github.com/cellofellow/gopkg@v0.0.0-20140722061823-eec0544a62ad/image/webp/libwebp/src/enc/picture.c (about) 1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // WebPPicture utils: colorspace conversion, crop, ... 11 // 12 // Author: Skal (pascal.massimino@gmail.com) 13 14 #include <assert.h> 15 #include <stdlib.h> 16 #include <math.h> 17 18 #include "./vp8enci.h" 19 #include "../utils/alpha_processing.h" 20 #include "../utils/random.h" 21 #include "../utils/rescaler.h" 22 #include "../utils/utils.h" 23 #include "../dsp/dsp.h" 24 #include "../dsp/yuv.h" 25 26 // Uncomment to disable gamma-compression during RGB->U/V averaging 27 #define USE_GAMMA_COMPRESSION 28 29 #define HALVE(x) (((x) + 1) >> 1) 30 #define IS_YUV_CSP(csp, YUV_CSP) (((csp) & WEBP_CSP_UV_MASK) == (YUV_CSP)) 31 32 static const union { 33 uint32_t argb; 34 uint8_t bytes[4]; 35 } test_endian = { 0xff000000u }; 36 #define ALPHA_IS_LAST (test_endian.bytes[3] == 0xff) 37 38 static WEBP_INLINE uint32_t MakeARGB32(int r, int g, int b) { 39 return (0xff000000u | (r << 16) | (g << 8) | b); 40 } 41 42 //------------------------------------------------------------------------------ 43 // WebPPicture 44 //------------------------------------------------------------------------------ 45 46 int WebPPictureAlloc(WebPPicture* picture) { 47 if (picture != NULL) { 48 const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK; 49 const int has_alpha = picture->colorspace & WEBP_CSP_ALPHA_BIT; 50 const int width = picture->width; 51 const int height = picture->height; 52 53 if (!picture->use_argb) { 54 const int y_stride = width; 55 const int uv_width = HALVE(width); 56 const int uv_height = HALVE(height); 57 const int uv_stride = uv_width; 58 int uv0_stride = 0; 59 int a_width, a_stride; 60 uint64_t y_size, uv_size, uv0_size, a_size, total_size; 61 uint8_t* mem; 62 63 // U/V 64 switch (uv_csp) { 65 case WEBP_YUV420: 66 break; 67 #ifdef WEBP_EXPERIMENTAL_FEATURES 68 case WEBP_YUV400: // for now, we'll just reset the U/V samples 69 break; 70 case WEBP_YUV422: 71 uv0_stride = uv_width; 72 break; 73 case WEBP_YUV444: 74 uv0_stride = width; 75 break; 76 #endif 77 default: 78 return 0; 79 } 80 uv0_size = height * uv0_stride; 81 82 // alpha 83 a_width = has_alpha ? width : 0; 84 a_stride = a_width; 85 y_size = (uint64_t)y_stride * height; 86 uv_size = (uint64_t)uv_stride * uv_height; 87 a_size = (uint64_t)a_stride * height; 88 89 total_size = y_size + a_size + 2 * uv_size + 2 * uv0_size; 90 91 // Security and validation checks 92 if (width <= 0 || height <= 0 || // luma/alpha param error 93 uv_width < 0 || uv_height < 0) { // u/v param error 94 return 0; 95 } 96 // Clear previous buffer and allocate a new one. 97 WebPPictureFree(picture); // erase previous buffer 98 mem = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*mem)); 99 if (mem == NULL) return 0; 100 101 // From now on, we're in the clear, we can no longer fail... 102 picture->memory_ = (void*)mem; 103 picture->y_stride = y_stride; 104 picture->uv_stride = uv_stride; 105 picture->a_stride = a_stride; 106 picture->uv0_stride = uv0_stride; 107 // TODO(skal): we could align the y/u/v planes and adjust stride. 108 picture->y = mem; 109 mem += y_size; 110 111 picture->u = mem; 112 mem += uv_size; 113 picture->v = mem; 114 mem += uv_size; 115 116 if (a_size) { 117 picture->a = mem; 118 mem += a_size; 119 } 120 if (uv0_size) { 121 picture->u0 = mem; 122 mem += uv0_size; 123 picture->v0 = mem; 124 mem += uv0_size; 125 } 126 (void)mem; // makes the static analyzer happy 127 } else { 128 void* memory; 129 const uint64_t argb_size = (uint64_t)width * height; 130 if (width <= 0 || height <= 0) { 131 return 0; 132 } 133 // Clear previous buffer and allocate a new one. 134 WebPPictureFree(picture); // erase previous buffer 135 memory = WebPSafeMalloc(argb_size, sizeof(*picture->argb)); 136 if (memory == NULL) return 0; 137 138 // TODO(skal): align plane to cache line? 139 picture->memory_argb_ = memory; 140 picture->argb = (uint32_t*)memory; 141 picture->argb_stride = width; 142 } 143 } 144 return 1; 145 } 146 147 // Remove reference to the ARGB buffer (doesn't free anything). 148 static void PictureResetARGB(WebPPicture* const picture) { 149 picture->memory_argb_ = NULL; 150 picture->argb = NULL; 151 picture->argb_stride = 0; 152 } 153 154 // Remove reference to the YUVA buffer (doesn't free anything). 155 static void PictureResetYUVA(WebPPicture* const picture) { 156 picture->memory_ = NULL; 157 picture->y = picture->u = picture->v = picture->a = NULL; 158 picture->u0 = picture->v0 = NULL; 159 picture->y_stride = picture->uv_stride = 0; 160 picture->a_stride = 0; 161 picture->uv0_stride = 0; 162 } 163 164 // Grab the 'specs' (writer, *opaque, width, height...) from 'src' and copy them 165 // into 'dst'. Mark 'dst' as not owning any memory. 166 static void WebPPictureGrabSpecs(const WebPPicture* const src, 167 WebPPicture* const dst) { 168 assert(src != NULL && dst != NULL); 169 *dst = *src; 170 PictureResetYUVA(dst); 171 PictureResetARGB(dst); 172 } 173 174 // Allocate a new argb buffer, discarding any existing one and preserving 175 // the other YUV(A) buffer. 