github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/enc/analysis.c (about) 1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Macroblock analysis 11 // 12 // Author: Skal (pascal.massimino@gmail.com) 13 14 #include <stdlib.h> 15 #include <string.h> 16 #include <assert.h> 17 18 #include "./vp8enci.h" 19 #include "./cost.h" 20 #include "../utils/utils.h" 21 22 #define MAX_ITERS_K_MEANS 6 23 24 //------------------------------------------------------------------------------ 25 // Smooth the segment map by replacing isolated block by the majority of its 26 // neighbours. 27 28 static void SmoothSegmentMap(VP8Encoder* const enc) { 29 int n, x, y; 30 const int w = enc->mb_w_; 31 const int h = enc->mb_h_; 32 const int majority_cnt_3_x_3_grid = 5; 33 uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp)); 34 assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec 35 36 if (tmp == NULL) return; 37 for (y = 1; y < h - 1; ++y) { 38 for (x = 1; x < w - 1; ++x) { 39 int cnt[NUM_MB_SEGMENTS] = { 0 }; 40 const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; 41 int majority_seg = mb->segment_; 42 // Check the 8 neighbouring segment values. 43 cnt[mb[-w - 1].segment_]++; // top-left 44 cnt[mb[-w + 0].segment_]++; // top 45 cnt[mb[-w + 1].segment_]++; // top-right 46 cnt[mb[ - 1].segment_]++; // left 47 cnt[mb[ + 1].segment_]++; // right 48 cnt[mb[ w - 1].segment_]++; // bottom-left 49 cnt[mb[ w + 0].segment_]++; // bottom 50 cnt[mb[ w + 1].segment_]++; // bottom-right 51 for (n = 0; n < NUM_MB_SEGMENTS; ++n) { 52 if (cnt[n] >= majority_cnt_3_x_3_grid) { 53 majority_seg = n; 54 break; 55 } 56 } 57 tmp[x + y * w] = majority_seg; 58 } 59 } 60 for (y = 1; y < h - 1; ++y) { 61 for (x = 1; x < w - 1; ++x) { 62 VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; 63 mb->segment_ = tmp[x + y * w]; 64 } 65 } 66 free(tmp); 67 } 68 69 //------------------------------------------------------------------------------ 70 // set segment susceptibility alpha_ / beta_ 71 72 static WEBP_INLINE int clip(int v, int m, int M) { 73 return (v < m) ? m : (v > M) ? M : v; 74 } 75 76 static void SetSegmentAlphas(VP8Encoder* const enc, 77 const int centers[NUM_MB_SEGMENTS], 78 int mid) { 79 const int nb = enc->segment_hdr_.num_segments_; 80 int min = centers[0], max = centers[0]; 81 int n; 82 83 if (nb > 1) { 84 for (n = 0; n < nb; ++n) { 85 if (min > centers[n]) min = centers[n]; 86 if (max < centers[n]) max = centers[n]; 87 } 88 } 89 if (max == min) max = min + 1; 90 assert(mid <= max && mid >= min); 91 for (n = 0; n < nb; ++n) { 92 const int alpha = 255 * (centers[n] - mid) / (max - min); 93 const int beta = 255 * (centers[n] - min) / (max - min); 94 enc->dqm_[n].alpha_ = clip(alpha, -127, 127); 95 enc->dqm_[n].beta_ = clip(beta, 0, 255); 96 } 97 } 98 99 //------------------------------------------------------------------------------ 100 // Compute susceptibility based on DCT-coeff histograms: 101 // the higher, the "easier" the macroblock is to compress. 102 103 #define MAX_ALPHA 255 // 8b of precision for susceptibilities. 104 #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha. 105 #define DEFAULT_ALPHA (-1) 106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) 107 108 static int FinalAlphaValue(int alpha) { 109 alpha = MAX_ALPHA - alpha; 110 return clip(alpha, 0, MAX_ALPHA); 111 } 112 113 static int GetAlpha(const VP8Histogram* const histo) { 114 int max_value = 0, last_non_zero = 1; 115 int k; 116 int alpha; 117 for (k = 0; k <= MAX_COEFF_THRESH; ++k) { 118 const int value = histo->distribution[k]; 119 if (value > 0) { 120 if (value > max_value) max_value = value; 121 last_non_zero = k; 122 } 123 } 124 // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer 125 // values which happen to be mostly noise. This leaves the maximum precision 126 // for handling the useful small values which contribute most. 127 alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; 128 return alpha; 129 } 130 131 static void MergeHistograms(const VP8Histogram* const in, 132 VP8Histogram* const out) { 