github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/enc/analysis.c (about)

     1  // Copyright 2011 Google Inc. All Rights Reserved.
     2  //
     3  // Use of this source code is governed by a BSD-style license
     4  // that can be found in the COPYING file in the root of the source
     5  // tree. An additional intellectual property rights grant can be found
     6  // in the file PATENTS. All contributing project authors may
     7  // be found in the AUTHORS file in the root of the source tree.
     8  // -----------------------------------------------------------------------------
     9  //
    10  // Macroblock analysis
    11  //
    12  // Author: Skal (pascal.massimino@gmail.com)
    13  
    14  #include <stdlib.h>
    15  #include <string.h>
    16  #include <assert.h>
    17  
    18  #include "./vp8enci.h"
    19  #include "./cost.h"
    20  #include "../utils/utils.h"
    21  
    22  #define MAX_ITERS_K_MEANS  6
    23  
    24  //------------------------------------------------------------------------------
    25  // Smooth the segment map by replacing isolated block by the majority of its
    26  // neighbours.
    27  
    28  static void SmoothSegmentMap(VP8Encoder* const enc) {
    29    int n, x, y;
    30    const int w = enc->mb_w_;
    31    const int h = enc->mb_h_;
    32    const int majority_cnt_3_x_3_grid = 5;
    33    uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
    34    assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
    35  
    36    if (tmp == NULL) return;
    37    for (y = 1; y < h - 1; ++y) {
    38      for (x = 1; x < w - 1; ++x) {
    39        int cnt[NUM_MB_SEGMENTS] = { 0 };
    40        const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
    41        int majority_seg = mb->segment_;
    42        // Check the 8 neighbouring segment values.
    43        cnt[mb[-w - 1].segment_]++;  // top-left
    44        cnt[mb[-w + 0].segment_]++;  // top
    45        cnt[mb[-w + 1].segment_]++;  // top-right
    46        cnt[mb[   - 1].segment_]++;  // left
    47        cnt[mb[   + 1].segment_]++;  // right
    48        cnt[mb[ w - 1].segment_]++;  // bottom-left
    49        cnt[mb[ w + 0].segment_]++;  // bottom
    50        cnt[mb[ w + 1].segment_]++;  // bottom-right
    51        for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
    52          if (cnt[n] >= majority_cnt_3_x_3_grid) {
    53            majority_seg = n;
    54            break;
    55          }
    56        }
    57        tmp[x + y * w] = majority_seg;
    58      }
    59    }
    60    for (y = 1; y < h - 1; ++y) {
    61      for (x = 1; x < w - 1; ++x) {
    62        VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
    63        mb->segment_ = tmp[x + y * w];
    64      }
    65    }
    66    free(tmp);
    67  }
    68  
    69  //------------------------------------------------------------------------------
    70  // set segment susceptibility alpha_ / beta_
    71  
    72  static WEBP_INLINE int clip(int v, int m, int M) {
    73    return (v < m) ? m : (v > M) ? M : v;
    74  }
    75  
    76  static void SetSegmentAlphas(VP8Encoder* const enc,
    77                               const int centers[NUM_MB_SEGMENTS],
    78                               int mid) {
    79    const int nb = enc->segment_hdr_.num_segments_;
    80    int min = centers[0], max = centers[0];
    81    int n;
    82  
    83    if (nb > 1) {
    84      for (n = 0; n < nb; ++n) {
    85        if (min > centers[n]) min = centers[n];
    86        if (max < centers[n]) max = centers[n];
    87      }
    88    }
    89    if (max == min) max = min + 1;
    90    assert(mid <= max && mid >= min);
    91    for (n = 0; n < nb; ++n) {
    92      const int alpha = 255 * (centers[n] - mid) / (max - min);
    93      const int beta = 255 * (centers[n] - min) / (max - min);
    94      enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
    95      enc->dqm_[n].beta_ = clip(beta, 0, 255);
    96    }
    97  }
    98  
    99  //------------------------------------------------------------------------------
   100  // Compute susceptibility based on DCT-coeff histograms:
   101  // the higher, the "easier" the macroblock is to compress.
   102  
   103  #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
   104  #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
   105  #define DEFAULT_ALPHA (-1)
   106  #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
   107  
   108  static int FinalAlphaValue(int alpha) {
   109    alpha = MAX_ALPHA - alpha;
   110    return clip(alpha, 0, MAX_ALPHA);
   111  }
   112  
   113  static int GetAlpha(const VP8Histogram* const histo) {
   114    int max_value = 0, last_non_zero = 1;
   115    int k;
   116    int alpha;
   117    for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
   118      const int value = histo->distribution[k];
   119      if (value > 0) {
   120        if (value > max_value) max_value = value;
   121        last_non_zero = k;
   122      }
   123    }
   124    // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
   125    // values which happen to be mostly noise. This leaves the maximum precision
   126    // for handling the useful small values which contribute most.