176 static int PictureAllocARGB(WebPPicture* const picture) { 177 WebPPicture tmp; 178 free(picture->memory_argb_); 179 PictureResetARGB(picture); 180 picture->use_argb = 1; 181 WebPPictureGrabSpecs(picture, &tmp); 182 if (!WebPPictureAlloc(&tmp)) { 183 return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); 184 } 185 picture->memory_argb_ = tmp.memory_argb_; 186 picture->argb = tmp.argb; 187 picture->argb_stride = tmp.argb_stride; 188 return 1; 189 } 190 191 // Release memory owned by 'picture' (both YUV and ARGB buffers). 192 void WebPPictureFree(WebPPicture* picture) { 193 if (picture != NULL) { 194 free(picture->memory_); 195 free(picture->memory_argb_); 196 PictureResetYUVA(picture); 197 PictureResetARGB(picture); 198 } 199 } 200 201 //------------------------------------------------------------------------------ 202 // Picture copying 203 204 // Not worth moving to dsp/enc.c (only used here). 205 static void CopyPlane(const uint8_t* src, int src_stride, 206 uint8_t* dst, int dst_stride, int width, int height) { 207 while (height-- > 0) { 208 memcpy(dst, src, width); 209 src += src_stride; 210 dst += dst_stride; 211 } 212 } 213 214 // Adjust top-left corner to chroma sample position. 215 static void SnapTopLeftPosition(const WebPPicture* const pic, 216 int* const left, int* const top) { 217 if (!pic->use_argb) { 218 const int is_yuv422 = IS_YUV_CSP(pic->colorspace, WEBP_YUV422); 219 if (IS_YUV_CSP(pic->colorspace, WEBP_YUV420) || is_yuv422) { 220 *left &= ~1; 221 if (!is_yuv422) *top &= ~1; 222 } 223 } 224 } 225 226 // Adjust top-left corner and verify that the sub-rectangle is valid. 227 static int AdjustAndCheckRectangle(const WebPPicture* const pic, 228 int* const left, int* const top, 229 int width, int height) { 230 SnapTopLeftPosition(pic, left, top); 231 if ((*left) < 0 || (*top) < 0) return 0; 232 if (width <= 0 || height <= 0) return 0; 233 if ((*left) + width > pic->width) return 0; 234 if ((*top) + height > pic->height) return 0; 235 return 1; 236 } 237 238 int WebPPictureCopy(const WebPPicture* src, WebPPicture* dst) { 239 if (src == NULL || dst == NULL) return 0; 240 if (src == dst) return 1; 241 242 WebPPictureGrabSpecs(src, dst); 243 if (!WebPPictureAlloc(dst)) return 0; 244 245 if (!src->use_argb) { 246 CopyPlane(src->y, src->y_stride, 247 dst->y, dst->y_stride, dst->width, dst->height); 248 CopyPlane(src->u, src->uv_stride, 249 dst->u, dst->uv_stride, HALVE(dst->width), HALVE(dst->height)); 250 CopyPlane(src->v, src->uv_stride, 251 dst->v, dst->uv_stride, HALVE(dst->width), HALVE(dst->height)); 252 if (dst->a != NULL) { 253 CopyPlane(src->a, src->a_stride, 254 dst->a, dst->a_stride, dst->width, dst->height); 255 } 256 #ifdef WEBP_EXPERIMENTAL_FEATURES 257 if (dst->u0 != NULL) { 258 int uv0_width = src->width; 259 if (IS_YUV_CSP(dst->colorspace, WEBP_YUV422)) { 260 uv0_width = HALVE(uv0_width); 261 } 262 CopyPlane(src->u0, src->uv0_stride, 263 dst->u0, dst->uv0_stride, uv0_width, dst->height); 264 CopyPlane(src->v0, src->uv0_stride, 265 dst->v0, dst->uv0_stride, uv0_width, dst->height); 266 } 267 #endif 268 } else { 269 CopyPlane((const uint8_t*)src->argb, 4 * src->argb_stride, 270 (uint8_t*)dst->argb, 4 * dst->argb_stride, 271 4 * dst->width, dst->height); 272 } 273 return 1; 274 } 275 276 int WebPPictureIsView(const WebPPicture* picture) { 277 if (picture == NULL) return 0; 278 if (picture->use_argb) { 279 return (picture->memory_argb_ == NULL); 280 } 281 return (picture->memory_ == NULL); 282 } 283 284 int WebPPictureView(const WebPPicture* src, 285 int left, int top, int width, int height, 286 WebPPicture* dst) { 287 if (src == NULL || dst == NULL) return 0; 288 289 // verify rectangle position. 290 if (!AdjustAndCheckRectangle(src, &left, &top, width, height)) return 0; 291 292 if (src != dst) { // beware of aliasing! We don't want to leak 'memory_'. 293 WebPPictureGrabSpecs(src, dst); 294 } 295 dst->width = width; 296 dst->height = height; 297 if (!src->use_argb) { 298 dst->y = src->y + top * src->y_stride + left; 299 dst->u = src->u + (top >> 1) * src->uv_stride + (left >> 1); 300 dst->v = src->v + (top >> 1) * src->uv_stride + (left >> 1); 301 dst->y_stride = src->y_stride; 302 dst->uv_stride = src->uv_stride; 303 if (src->a != NULL) { 304 dst->a = src->a + top * src->a_stride + left; 305 dst->a_stride = src->a_stride; 306 } 307 #ifdef WEBP_EXPERIMENTAL_FEATURES 308 if (src->u0 != NULL) { 309 const int left_pos = 310 IS_YUV_CSP(dst->colorspace, WEBP_YUV422) ? (left >> 1) : left; 311 dst->u0 = src->u0 + top * src->uv0_stride + left_pos; 312 dst->v0 = src->v0 + top * src->uv0_stride + left_pos; 313 dst->uv0_stride = src->uv0_stride; 314 } 315 #endif 316 } else { 317 dst->argb = src->argb + top * src->argb_stride + left; 318 dst->argb_stride = src->argb_stride; 319 } 320 return 1; 321 } 322 323 //------------------------------------------------------------------------------ 324 // Picture cropping 325 326 int WebPPictureCrop(WebPPicture* pic, 327 int left, int top, int width, int height) { 328 WebPPicture tmp; 329 330 if (pic == NULL) return 0; 331 if (!AdjustAndCheckRectangle(pic, &left, &top, width, height)) return 0; 332 333 WebPPictureGrabSpecs(pic, &tmp); 334 tmp.width = width; 335 tmp.height = height; 336 if (!WebPPictureAlloc(&tmp)) return 0; 337 338 if (!pic->use_argb) { 339 const int y_offset = top * pic->y_stride + left; 340 const int uv_offset = (top / 2) * pic->uv_stride + left / 2; 341 CopyPlane(pic->y + y_offset, pic->y_stride, 342 tmp.y, tmp.y_stride, width, height); 343 CopyPlane(pic->u + uv_offset, pic->uv_stride, 344 