133 int i; 134 for (i = 0; i <= MAX_COEFF_THRESH; ++i) { 135 out->distribution[i] += in->distribution[i]; 136 } 137 } 138 139 //------------------------------------------------------------------------------ 140 // Simplified k-Means, to assign Nb segments based on alpha-histogram 141 142 static void AssignSegments(VP8Encoder* const enc, 143 const int alphas[MAX_ALPHA + 1]) { 144 const int nb = enc->segment_hdr_.num_segments_; 145 int centers[NUM_MB_SEGMENTS]; 146 int weighted_average = 0; 147 int map[MAX_ALPHA + 1]; 148 int a, n, k; 149 int min_a = 0, max_a = MAX_ALPHA, range_a; 150 // 'int' type is ok for histo, and won't overflow 151 int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; 152 153 assert(nb >= 1); 154 155 // bracket the input 156 for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} 157 min_a = n; 158 for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} 159 max_a = n; 160 range_a = max_a - min_a; 161 162 // Spread initial centers evenly 163 for (k = 0, n = 1; k < nb; ++k, n += 2) { 164 assert(n < 2 * nb); 165 centers[k] = min_a + (n * range_a) / (2 * nb); 166 } 167 168 for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough 169 int total_weight; 170 int displaced; 171 // Reset stats 172 for (n = 0; n < nb; ++n) { 173 accum[n] = 0; 174 dist_accum[n] = 0; 175 } 176 // Assign nearest center for each 'a' 177 n = 0; // track the nearest center for current 'a' 178 for (a = min_a; a <= max_a; ++a) { 179 if (alphas[a]) { 180 while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) { 181 n++; 182 } 183 map[a] = n; 184 // accumulate contribution into best centroid 185 dist_accum[n] += a * alphas[a]; 186 accum[n] += alphas[a]; 187 } 188 } 189 // All point are classified. Move the centroids to the 190 // center of their respective cloud. 191 displaced = 0; 192 weighted_average = 0; 193 total_weight = 0; 194 for (n = 0; n < nb; ++n) { 195 if (accum[n]) { 196 const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; 197 displaced += abs(centers[n] - new_center); 198 centers[n] = new_center; 199 weighted_average += new_center * accum[n]; 200 total_weight += accum[n]; 201 } 202 } 203 weighted_average = (weighted_average + total_weight / 2) / total_weight; 204 if (displaced < 5) break; // no need to keep on looping... 205 } 206 207 // Map each original value to the closest centroid 208 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { 209 VP8MBInfo* const mb = &enc->mb_info_[n]; 210 const int alpha = mb->alpha_; 211 mb->segment_ = map[alpha]; 212 mb->alpha_ = centers[map[alpha]]; // for the record. 213 } 214 215 if (nb > 1) { 216 const int smooth = (enc->config_->preprocessing & 1); 217 if (smooth) SmoothSegmentMap(enc); 218 } 219 220 SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. 221 } 222 223 //------------------------------------------------------------------------------ 224 // Macroblock analysis: collect histogram for each mode, deduce the maximal 225 // susceptibility and set best modes for this macroblock. 226 // Segment assignment is done later. 227 228 // Number of modes to inspect for alpha_ evaluation. For high-quality settings 229 // (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes 230 // during the analysis phase. 231 #define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis 232 #define MAX_INTRA16_MODE 2 233 #define MAX_INTRA4_MODE 2 234 #define MAX_UV_MODE 2 235 236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { 237 const int max_mode = 238 (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE 239 : NUM_PRED_MODES; 240 int mode; 241 int best_alpha = DEFAULT_ALPHA; 242 int best_mode = 0; 243 244 VP8MakeLuma16Preds(it); 245 for (mode = 0; mode < max_mode; ++mode) { 246 VP8Histogram histo = { { 0 } }; 247 int alpha; 248 249 VP8CollectHistogram(it->yuv_in_ + Y_OFF, 250 it->yuv_p_ + VP8I16ModeOffsets[mode], 251 0, 16, &histo); 252 alpha = GetAlpha(&histo); 253 if (IS_BETTER_ALPHA(alpha, best_alpha)) { 254 best_alpha = alpha; 255 best_mode = mode; 256 } 257 } 258 VP8SetIntra16Mode(it, best_mode); 259 return best_alpha; 