   127    alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
   128    return alpha;
   129  }
   130  
   131  static void MergeHistograms(const VP8Histogram* const in,
   132                              VP8Histogram* const out) {
   133    int i;
   134    for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
   135      out->distribution[i] += in->distribution[i];
   136    }
   137  }
   138  
   139  //------------------------------------------------------------------------------
   140  // Simplified k-Means, to assign Nb segments based on alpha-histogram
   141  
   142  static void AssignSegments(VP8Encoder* const enc,
   143                             const int alphas[MAX_ALPHA + 1]) {
   144    const int nb = enc->segment_hdr_.num_segments_;
   145    int centers[NUM_MB_SEGMENTS];
   146    int weighted_average = 0;
   147    int map[MAX_ALPHA + 1];
   148    int a, n, k;
   149    int min_a = 0, max_a = MAX_ALPHA, range_a;
   150    // 'int' type is ok for histo, and won't overflow
   151    int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
   152  
   153    assert(nb >= 1);
   154  
   155    // bracket the input
   156    for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
   157    min_a = n;
   158    for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
   159    max_a = n;
   160    range_a = max_a - min_a;
   161  
   162    // Spread initial centers evenly
   163    for (k = 0, n = 1; k < nb; ++k, n += 2) {
   164      assert(n < 2 * nb);
   165      centers[k] = min_a + (n * range_a) / (2 * nb);
   166    }
   167  
   168    for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
   169      int total_weight;
   170      int displaced;
   171      // Reset stats
   172      for (n = 0; n < nb; ++n) {
   173        accum[n] = 0;
   174        dist_accum[n] = 0;
   175      }
   176      // Assign nearest center for each 'a'
   177      n = 0;    // track the nearest center for current 'a'
   178      for (a = min_a; a <= max_a; ++a) {
   179        if (alphas[a]) {
   180          while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
   181            n++;
   182          }
   183          map[a] = n;
   184          // accumulate contribution into best centroid
   185          dist_accum[n] += a * alphas[a];
   186          accum[n] += alphas[a];
   187        }
   188      }
   189      // All point are classified. Move the centroids to the
   190      // center of their respective cloud.
   191      displaced = 0;
   192      weighted_average = 0;
   193      total_weight = 0;
   194      for (n = 0; n < nb; ++n) {
   195        if (accum[n]) {
   196          const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
   197          displaced += abs(centers[n] - new_center);
   198          centers[n] = new_center;
   199          weighted_average += new_center * accum[n];
   200          total_weight += accum[n];
   201        }
   202      }
   203      weighted_average = (weighted_average + total_weight / 2) / total_weight;
   204      if (displaced < 5) break;   // no need to keep on looping...
   205    }
   206  
   207    // Map each original value to the closest centroid
   208    for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
   209      VP8MBInfo* const mb = &enc->mb_info_[n];
   210      const int alpha = mb->alpha_;
   211      mb->segment_ = map[alpha];
   212      mb->alpha_ = centers[map[alpha]];  // for the record.
   213    }
   214  
   215    if (nb > 1) {
   216      const int smooth = (enc->config_->preprocessing & 1);
   217      if (smooth) SmoothSegmentMap(enc);
   218    }
   219  
   220    SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
   221  }
   222  
   223  //------------------------------------------------------------------------------
   224  // Macroblock analysis: collect histogram for each mode, deduce the maximal
   225  // susceptibility and set best modes for this macroblock.
   226  // Segment assignment is done later.
   227  
   228  // Number of modes to inspect for alpha_ evaluation. For high-quality settings
   229  // (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
   230  // during the analysis phase.