tmp.u, tmp.uv_stride, HALVE(width), HALVE(height)); 345 CopyPlane(pic->v + uv_offset, pic->uv_stride, 346 tmp.v, tmp.uv_stride, HALVE(width), HALVE(height)); 347 348 if (tmp.a != NULL) { 349 const int a_offset = top * pic->a_stride + left; 350 CopyPlane(pic->a + a_offset, pic->a_stride, 351 tmp.a, tmp.a_stride, width, height); 352 } 353 #ifdef WEBP_EXPERIMENTAL_FEATURES 354 if (tmp.u0 != NULL) { 355 int w = width; 356 int left_pos = left; 357 if (IS_YUV_CSP(tmp.colorspace, WEBP_YUV422)) { 358 w = HALVE(w); 359 left_pos = HALVE(left_pos); 360 } 361 CopyPlane(pic->u0 + top * pic->uv0_stride + left_pos, pic->uv0_stride, 362 tmp.u0, tmp.uv0_stride, w, height); 363 CopyPlane(pic->v0 + top * pic->uv0_stride + left_pos, pic->uv0_stride, 364 tmp.v0, tmp.uv0_stride, w, height); 365 } 366 #endif 367 } else { 368 const uint8_t* const src = 369 (const uint8_t*)(pic->argb + top * pic->argb_stride + left); 370 CopyPlane(src, pic->argb_stride * 4, 371 (uint8_t*)tmp.argb, tmp.argb_stride * 4, 372 width * 4, height); 373 } 374 WebPPictureFree(pic); 375 *pic = tmp; 376 return 1; 377 } 378 379 //------------------------------------------------------------------------------ 380 // Simple picture rescaler 381 382 static void RescalePlane(const uint8_t* src, 383 int src_width, int src_height, int src_stride, 384 uint8_t* dst, 385 int dst_width, int dst_height, int dst_stride, 386 int32_t* const work, 387 int num_channels) { 388 WebPRescaler rescaler; 389 int y = 0; 390 WebPRescalerInit(&rescaler, src_width, src_height, 391 dst, dst_width, dst_height, dst_stride, 392 num_channels, 393 src_width, dst_width, 394 src_height, dst_height, 395 work); 396 memset(work, 0, 2 * dst_width * num_channels * sizeof(*work)); 397 while (y < src_height) { 398 y += WebPRescalerImport(&rescaler, src_height - y, 399 src + y * src_stride, src_stride); 400 WebPRescalerExport(&rescaler); 401 } 402 } 403 404 static void AlphaMultiplyARGB(WebPPicture* const pic, int inverse) { 405 uint32_t* ptr = pic->argb; 406 int y; 407 for (y = 0; y < pic->height; ++y) { 408 WebPMultARGBRow(ptr, pic->width, inverse); 409 ptr += pic->argb_stride; 410 } 411 } 412 413 static void AlphaMultiplyY(WebPPicture* const pic, int inverse) { 414 const uint8_t* ptr_a = pic->a; 415 if (ptr_a != NULL) { 416 uint8_t* ptr_y = pic->y; 417 int y; 418 for (y = 0; y < pic->height; ++y) { 419 WebPMultRow(ptr_y, ptr_a, pic->width, inverse); 420 ptr_y += pic->y_stride; 421 ptr_a += pic->a_stride; 422 } 423 } 424 } 425 426 int WebPPictureRescale(WebPPicture* pic, int width, int height) { 427 WebPPicture tmp; 428 int prev_width, prev_height; 429 int32_t* work; 430 431 if (pic == NULL) return 0; 432 prev_width = pic->width; 433 prev_height = pic->height; 434 // if width is unspecified, scale original proportionally to height ratio. 435 if (width == 0) { 436 width = (prev_width * height + prev_height / 2) / prev_height; 437 } 438 // if height is unspecified, scale original proportionally to width ratio. 439 if (height == 0) { 440 height = (prev_height * width + prev_width / 2) / prev_width; 441 } 442 // Check if the overall dimensions still make sense. 443 if (width <= 0 || height <= 0) return 0; 444 445 WebPPictureGrabSpecs(pic, &tmp); 446 tmp.width = width; 447 tmp.height = height; 448 if (!WebPPictureAlloc(&tmp)) return 0; 449 450 if (!pic->use_argb) { 451 work = (int32_t*)WebPSafeMalloc(2ULL * width, sizeof(*work)); 452 if (work == NULL) { 453 WebPPictureFree(&tmp); 454 return 0; 455 } 456 // If present, we need to rescale alpha first (for AlphaMultiplyY). 457 if (pic->a != NULL) { 458 RescalePlane(pic->a, prev_width, prev_height, pic->a_stride, 459 tmp.a, width, height, tmp.a_stride, work, 1); 460 } 461 462 // We take transparency into account on the luma plane only. That's not 463 // totally exact blending, but still is a good approximation. 464 AlphaMultiplyY(pic, 0); 465 RescalePlane(pic->y, prev_width, prev_height, pic->y_stride, 466 tmp.y, width, height, tmp.y_stride, work, 1); 467 AlphaMultiplyY(&tmp, 1); 468 469 RescalePlane(pic->u, 470 HALVE(prev_width), HALVE(prev_height), pic->uv_stride, 471 tmp.u, 472 HALVE(width), HALVE(height), tmp.uv_stride, work, 1); 473 RescalePlane(pic->v, 474 HALVE(prev_width), HALVE(prev_height), pic->uv_stride, 475 tmp.v, 476 HALVE(width), HALVE(height), tmp.uv_stride, work, 1); 477 478 #ifdef WEBP_EXPERIMENTAL_FEATURES 479 if (tmp.u0 != NULL) { 480 const int s = IS_YUV_CSP(tmp.colorspace, WEBP_YUV422) ? 2 : 1; 481 RescalePlane( 482 pic->u0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride, 483 tmp.u0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1); 484 RescalePlane( 485 pic->v0, (prev_width + s / 2) / s, prev_height, pic->uv0_stride, 486 tmp.v0, (width + s / 2) / s, height, tmp.uv0_stride, work, 1); 487 } 488 #endif 489 } else { 490 work = (int32_t*)WebPSafeMalloc(2ULL * width * 4, sizeof(*work)); 491 if (work == NULL) { 492 WebPPictureFree(&tmp); 493 return 0; 494 } 495 // In order to correctly interpolate colors, we need to apply the alpha 496 // weighting first (black-matting), scale the RGB values, and remove 497 // the premultiplication afterward (while preserving the alpha channel). 