260 } 261 262 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, 263 int best_alpha) { 264 uint8_t modes[16]; 265 const int max_mode = 266 (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE 267 : NUM_BMODES; 268 int i4_alpha; 269 VP8Histogram total_histo = { { 0 } }; 270 int cur_histo = 0; 271 272 VP8IteratorStartI4(it); 273 do { 274 int mode; 275 int best_mode_alpha = DEFAULT_ALPHA; 276 VP8Histogram histos[2]; 277 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; 278 279 VP8MakeIntra4Preds(it); 280 for (mode = 0; mode < max_mode; ++mode) { 281 int alpha; 282 283 memset(&histos[cur_histo], 0, sizeof(histos[cur_histo])); 284 VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], 285 0, 1, &histos[cur_histo]); 286 alpha = GetAlpha(&histos[cur_histo]); 287 if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) { 288 best_mode_alpha = alpha; 289 modes[it->i4_] = mode; 290 cur_histo ^= 1; // keep track of best histo so far. 291 } 292 } 293 // accumulate best histogram 294 MergeHistograms(&histos[cur_histo ^ 1], &total_histo); 295 // Note: we reuse the original samples for predictors 296 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); 297 298 i4_alpha = GetAlpha(&total_histo); 299 if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) { 300 VP8SetIntra4Mode(it, modes); 301 best_alpha = i4_alpha; 302 } 303 return best_alpha; 304 } 305 306 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { 307 int best_alpha = DEFAULT_ALPHA; 308 int best_mode = 0; 309 const int max_mode = 310 (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE 311 : NUM_PRED_MODES; 312 int mode; 313 VP8MakeChroma8Preds(it); 314 for (mode = 0; mode < max_mode; ++mode) { 315 VP8Histogram histo = { { 0 } }; 316 int alpha; 317 VP8CollectHistogram(it->yuv_in_ + U_OFF, 318 it->yuv_p_ + VP8UVModeOffsets[mode], 319 16, 16 + 4 + 4, &histo); 320 alpha = GetAlpha(&histo); 321 if (IS_BETTER_ALPHA(alpha, best_alpha)) { 322 best_alpha = alpha; 323 best_mode = mode; 324 } 325 } 326 VP8SetIntraUVMode(it, best_mode); 327 return best_alpha; 328 } 329 330 static void MBAnalyze(VP8EncIterator* const it, 331 int alphas[MAX_ALPHA + 1], 332 int* const alpha, int* const uv_alpha) { 333 const VP8Encoder* const enc = it->enc_; 334 int best_alpha, best_uv_alpha; 335 336 VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED 337 VP8SetSkip(it, 0); // not skipped 338 VP8SetSegment(it, 0); // default segment, spec-wise. 339 340 best_alpha = MBAnalyzeBestIntra16Mode(it); 341 if (enc->method_ >= 5) { 342 // We go and make a fast decision for intra4/intra16. 343 // It's usually not a good and definitive pick, but helps seeding the stats 344 // about level bit-cost. 345 // TODO(skal): improve criterion. 346 best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); 347 } 348 best_uv_alpha = MBAnalyzeBestUVMode(it); 349 350 // Final susceptibility mix 351 best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; 352 best_alpha = FinalAlphaValue(best_alpha); 353 alphas[best_alpha]++; 354 it->mb_->alpha_ = best_alpha; // for later remapping. 355 356 // Accumulate for later complexity analysis. 357 *alpha += best_alpha; // mixed susceptibility (not just luma) 358 *uv_alpha += best_uv_alpha; 359 } 360 361 static void DefaultMBInfo(VP8MBInfo* const mb) { 362 mb->type_ = 1; // I16x16 363 mb->uv_mode_ = 0; 364 mb->skip_ = 0; // not skipped 365 mb->segment_ = 0; // default segment 366 mb->alpha_ = 0; 367 } 368 369 //------------------------------------------------------------------------------ 370 // Main analysis loop: 371 // Collect all susceptibilities for each macroblock and record their 372 // distribution in alphas[]. Segments is assigned a-posteriori, based on 373 // this histogram. 374 // We also pick an intra16 prediction mode, which shouldn't be considered 375 // final except for fast-encode settings. We can also pick some intra4 modes 376 // and decide intra4/intra16, but that's usually almost always a bad choice at 377 // this stage. 