github.com/chain5j/chain5j-pkg@v1.0.7/crypto/bn256/google/gfp12.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package bn256 6 7 // For details of the algorithms used, see "Multiplication and Squaring on 8 // Pairing-Friendly Fields, Devegili et al. 9 // http://eprint.iacr.org/2006/471.pdf. 10 11 import ( 12 "math/big" 13 ) 14 15 // gfP12 implements the field of size p¹² as a quadratic extension of gfP6 16 // where ω²=τ. 17 type gfP12 struct { 18 x, y *gfP6 // value is xω + y 19 } 20 21 func newGFp12(pool *bnPool) *gfP12 { 22 return &gfP12{newGFp6(pool), newGFp6(pool)} 23 } 24 25 func (e *gfP12) String() string { 26 return "(" + e.x.String() + "," + e.y.String() + ")" 27 } 28 29 func (e *gfP12) Put(pool *bnPool) { 30 e.x.Put(pool) 31 e.y.Put(pool) 32 } 33 34 func (e *gfP12) Set(a *gfP12) *gfP12 { 35 e.x.Set(a.x) 36 e.y.Set(a.y) 37 return e 38 } 39 40 func (e *gfP12) SetZero() *gfP12 { 41 e.x.SetZero() 42 e.y.SetZero() 43 return e 44 } 45 46 func (e *gfP12) SetOne() *gfP12 { 47 e.x.SetZero() 48 e.y.SetOne() 49 return e 50 } 51 52 func (e *gfP12) Minimal() { 53 e.x.Minimal() 54 e.y.Minimal() 55 } 56 57 func (e *gfP12) IsZero() bool { 58 e.Minimal() 59 return e.x.IsZero() && e.y.IsZero() 60 } 61 62 func (e *gfP12) IsOne() bool { 63 e.Minimal() 64 return e.x.IsZero() && e.y.IsOne() 65 } 66 67 func (e *gfP12) Conjugate(a *gfP12) *gfP12 { 68 e.x.Negative(a.x) 69 e.y.Set(a.y) 70 return a 71 } 72 73 func (e *gfP12) Negative(a *gfP12) *gfP12 { 74 e.x.Negative(a.x) 75 e.y.Negative(a.y) 76 return e 77 } 78 79 // Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p 80 func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 { 81 e.x.Frobenius(a.x, pool) 82 e.y.Frobenius(a.y, pool) 83 e.x.MulScalar(e.x, xiToPMinus1Over6, pool) 84 return e 85 } 86 87 // FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p² 88 func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 { 89 e.x.FrobeniusP2(a.x) 90 e.x.MulGFP(e.x, xiToPSquaredMinus1Over6) 91 e.y.FrobeniusP2(a.y) 92 return e 93 } 94 95 func (e *gfP12) Add(a, b *gfP12) *gfP12 { 96 e.x.Add(a.x, b.x) 97 e.y.Add(a.y, b.y) 98 return e 99 } 100 101 func (e *gfP12) Sub(a, b *gfP12) *gfP12 { 102 e.x.Sub(a.x, b.x) 103 e.y.Sub(a.y, b.y) 104 return e 105 } 106 107 func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 { 108 tx := newGFp6(pool) 109 tx.Mul(a.x, b.y, pool) 110 t := newGFp6(pool) 111 t.Mul(b.x, a.y, pool) 112 tx.Add(tx, t) 113 114 ty := newGFp6(pool) 115 ty.Mul(a.y, b.y, pool) 116 t.Mul(a.x, b.x, pool) 117 t.MulTau(t, pool) 118 e.y.Add(ty, t) 119 e.x.Set(tx) 120 121 tx.Put(pool) 122 ty.Put(pool) 123 t.Put(pool) 124 return e 125 } 126 127 func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 { 128 e.x.Mul(e.x, b, pool) 129 e.y.Mul(e.y, b, pool) 130 return e 131 } 132 133 func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 { 134 sum := newGFp12(pool) 135 sum.SetOne() 136 t := newGFp12(pool) 137 138 for i := power.BitLen() - 1; i >= 0; i-- { 139 t.Square(sum, pool) 140 if power.Bit(i) != 0 { 141 sum.Mul(t, a, pool) 142 } else { 143 sum.Set(t) 144 } 145 } 146 147 c.Set(sum) 148 149 sum.Put(pool) 150 t.Put(pool) 151 152 return c 153 } 154 155 func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 { 156 // Complex squaring algorithm 157 v0 := newGFp6(pool) 158 v0.Mul(a.x, a.y, pool) 159 160 t := newGFp6(pool) 161 t.MulTau(a.x, pool) 162 t.Add(a.y, t) 163 ty := newGFp6(pool) 164 ty.Add(a.x, a.y) 165 ty.Mul(ty, t, pool) 166 ty.Sub(ty, v0) 167 t.MulTau(v0, pool) 168 ty.Sub(ty, t) 169 170 e.y.Set(ty) 171 e.x.Double(v0) 172 173 v0.Put(pool) 174 t.Put(pool) 175 ty.Put(pool) 176 177 return e 178 } 179 180 func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 { 181 // See "Implementing cryptographic pairings", M. Scott, section 3.2. 182 // ftp://136.206.11.249/pub/crypto/pairings.pdf 183 t1 := newGFp6(pool) 184 t2 := newGFp6(pool) 185 186 t1.Square(a.x, pool) 187 t2.Square(a.y, pool) 188 t1.MulTau(t1, pool) 189 t1.Sub(t2, t1) 190 t2.Invert(t1, pool) 191 192 e.x.Negative(a.x) 193 e.y.Set(a.y) 194 e.MulScalar(e, t2, pool) 195 196 t1.Put(pool) 197 t2.Put(pool) 198 199 return e 200 }