498 AlphaMultiplyARGB(pic, 0); 499 RescalePlane((const uint8_t*)pic->argb, prev_width, prev_height, 500 pic->argb_stride * 4, 501 (uint8_t*)tmp.argb, width, height, 502 tmp.argb_stride * 4, 503 work, 4); 504 AlphaMultiplyARGB(&tmp, 1); 505 } 506 WebPPictureFree(pic); 507 free(work); 508 *pic = tmp; 509 return 1; 510 } 511 512 //------------------------------------------------------------------------------ 513 // WebPMemoryWriter: Write-to-memory 514 515 void WebPMemoryWriterInit(WebPMemoryWriter* writer) { 516 writer->mem = NULL; 517 writer->size = 0; 518 writer->max_size = 0; 519 } 520 521 int WebPMemoryWrite(const uint8_t* data, size_t data_size, 522 const WebPPicture* picture) { 523 WebPMemoryWriter* const w = (WebPMemoryWriter*)picture->custom_ptr; 524 uint64_t next_size; 525 if (w == NULL) { 526 return 1; 527 } 528 next_size = (uint64_t)w->size + data_size; 529 if (next_size > w->max_size) { 530 uint8_t* new_mem; 531 uint64_t next_max_size = 2ULL * w->max_size; 532 if (next_max_size < next_size) next_max_size = next_size; 533 if (next_max_size < 8192ULL) next_max_size = 8192ULL; 534 new_mem = (uint8_t*)WebPSafeMalloc(next_max_size, 1); 535 if (new_mem == NULL) { 536 return 0; 537 } 538 if (w->size > 0) { 539 memcpy(new_mem, w->mem, w->size); 540 } 541 free(w->mem); 542 w->mem = new_mem; 543 // down-cast is ok, thanks to WebPSafeMalloc 544 w->max_size = (size_t)next_max_size; 545 } 546 if (data_size > 0) { 547 memcpy(w->mem + w->size, data, data_size); 548 w->size += data_size; 549 } 550 return 1; 551 } 552 553 //------------------------------------------------------------------------------ 554 // Detection of non-trivial transparency 555 556 // Returns true if alpha[] has non-0xff values. 557 static int CheckNonOpaque(const uint8_t* alpha, int width, int height, 558 int x_step, int y_step) { 559 if (alpha == NULL) return 0; 560 while (height-- > 0) { 561 int x; 562 for (x = 0; x < width * x_step; x += x_step) { 563 if (alpha[x] != 0xff) return 1; // TODO(skal): check 4/8 bytes at a time. 564 } 565 alpha += y_step; 566 } 567 return 0; 568 } 569 570 // Checking for the presence of non-opaque alpha. 571 int WebPPictureHasTransparency(const WebPPicture* picture) { 572 if (picture == NULL) return 0; 573 if (!picture->use_argb) { 574 return CheckNonOpaque(picture->a, picture->width, picture->height, 575 1, picture->a_stride); 576 } else { 577 int x, y; 578 const uint32_t* argb = picture->argb; 579 if (argb == NULL) return 0; 580 for (y = 0; y < picture->height; ++y) { 581 for (x = 0; x < picture->width; ++x) { 582 if (argb[x] < 0xff000000u) return 1; // test any alpha values != 0xff 583 } 584 argb += picture->argb_stride; 585 } 586 } 587 return 0; 588 } 589 590 //------------------------------------------------------------------------------ 591 // RGB -> YUV conversion 592 593 static int RGBToY(int r, int g, int b, VP8Random* const rg) { 594 return VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); 595 } 596 597 static int RGBToU(int r, int g, int b, VP8Random* const rg) { 598 return VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); 599 } 600 601 static int RGBToV(int r, int g, int b, VP8Random* const rg) { 602 return VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); 603 } 604 605 //------------------------------------------------------------------------------ 606 607 #if defined(USE_GAMMA_COMPRESSION) 608 609 // gamma-compensates loss of resolution during chroma subsampling 610 #define kGamma 0.80 611 #define kGammaFix 12 // fixed-point precision for linear values 612 #define kGammaScale ((1 << kGammaFix) - 1) 613 #define kGammaTabFix 7 // fixed-point fractional bits precision 614 #define kGammaTabScale (1 << kGammaTabFix) 615 #define kGammaTabRounder (kGammaTabScale >> 1) 616 #define kGammaTabSize (1 << (kGammaFix - kGammaTabFix)) 617 618 static int kLinearToGammaTab[kGammaTabSize + 1]; 619 static uint16_t kGammaToLinearTab[256]; 620 static int kGammaTablesOk = 0; 621 622 static void InitGammaTables(void) { 623 if (!kGammaTablesOk) { 624 int v; 625 const double scale = 1. / kGammaScale; 626 for (v = 0; v <= 255; ++v) { 627 kGammaToLinearTab[v] = 628 (uint16_t)(pow(v / 255., kGamma) * kGammaScale + .5); 629 } 630 for (v = 0; v <= kGammaTabSize; ++v) { 631 const double x = scale * (v << kGammaTabFix); 632 kLinearToGammaTab[v] = (int)(pow(x, 1. / kGamma) * 255. + .5); 633 } 634 kGammaTablesOk = 1; 635 } 636 } 637 638 static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { 639 return kGammaToLinearTab[v]; 640 } 641 642 // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision 643 // U/V value, suitable for RGBToU/V calls. 644 static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { 645 const int v = base_value << shift; // final uplifted value 646 const int tab_pos = v >> (kGammaTabFix + 2); // integer part 647 const int x = v & ((kGammaTabScale << 2) - 1); // fractional part 648 const int v0 = kLinearToGammaTab[tab_pos]; 649 const int v1 = kLinearToGammaTab[tab_pos + 1]; 650 const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate 651 return (y + kGammaTabRounder) >> kGammaTabFix; // descale 652 } 653 654 #else 655 656 static void InitGammaTables(void) {} 657 static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } 658 static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { 659 (void)shift; 660 return v; 661 } 662 663 #endif // USE_GAMMA_COMPRESSION 664 665 //------------------------------------------------------------------------------ 666 667 #define SUM4(ptr) LinearToGamma( \ 668 GammaToLinear((ptr)[0]) + \ 669 GammaToLinear((ptr)[step]) + \ 670 