special: we write in a tmp buffer before sending
   181    // to dst.
   182    VP8YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
   183    VP8YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
   184    memcpy(dst + n * 3, tmp, 2 * 3);
   185  }
   186  
   187  void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
   188                     uint8_t* dst) {
   189    int n;
   190    uint8_t tmp0[2 * 3 + 5 + 15];
   191    uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15);  // align
   192    for (n = 0; n < 30; ++n) {
   193      VP8YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
   194    }
   195    VP8YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
   196    VP8YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
   197    memcpy(dst + n * 3, tmp, 2 * 3);
   198  }
   199  
   200  #else
   201  
   202  void VP8YUVInitSSE2(void) {}
   203  
   204  #endif  // FANCY_UPSAMPLING
   205  
   206  #endif  // WEBP_USE_SSE2
   207