   231  #define FAST_ANALYSIS_METHOD 4  // method above which we do partial analysis
   232  #define MAX_INTRA16_MODE 2
   233  #define MAX_INTRA4_MODE  2
   234  #define MAX_UV_MODE      2
   235  
   236  static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
   237    const int max_mode =
   238        (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
   239                                                    : NUM_PRED_MODES;
   240    int mode;
   241    int best_alpha = DEFAULT_ALPHA;
   242    int best_mode = 0;
   243  
   244    VP8MakeLuma16Preds(it);
   245    for (mode = 0; mode < max_mode; ++mode) {
   246      VP8Histogram histo = { { 0 } };
   247      int alpha;
   248  
   249      VP8CollectHistogram(it->yuv_in_ + Y_OFF,
   250                          it->yuv_p_ + VP8I16ModeOffsets[mode],
   251                          0, 16, &histo);
   252      alpha = GetAlpha(&histo);
   253      if (IS_BETTER_ALPHA(alpha, best_alpha)) {
   254        best_alpha = alpha;
   255        best_mode = mode;
   256      }
   257    }
   258    VP8SetIntra16Mode(it, best_mode);
   259    return best_alpha;
   260  }
   261  
   262  static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
   263                                     int best_alpha) {
   264    uint8_t modes[16];
   265    const int max_mode =
   266        (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
   267                                                    : NUM_BMODES;
   268    int i4_alpha;
   269    VP8Histogram total_histo = { { 0 } };
   270    int cur_histo = 0;
   271  
   272    VP8IteratorStartI4(it);
   273    do {
   274      int mode;
   275      int best_mode_alpha = DEFAULT_ALPHA;
   276      VP8Histogram histos[2];
   277      const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
   278  
   279      VP8MakeIntra4Preds(it);
   280      for (mode = 0; mode < max_mode; ++mode) {
   281        int alpha;
   282  
   283        memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
   284        VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
   285                            0, 1, &histos[cur_histo]);
   286        alpha = GetAlpha(&histos[cur_histo]);
   287        if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
   288          best_mode_alpha = alpha;
   289          modes[it->i4_] = mode;
   290          cur_histo ^= 1;   // keep track of best histo so far.
   291        }
   292      }
   293      // accumulate best histogram
   294      MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
   295      // Note: we reuse the original samples for predictors
   296    } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
   297  
   298    i4_alpha = GetAlpha(&total_histo);
   299    if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
   300      VP8SetIntra4Mode(it, modes);
   301      best_alpha = i4_alpha;
   302    }
   303    return best_alpha;
   304  }
   305  
   306  static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
   307    int best_alpha = DEFAULT_ALPHA;
   308    int best_mode = 0;
   309    const int max_mode =
   310        (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
   311                                                    : NUM_PRED_MODES;
   312    int mode;
   313    VP8MakeChroma8Preds(it);
   314    for (mode = 0; mode < max_mode; ++mode) {
   315      VP8Histogram histo = { { 0 } };
   316      int alpha;
   317      VP8CollectHistogram(it->yuv_in_ + U_OFF,
   318                          it->yuv_p_ + VP8UVModeOffsets[mode],
   319                          16, 16 + 4 + 4, &histo);
   320      alpha = GetAlpha(&histo);
   321      if (IS_BETTER_ALPHA(alpha, best_alpha)) {
   322        best_alpha = alpha;
   323        best_mode = mode;
   324      }
   325    }
   326    VP8SetIntraUVMode(it, best_mode);
   327    return best_alpha;
   328  }
   329  
   330  static void MBAnalyze(VP8EncIterator* const it,
   331                        int alphas[MAX_ALPHA + 1],
   332                        int* const alpha, int* const uv_alpha) {
   333    const VP8Encoder* const enc = it->enc_;
   334    int best_alpha, best_uv_alpha;
   335  
   336    VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
   337    VP8SetSkip(it, 0);         // not skipped
   338    VP8SetSegment(it, 0);      // default segment, spec-wise.
   339  
   340    best_alpha = MBAnalyzeBestIntra16Mode(it);
   341    if (enc->method_ >= 5) {
   342      // We go and make a fast decision for intra4/intra16.
   343      // It's usually not a good and definitive pick, but helps seeding the stats
   344      // about level bit-cost.
   345      // TODO(skal): improve criterion.
   346      best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
   347    }
   348    best_uv_alpha = MBAnalyzeBestUVMode(it);
   349  
   350    // Final susceptibility mix
   351    best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
   352    best_alpha = FinalAlphaValue(best_alpha);
   353    alphas[best_alpha]++;
   354    it->mb_->alpha_ = best_alpha;   // for later remapping.
   355  
   356    // Accumulate for later complexity analysis.
   357    *alpha += best_alpha;   // mixed susceptibility (not just luma)
   358    *uv_alpha += best_uv_alpha;
   359  }
   360  
   361  static void DefaultMBInfo(VP8MBInfo* const mb) {
   362    mb->type_ = 1;     // I16x16
   363    mb->uv_mode_ = 0;
   364    mb->skip_ = 0;     // not skipped
   365    mb->segment_ = 0;  // default segment
   366    mb->alpha_ = 0;
   367  }
   368  
   369  //------------------------------------------------------------------------------
   370  // Main analysis loop:
   371  // Collect all susceptibilities for each macroblock and record their
   372  // distribution in alphas[]. Segments is assigned a-posteriori, based on
   373  // this histogram.