GammaToLinear((ptr)[rgb_stride]) + \ 671 GammaToLinear((ptr)[rgb_stride + step]), 0) \ 672 673 #define SUM2H(ptr) \ 674 LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[step]), 1) 675 #define SUM2V(ptr) \ 676 LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) 677 #define SUM1(ptr) \ 678 LinearToGamma(GammaToLinear((ptr)[0]), 2) 679 680 #define RGB_TO_UV(x, y, SUM) { \ 681 const int src = (2 * (step * (x) + (y) * rgb_stride)); \ 682 const int dst = (x) + (y) * picture->uv_stride; \ 683 const int r = SUM(r_ptr + src); \ 684 const int g = SUM(g_ptr + src); \ 685 const int b = SUM(b_ptr + src); \ 686 picture->u[dst] = RGBToU(r, g, b, &rg); \ 687 picture->v[dst] = RGBToV(r, g, b, &rg); \ 688 } 689 690 #define RGB_TO_UV0(x_in, x_out, y, SUM) { \ 691 const int src = (step * (x_in) + (y) * rgb_stride); \ 692 const int dst = (x_out) + (y) * picture->uv0_stride; \ 693 const int r = SUM(r_ptr + src); \ 694 const int g = SUM(g_ptr + src); \ 695 const int b = SUM(b_ptr + src); \ 696 picture->u0[dst] = RGBToU(r, g, b, &rg); \ 697 picture->v0[dst] = RGBToV(r, g, b, &rg); \ 698 } 699 700 static void MakeGray(WebPPicture* const picture) { 701 int y; 702 const int uv_width = HALVE(picture->width); 703 const int uv_height = HALVE(picture->height); 704 for (y = 0; y < uv_height; ++y) { 705 memset(picture->u + y * picture->uv_stride, 128, uv_width); 706 memset(picture->v + y * picture->uv_stride, 128, uv_width); 707 } 708 } 709 710 static int ImportYUVAFromRGBA(const uint8_t* const r_ptr, 711 const uint8_t* const g_ptr, 712 const uint8_t* const b_ptr, 713 const uint8_t* const a_ptr, 714 int step, // bytes per pixel 715 int rgb_stride, // bytes per scanline 716 float dithering, 717 WebPPicture* const picture) { 718 const WebPEncCSP uv_csp = picture->colorspace & WEBP_CSP_UV_MASK; 719 int x, y; 720 const int width = picture->width; 721 const int height = picture->height; 722 const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); 723 VP8Random rg; 724 725 picture->colorspace = uv_csp; 726 picture->use_argb = 0; 727 if (has_alpha) { 728 picture->colorspace |= WEBP_CSP_ALPHA_BIT; 729 } 730 if (!WebPPictureAlloc(picture)) return 0; 731 732 VP8InitRandom(&rg, dithering); 733 InitGammaTables(); 734 735 // Import luma plane 736 for (y = 0; y < height; ++y) { 737 for (x = 0; x < width; ++x) { 738 const int offset = step * x + y * rgb_stride; 739 picture->y[x + y * picture->y_stride] = 740 RGBToY(r_ptr[offset], g_ptr[offset], b_ptr[offset], &rg); 741 } 742 } 743 744 // Downsample U/V plane 745 if (uv_csp != WEBP_YUV400) { 746 for (y = 0; y < (height >> 1); ++y) { 747 for (x = 0; x < (width >> 1); ++x) { 748 RGB_TO_UV(x, y, SUM4); 749 } 750 if (width & 1) { 751 RGB_TO_UV(x, y, SUM2V); 752 } 753 } 754 if (height & 1) { 755 for (x = 0; x < (width >> 1); ++x) { 756 RGB_TO_UV(x, y, SUM2H); 757 } 758 if (width & 1) { 759 RGB_TO_UV(x, y, SUM1); 760 } 761 } 762 763 #ifdef WEBP_EXPERIMENTAL_FEATURES 764 // Store original U/V samples too 765 if (uv_csp == WEBP_YUV422) { 766 for (y = 0; y < height; ++y) { 767 for (x = 0; x < (width >> 1); ++x) { 768 RGB_TO_UV0(2 * x, x, y, SUM2H); 769 } 770 if (width & 1) { 771 RGB_TO_UV0(2 * x, x, y, SUM1); 772 } 773 } 774 } else if (uv_csp == WEBP_YUV444) { 775 for (y = 0; y < height; ++y) { 776 for (x = 0; x < width; ++x) { 777 RGB_TO_UV0(x, x, y, SUM1); 778 } 779 } 780 } 781 #endif 782 } else { 783 MakeGray(picture); 784 } 785 786 if (has_alpha) { 787 assert(step >= 4); 788 assert(picture->a != NULL); 789 for (y = 0; y < height; ++y) { 790 for (x = 0; x < width; ++x) { 791 picture->a[x + y * picture->a_stride] = 792 a_ptr[step * x + y * rgb_stride]; 793 } 794 } 795 } 796 return 1; 797 } 798 799 static int Import(WebPPicture* const picture, 800 const uint8_t* const rgb, int rgb_stride, 801 int step, int swap_rb, int import_alpha) { 802 const uint8_t* const r_ptr = rgb + (swap_rb ? 2 : 0); 803 const uint8_t* const g_ptr = rgb + 1; 804 const uint8_t* const b_ptr = rgb + (swap_rb ? 0 : 2); 805 const uint8_t* const a_ptr = import_alpha ? rgb + 3 : NULL; 806 const int width = picture->width; 807 const int height = picture->height; 808 809 if (!picture->use_argb) { 810 return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, 811 0.f /* no dithering */, picture); 812 } 813 if (import_alpha) { 814 picture->colorspace |= WEBP_CSP_ALPHA_BIT; 815 } else { 816 picture->colorspace &= ~WEBP_CSP_ALPHA_BIT; 817 } 818 if (!WebPPictureAlloc(picture)) return 0; 819 820 if (!import_alpha) { 821 int x, y; 822 for (y = 0; y < height; ++y) { 823 for (x = 0; x < width; ++x) { 824 const int offset = step * x + y * rgb_stride; 825 const uint32_t argb = 826 MakeARGB32(r_ptr[offset], g_ptr[offset], b_ptr[offset]); 827 picture->argb[x + y * picture->argb_stride] = argb; 828 } 829 } 830 } else { 831 int x, y; 832 assert(step >= 4); 833 for (y = 0; y < height; ++y) { 834 for (x = 0; x < width; ++x) { 835 const int offset = step * x + y * rgb_stride; 836 const uint32_t argb = ((uint32_t)a_ptr[offset] << 24) | 837 (r_ptr[offset] << 16) | 838 (g_ptr[offset] << 8) | 839 (b_ptr[offset]); 840 picture->argb[x + y * picture->argb_stride] = argb; 841 } 842 } 843 } 844 return 1; 845 } 846 #undef SUM4 847 #undef SUM2V 848 #undef SUM2H 849 #undef SUM1 850 #undef RGB_TO_UV 851 852 int WebPPictureImportRGB(WebPPicture* picture, 853 const uint8_t* rgb, int rgb_stride) { 854 return Import(picture, rgb, rgb_stride, 3, 0, 