378 379 static void ResetAllMBInfo(VP8Encoder* const enc) { 380 int n; 381 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { 382 DefaultMBInfo(&enc->mb_info_[n]); 383 } 384 // Default susceptibilities. 385 enc->dqm_[0].alpha_ = 0; 386 enc->dqm_[0].beta_ = 0; 387 // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value. 388 enc->alpha_ = 0; 389 enc->uv_alpha_ = 0; 390 WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); 391 } 392 393 // struct used to collect job result 394 typedef struct { 395 WebPWorker worker; 396 int alphas[MAX_ALPHA + 1]; 397 int alpha, uv_alpha; 398 VP8EncIterator it; 399 int delta_progress; 400 } SegmentJob; 401 402 // main work call 403 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) { 404 int ok = 1; 405 if (!VP8IteratorIsDone(it)) { 406 uint8_t tmp[32 + ALIGN_CST]; 407 uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp); 408 do { 409 // Let's pretend we have perfect lossless reconstruction. 410 VP8IteratorImport(it, scratch); 411 MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha); 412 ok = VP8IteratorProgress(it, job->delta_progress); 413 } while (ok && VP8IteratorNext(it)); 414 } 415 return ok; 416 } 417 418 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) { 419 int i; 420 for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i]; 421 dst->alpha += src->alpha; 422 dst->uv_alpha += src->uv_alpha; 423 } 424 425 // initialize the job struct with some TODOs 426 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job, 427 int start_row, int end_row) { 428 WebPWorkerInit(&job->worker); 429 job->worker.data1 = job; 430 job->worker.data2 = &job->it; 431 job->worker.hook = (WebPWorkerHook)DoSegmentsJob; 432 VP8IteratorInit(enc, &job->it); 433 VP8IteratorSetRow(&job->it, start_row); 434 VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_); 435 memset(job->alphas, 0, sizeof(job->alphas)); 436 job->alpha = 0; 437 job->uv_alpha = 0; 438 // only one of both jobs can record the progress, since we don't 439 // expect the user's hook to be multi-thread safe 440 job->delta_progress = (start_row == 0) ? 20 : 0; 441 } 442 443 // main entry point 444 int VP8EncAnalyze(VP8Encoder* const enc) { 445 int ok = 1; 446 const int do_segments = 447 enc->config_->emulate_jpeg_size || // We need the complexity evaluation. 448 (enc->segment_hdr_.num_segments_ > 1) || 449 (enc->method_ == 0); // for method 0, we need preds_[] to be filled. 450 if (do_segments) { 451 const int last_row = enc->mb_h_; 452 // We give a little more than a half work to the main thread. 453 const int split_row = (9 * last_row + 15) >> 4; 454 const int total_mb = last_row * enc->mb_w_; 455 #ifdef WEBP_USE_THREAD 456 const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it 457 const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow); 458 #else 459 const int do_mt = 0; 460 #endif 461 SegmentJob main_job; 462 if (do_mt) { 463 SegmentJob side_job; 464 // Note the use of '&' instead of '&&' because we must call the functions 465 // no matter what. 466 InitSegmentJob(enc, &main_job, 0, split_row); 467 InitSegmentJob(enc, &side_job, split_row, last_row); 468 // we don't need to call Reset() on main_job.worker, since we're calling 469 // WebPWorkerExecute() on it 470 ok &= WebPWorkerReset(&side_job.worker); 471 // launch the two jobs in parallel 472 if (ok) { 473 WebPWorkerLaunch(&side_job.worker); 474 WebPWorkerExecute(&main_job.worker); 475 ok &= WebPWorkerSync(&side_job.worker); 476 ok &= WebPWorkerSync(&main_job.worker); 477 } 478 WebPWorkerEnd(&side_job.worker); 479 if (ok) MergeJobs(&side_job, &main_job); // merge results together 480 } else { 481 // Even for single-thread case, we use the generic Worker tools. 482 InitSegmentJob(enc, &main_job, 0, last_row); 483 WebPWorkerExecute(&main_job.worker); 484 ok &= WebPWorkerSync(&main_job.worker); 485 } 486 WebPWorkerEnd(&main_job.worker); 487 if (ok) { 488 enc->alpha_ = main_job.alpha / total_mb; 489 enc->uv_alpha_ = main_job.uv_alpha / total_mb; 490 AssignSegments(enc, main_job.alphas); 491 } 492 } else { // Use only one default segment. 493 ResetAllMBInfo(enc); 494 } 495 return ok; 496 } 497