   374  // We also pick an intra16 prediction mode, which shouldn't be considered
   375  // final except for fast-encode settings. We can also pick some intra4 modes
   376  // and decide intra4/intra16, but that's usually almost always a bad choice at
   377  // this stage.
   378  
   379  static void ResetAllMBInfo(VP8Encoder* const enc) {
   380    int n;
   381    for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
   382      DefaultMBInfo(&enc->mb_info_[n]);
   383    }
   384    // Default susceptibilities.
   385    enc->dqm_[0].alpha_ = 0;
   386    enc->dqm_[0].beta_ = 0;
   387    // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
   388    enc->alpha_ = 0;
   389    enc->uv_alpha_ = 0;
   390    WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
   391  }
   392  
   393  // struct used to collect job result
   394  typedef struct {
   395    WebPWorker worker;
   396    int alphas[MAX_ALPHA + 1];
   397    int alpha, uv_alpha;
   398    VP8EncIterator it;
   399    int delta_progress;
   400  } SegmentJob;
   401  
   402  // main work call
   403  static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
   404    int ok = 1;
   405    if (!VP8IteratorIsDone(it)) {
   406      uint8_t tmp[32 + ALIGN_CST];
   407      uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
   408      do {
   409        // Let's pretend we have perfect lossless reconstruction.
   410        VP8IteratorImport(it, scratch);
   411        MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
   412        ok = VP8IteratorProgress(it, job->delta_progress);
   413      } while (ok && VP8IteratorNext(it));
   414    }
   415    return ok;
   416  }
   417  
   418  static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
   419    int i;
   420    for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
   421    dst->alpha += src->alpha;
   422    dst->uv_alpha += src->uv_alpha;
   423  }
   424  
   425  // initialize the job struct with some TODOs
   426  static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
   427                             int start_row, int end_row) {
   428    WebPWorkerInit(&job->worker);
   429    job->worker.data1 = job;
   430    job->worker.data2 = &job->it;
   431    job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
   432    VP8IteratorInit(enc, &job->it);
   433    VP8IteratorSetRow(&job->it, start_row);
   434    VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
   435    memset(job->alphas, 0, sizeof(job->alphas));
   436    job->alpha = 0;
   437    job->uv_alpha = 0;
   438    // only one of both jobs can record the progress, since we don't
   439    // expect the user's hook to be multi-thread safe
   440    job->delta_progress = (start_row == 0) ? 20 : 0;
   441  }
   442  
   443  // main entry point
   444  int VP8EncAnalyze(VP8Encoder* const enc) {
   445    int ok = 1;
   446    const int do_segments =
   447        enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
   448        (enc->segment_hdr_.num_segments_ > 1) ||
   449        (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
   450    if (do_segments) {
   451      const int last_row = enc->mb_h_;
   452      // We give a little more than a half work to the main thread.
   453      const int split_row = (9 * last_row + 15) >> 4;
   454      const int total_mb = last_row * enc->mb_w_;
   455  #ifdef WEBP_USE_THREAD
   456      const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
   457      const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
   458  #else
   459      const int do_mt = 0;
   460  #endif
   461      SegmentJob main_job;
   462      if (do_mt) {
   463        SegmentJob side_job;
   464        // Note the use of '&' instead of '&&' because we must call the functions
   465        // no matter what.
   466        InitSegmentJob(enc, &main_job, 0, split_row);
   467        InitSegmentJob(enc, &side_job, split_row, last_row);
   468        // we don't need to call Reset() on main_job.worker, since we're calling
   469        // WebPWorkerExecute() on it
   470        ok &= WebPWorkerReset(&side_job.worker);
   471        // launch the two jobs in parallel
   472        if (ok) {
   473          WebPWorkerLaunch(&side_job.worker);
   474          WebPWorkerExecute(&main_job.worker);
   475          ok &= WebPWorkerSync(&side_job.worker);
   476          ok &= WebPWorkerSync(&main_job.worker);
   477        }
   478        WebPWorkerEnd(&side_job.worker);
   479        if (ok) MergeJobs(&side_job, &main_job);  // merge results together
   480      } else {
   481        // Even for single-thread case, we use the generic Worker tools.
   482        InitSegmentJob(enc, &main_job, 0, last_row);
   483        WebPWorkerExecute(&main_job.worker);
   484        ok &= WebPWorkerSync(&main_job.worker);
   485      }
   486      WebPWorkerEnd(&main_job.worker);
   487      if (ok) {
   488        enc->alpha_ = main_job.alpha / total_mb;
   489        enc->uv_alpha_ = main_job.uv_alpha / total_mb;
   490        AssignSegments(enc, main_job.alphas);
   491      }
   492    } else {   // Use only one default segment.
   493      ResetAllMBInfo(enc);
   494    }
   495    return ok;
   496  }
   497