0); 855 } 856 857 int WebPPictureImportBGR(WebPPicture* picture, 858 const uint8_t* rgb, int rgb_stride) { 859 return Import(picture, rgb, rgb_stride, 3, 1, 0); 860 } 861 862 int WebPPictureImportRGBA(WebPPicture* picture, 863 const uint8_t* rgba, int rgba_stride) { 864 return Import(picture, rgba, rgba_stride, 4, 0, 1); 865 } 866 867 int WebPPictureImportBGRA(WebPPicture* picture, 868 const uint8_t* rgba, int rgba_stride) { 869 return Import(picture, rgba, rgba_stride, 4, 1, 1); 870 } 871 872 int WebPPictureImportRGBX(WebPPicture* picture, 873 const uint8_t* rgba, int rgba_stride) { 874 return Import(picture, rgba, rgba_stride, 4, 0, 0); 875 } 876 877 int WebPPictureImportBGRX(WebPPicture* picture, 878 const uint8_t* rgba, int rgba_stride) { 879 return Import(picture, rgba, rgba_stride, 4, 1, 0); 880 } 881 882 //------------------------------------------------------------------------------ 883 // Automatic YUV <-> ARGB conversions. 884 885 int WebPPictureYUVAToARGB(WebPPicture* picture) { 886 if (picture == NULL) return 0; 887 if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { 888 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); 889 } 890 if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { 891 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); 892 } 893 if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { 894 return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); 895 } 896 // Allocate a new argb buffer (discarding the previous one). 897 if (!PictureAllocARGB(picture)) return 0; 898 899 // Convert 900 { 901 int y; 902 const int width = picture->width; 903 const int height = picture->height; 904 const int argb_stride = 4 * picture->argb_stride; 905 uint8_t* dst = (uint8_t*)picture->argb; 906 const uint8_t *cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; 907 WebPUpsampleLinePairFunc upsample = WebPGetLinePairConverter(ALPHA_IS_LAST); 908 909 // First row, with replicated top samples. 910 upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); 911 cur_y += picture->y_stride; 912 dst += argb_stride; 913 // Center rows. 914 for (y = 1; y + 1 < height; y += 2) { 915 const uint8_t* const top_u = cur_u; 916 const uint8_t* const top_v = cur_v; 917 cur_u += picture->uv_stride; 918 cur_v += picture->uv_stride; 919 upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, 920 dst, dst + argb_stride, width); 921 cur_y += 2 * picture->y_stride; 922 dst += 2 * argb_stride; 923 } 924 // Last row (if needed), with replicated bottom samples. 925 if (height > 1 && !(height & 1)) { 926 upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); 927 } 928 // Insert alpha values if needed, in replacement for the default 0xff ones. 929 if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { 930 for (y = 0; y < height; ++y) { 931 uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; 932 const uint8_t* const src = picture->a + y * picture->a_stride; 933 int x; 934 for (x = 0; x < width; ++x) { 935 argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); 936 } 937 } 938 } 939 } 940 return 1; 941 } 942 943 int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, 944 float dithering) { 945 if (picture == NULL) return 0; 946 if (picture->argb == NULL) { 947 return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); 948 } else { 949 const uint8_t* const argb = (const uint8_t*)picture->argb; 950 const uint8_t* const r = ALPHA_IS_LAST ? argb + 2 : argb + 1; 951 const uint8_t* const g = ALPHA_IS_LAST ? argb + 1 : argb + 2; 952 const uint8_t* const b = ALPHA_IS_LAST ? argb + 0 : argb + 3; 953 const uint8_t* const a = ALPHA_IS_LAST ? argb + 3 : argb + 0; 954 // We work on a tmp copy of 'picture', because ImportYUVAFromRGBA() 955 // would be calling WebPPictureFree(picture) otherwise. 956 WebPPicture tmp = *picture; 957 PictureResetARGB(&tmp); // reset ARGB buffer so that it's not free()'d. 958 tmp.use_argb = 0; 959 tmp.colorspace = colorspace & WEBP_CSP_UV_MASK; 960 if (!ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, dithering, 961 &tmp)) { 962 return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); 963 } 964 // Copy back the YUV specs into 'picture'. 965 tmp.argb = picture->argb; 966 tmp.argb_stride = picture->argb_stride; 967 tmp.memory_argb_ = picture->memory_argb_; 968 *picture = tmp; 969 } 970 return 1; 971 } 972 973 int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { 974 return WebPPictureARGBToYUVADithered(picture, colorspace, 0.f); 975 } 976 977 //------------------------------------------------------------------------------ 978 // Helper: clean up fully transparent area to help compressibility. 979 980 #define SIZE 8 981 #define SIZE2 (SIZE / 2) 982 static int is_transparent_area(const uint8_t* ptr, int stride, int size) { 983 int y, x; 984 for (y = 0; y < size; ++y) { 985 for (x = 0; x < size; ++x) { 986 if (ptr[x]) { 987 return 0; 988 } 989 } 990 ptr += stride; 991 } 992 return 1; 993 } 994 995 static WEBP_INLINE void flatten(uint8_t* ptr, int v, int stride, int size) { 996 int y; 997 for (y = 0; y < size; ++y) { 998 memset(ptr, v, size); 999 ptr += stride; 1000 } 1001 } 1002 1003 void WebPCleanupTransparentArea(WebPPicture* pic) { 1004 int x, y, w, h; 1005 const uint8_t* a_ptr; 1006 int values[3] = { 0 }; 1007 1008 if (pic == NULL) return; 1009 1010 a_ptr = pic->a; 1011 if (a_ptr == NULL) return; // nothing to do 1012 1013 w = pic->width / SIZE; 1014 h = pic->height / SIZE; 1015 for (y = 0; y < h; ++y) { 1016 int need_reset = 1; 1017 for (x = 0; x < w; ++x) { 1018 const int off_a = (y * pic->a_stride + x) * SIZE; 1019 const int off_y = (y * pic->y_stride + x) * SIZE; 1020 const int off_uv = (y * pic->uv_stride + x) * SIZE2; 1021 if (is_transparent_area(a_ptr + off_a, pic->a_stride, SIZE)) { 1022 if (need_reset) { 1023 values[0] = pic->y[off_y]; 1024 values[1] = pic->u[off_uv]; 1025 values[2] = pic->v[off_uv]; 1026 need_reset = 0; 1027 } 1028 flatten(pic->y + off_y, values[0], pic->y_stride, SIZE); 1029 flatten(pic->u + off_uv, values[1], pic->uv_stride, SIZE2); 1030 flatten(pic->v + off_uv, values[2], pic->uv_stride, SIZE2); 1031 } else { 1032 need_reset = 1; 1033 } 1034 } 1035 // ignore the left-overs on right/bottom 1036 } 1037 } 1038 1039 #undef SIZE 1040 #undef SIZE2 1041 1042 //------------------------------------------------------------------------------ 1043 // Blend color and remove transparency info 1044 1045 #define BLEND(V0, V1, ALPHA) \ 1046 ((((V0) * (255 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 16) 1047 #define BLEND_10BIT(V0, V1, ALPHA) \ 1048 ((((V0) * (1020 - (ALPHA)) + (V1) * (ALPHA)) * 0x101) >> 18) 1049 1050 void WebPBlendAlpha(WebPPicture* pic, uint32_t background_rgb) { 1051 const int red = (background_rgb >> 16) & 0xff; 1052 const int green = (background_rgb >> 8) & 0xff; 1053 const int blue = (background_rgb >> 0) & 0xff; 1054 VP8Random rg; 1055 int x, y; 1056 if (pic == NULL) return; 1057 VP8InitRandom(&rg, 0.f); 1058 if (!pic->use_argb) { 1059 const int uv_width = (pic->width >> 1); // omit last pixel during u/v loop 1060 const int Y0 = RGBToY(red, green, blue, &rg); 1061 // VP8RGBToU/V expects the u/v values summed over four pixels 1062 const int U0 = RGBToU(4 * red, 4 * green, 4 * blue, &rg); 1063 const int V0 = RGBToV(4 * red, 4 * green, 4 * blue, &rg); 1064 const int has_alpha = pic->colorspace & WEBP_CSP_ALPHA_BIT; 1065 if (!has_alpha || pic->a == NULL) return; // nothing to do 1066 for (y = 0; y < pic->height; ++y) { 1067 // Luma blending 1068 uint8_t* const y_ptr = pic->y + y * pic->y_stride; 1069 uint8_t* const a_ptr = pic->a + y * pic->a_stride; 1070 for (x = 0; x < pic->width; ++x) { 1071 const int alpha = a_ptr[x]; 1072 if (alpha < 0xff) { 1073 y_ptr[x] = BLEND(Y0, y_ptr[x], a_ptr[x]); 1074 } 1075 } 1076 // Chroma blending every even line 1077 if ((y & 1) == 0) { 1078 uint8_t* const u = pic->u + (y >> 1) * pic->uv_stride; 1079 uint8_t* const v = pic->v + (y >> 1) * pic->uv_stride; 1080 uint8_t* const a_ptr2 = 1081 (y + 1 == pic->height) ? a_ptr : a_ptr + pic->a_stride; 1082 for (x = 0; x < uv_width; ++x) { 1083 // Average four alpha values into a single blending weight. 1084 // TODO(skal): might lead to visible contouring. Can we do better? 1085 const int alpha = 1086 a_ptr[2 * x + 0] + a_ptr[2 * x + 1] + 1087 a_ptr2[2 * x + 0] + a_ptr2[2 * x + 1]; 1088 u[x] = BLEND_10BIT(U0, u[x], alpha); 1089 v[x] = BLEND_10BIT(V0, v[x], alpha); 1090 } 1091 if (pic->width & 1) { // rightmost pixel 1092 const int alpha = 2 * (a_ptr[2 * x + 0] + a_ptr2[2 * x + 0]); 1093 u[x] = BLEND_10BIT(U0, u[x], alpha); 1094 v[x] = BLEND_10BIT(V0, v[x], alpha); 1095 } 1096 } 1097 memset(a_ptr, 0xff, pic->width); 1098 } 1099 } else { 1100 uint32_t* argb = pic->argb; 1101 const uint32_t background = MakeARGB32(red, green, blue); 1102 for (y = 0; y < pic->height; ++y) { 1103 for (x = 0; x < pic->width; ++x) { 1104 const int alpha = (argb[x] >> 24) & 0xff; 1105 if (alpha != 0xff) { 1106 if (alpha > 0) { 1107 int r = (argb[x] >> 16) & 0xff; 1108 int g = (argb[x] >> 8) & 0xff; 1109 int b = (argb[x] >> 0) & 0xff; 1110 r = BLEND(red, r, alpha); 1111 g = BLEND(green, g, alpha); 1112 b = BLEND(blue, b, alpha); 1113 argb[x] = MakeARGB32(r, g, b); 1114 } else { 1115 argb[x] = background; 1116 } 1117 } 1118 } 1119 argb += pic->argb_stride; 1120 } 1121 } 1122 } 1123 1124 #undef BLEND 1125 #undef BLEND_10BIT 1126 1127 //------------------------------------------------------------------------------ 1128 // local-min distortion 1129 // 1130 // For every pixel in the *reference* picture, we search for the local best 1131 // match in the compressed image. This is not a symmetrical measure. 1132 1133 // search radius. Shouldn't be too large. 1134 #define RADIUS 2 1135 1136 static float AccumulateLSIM(const uint8_t* src, int src_stride, 1137 const uint8_t* ref, int ref_stride, 1138 int w, int h) { 1139 int x, y; 1140 double total_sse = 0.; 1141 for (y = 0; y < h; ++y) { 1142 const int y_0 = (y - RADIUS < 0) ? 0 : y - RADIUS; 1143 const int y_1 = (y + RADIUS + 1 >= h) ? h : y + RADIUS + 1; 1144 for (x = 0; x < w; ++x) { 1145 const int x_0 = (x - RADIUS < 0) ? 0 : x - RADIUS; 1146 const int x_1 = (x + RADIUS + 1 >= w) ? w : x + RADIUS + 1; 1147 double best_sse = 255. * 255.; 1148 const double value = (double)ref[y * ref_stride + x]; 1149 int i, j; 1150 for (j = y_0; j < y_1; ++j) { 1151 const uint8_t* s = src + j * src_stride; 1152 for (i = x_0; i < x_1; ++i) { 1153 const double sse = (double)(s[i] - value) * (s[i] - value); 1154 if (sse < best_sse) best_sse = sse; 1155 } 1156 } 1157 total_sse += best_sse; 1158 } 1159 } 1160 return (float)total_sse; 1161 } 1162 #undef RADIUS 1163 1164 //------------------------------------------------------------------------------ 1165 // Distortion 1166 1167 // Max value returned in case of exact similarity. 1168 static const double kMinDistortion_dB = 99.; 1169 static float GetPSNR(const double v) { 1170 return (float)((v > 0.) ? -4.3429448 * log(v / (255 * 255.)) 1171 : kMinDistortion_dB); 1172 } 1173 1174 int WebPPictureDistortion(const WebPPicture* src, const WebPPicture* ref, 1175 int type, float result[5]) { 1176 DistoStats stats[5]; 1177 int has_alpha; 1178 int uv_w, uv_h; 1179 1180 if (src == NULL || ref == NULL || 1181 src->width != ref->width || src->height != ref->height || 1182 src->y == NULL || ref->y == NULL || 1183 src->u == NULL || ref->u == NULL || 1184 src->v == NULL || ref->v == NULL || 1185 result == NULL) { 1186 return 0; 1187 } 1188 // TODO(skal): provide distortion for ARGB too. 1189 if (src->use_argb == 1 || src->use_argb != ref->use_argb) { 1190 return 0; 1191 } 1192 1193 has_alpha = !!(src->colorspace & WEBP_CSP_ALPHA_BIT); 1194 if (has_alpha != !!(ref->colorspace & WEBP_CSP_ALPHA_BIT) || 1195 (has_alpha && (src->a == NULL || ref->a == NULL))) { 1196 return 0; 1197 } 1198 1199 memset(stats, 0, sizeof(stats)); 1200 1201 uv_w = HALVE(src->width); 1202 uv_h = HALVE(src->height); 1203 if (type >= 2) { 1204 float sse[4]; 1205 sse[0] = AccumulateLSIM(src->y, src->y_stride, 1206 ref->y, ref->y_stride, src->width, src->height); 1207 sse[1] = AccumulateLSIM(src->u, src->uv_stride, 1208 ref->u, ref->uv_stride, uv_w, uv_h); 1209 sse[2] = AccumulateLSIM(src->v, src->uv_stride, 1210 ref->v, ref->uv_stride, uv_w, uv_h); 1211 sse[3] = has_alpha ? AccumulateLSIM(src->a, src->a_stride, 1212 ref->a, ref->a_stride, 1213 src->width, src->height) 1214 : 0.f; 1215 result[0] = GetPSNR(sse[0] / (src->width * src->height)); 1216 result[1] = GetPSNR(sse[1] / (uv_w * uv_h)); 1217 result[2] = GetPSNR(sse[2] / (uv_w * uv_h)); 1218 result[3] = GetPSNR(sse[3] / (src->width * src->height)); 1219 { 1220 double total_sse = sse[0] + sse[1] + sse[2]; 1221 int total_pixels = src->width * src->height + 2 * uv_w * uv_h; 1222 if (has_alpha) { 1223 total_pixels += src->width * src->height; 1224 total_sse += sse[3]; 1225 } 1226 result[4] = GetPSNR(total_sse / total_pixels); 1227 } 1228 } else { 1229 int c; 1230 VP8SSIMAccumulatePlane(src->y, src->y_stride, 1231 ref->y, ref->y_stride, 1232 src->width, src->height, &stats[0]); 1233 VP8SSIMAccumulatePlane(src->u, src->uv_stride, 1234 ref->u, ref->uv_stride, 1235 uv_w, uv_h, &stats[1]); 1236 VP8SSIMAccumulatePlane(src->v, src->uv_stride, 1237 ref->v, ref->uv_stride, 1238 uv_w, uv_h, &stats[2]); 1239 if (has_alpha) { 1240 VP8SSIMAccumulatePlane(src->a, src->a_stride, 1241 ref->a, ref->a_stride, 1242 src->width, src->height, &stats[3]); 1243 } 1244 for (c = 0; c <= 4; ++c) { 1245 if (type == 1) { 1246 const double v = VP8SSIMGet(&stats[c]); 1247 result[c] = (float)((v < 1.) ? -10.0 * log10(1. - v) 1248 : kMinDistortion_dB); 1249 } else { 1250 const double v = VP8SSIMGetSquaredError(&stats[c]); 1251 result[c] = GetPSNR(v); 1252 } 1253 // Accumulate forward 1254 if (c < 4) VP8SSIMAddStats(&stats[c], &stats[4]); 1255 } 1256 } 1257 return 1; 1258 } 1259 1260 //------------------------------------------------------------------------------ 1261 // Simplest high-level calls: 1262 1263 typedef int (*Importer)(WebPPicture* const, const uint8_t* const, int); 1264 1265 static size_t Encode(const uint8_t* rgba, int width, int height, int stride, 1266 Importer import, float quality_factor, int lossless, 1267 uint8_t** output) { 1268 WebPPicture pic; 1269 WebPConfig config; 1270 WebPMemoryWriter wrt; 1271 int ok; 1272 1273 if (!WebPConfigPreset(&config, WEBP_PRESET_DEFAULT, quality_factor) || 1274 !WebPPictureInit(&pic)) { 1275 return 0; // shouldn't happen, except if system installation is broken 1276 } 1277 1278 config.lossless = !!lossless; 1279 pic.use_argb = !!lossless; 1280 pic.width = width; 1281 pic.height = height; 1282 pic.writer = WebPMemoryWrite; 1283 pic.custom_ptr = &wrt; 1284 WebPMemoryWriterInit(&wrt); 1285 1286 ok = import(&pic, rgba, stride) && WebPEncode(&config, &pic); 1287 WebPPictureFree(&pic); 1288 if (!ok) { 1289 free(wrt.mem); 1290 *output = NULL; 1291 return 0; 1292 } 1293 *output = wrt.mem; 1294 return wrt.size; 1295 } 1296 1297 #define ENCODE_FUNC(NAME, IMPORTER) \ 1298 size_t NAME(const uint8_t* in, int w, int h, int bps, float q, \ 1299 uint8_t** out) { \ 1300 return Encode(in, w, h, bps, IMPORTER, q, 0, out); \ 1301 } 1302 1303 ENCODE_FUNC(WebPEncodeRGB, WebPPictureImportRGB) 1304 ENCODE_FUNC(WebPEncodeBGR, WebPPictureImportBGR) 1305 ENCODE_FUNC(WebPEncodeRGBA, WebPPictureImportRGBA) 1306 ENCODE_FUNC(WebPEncodeBGRA, WebPPictureImportBGRA) 1307 1308 #undef ENCODE_FUNC 1309 1310 #define LOSSLESS_DEFAULT_QUALITY 70. 1311 #define LOSSLESS_ENCODE_FUNC(NAME, IMPORTER) \ 1312 size_t NAME(const uint8_t* in, int w, int h, int bps, uint8_t** out) { \ 1313 return Encode(in, w, h, bps, IMPORTER, LOSSLESS_DEFAULT_QUALITY, 1, out); \ 1314 } 1315 1316 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGB, WebPPictureImportRGB) 1317 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGR, WebPPictureImportBGR) 1318 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessRGBA, WebPPictureImportRGBA) 1319 LOSSLESS_ENCODE_FUNC(WebPEncodeLosslessBGRA, WebPPictureImportBGRA) 1320 1321 #undef LOSSLESS_ENCODE_FUNC 1322 1323 //------------------------------------------------------------------------------ 1324