github.com/chain5j/chain5j-pkg@v1.0.7/crypto/bn256/google/optate.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package bn256
     6  
     7  func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
     8  	// See the mixed addition algorithm from "Faster Computation of the
     9  	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
    10  
    11  	B := newGFp2(pool).Mul(p.x, r.t, pool)
    12  
    13  	D := newGFp2(pool).Add(p.y, r.z)
    14  	D.Square(D, pool)
    15  	D.Sub(D, r2)
    16  	D.Sub(D, r.t)
    17  	D.Mul(D, r.t, pool)
    18  
    19  	H := newGFp2(pool).Sub(B, r.x)
    20  	I := newGFp2(pool).Square(H, pool)
    21  
    22  	E := newGFp2(pool).Add(I, I)
    23  	E.Add(E, E)
    24  
    25  	J := newGFp2(pool).Mul(H, E, pool)
    26  
    27  	L1 := newGFp2(pool).Sub(D, r.y)
    28  	L1.Sub(L1, r.y)
    29  
    30  	V := newGFp2(pool).Mul(r.x, E, pool)
    31  
    32  	rOut = newTwistPoint(pool)
    33  	rOut.x.Square(L1, pool)
    34  	rOut.x.Sub(rOut.x, J)
    35  	rOut.x.Sub(rOut.x, V)
    36  	rOut.x.Sub(rOut.x, V)
    37  
    38  	rOut.z.Add(r.z, H)
    39  	rOut.z.Square(rOut.z, pool)
    40  	rOut.z.Sub(rOut.z, r.t)
    41  	rOut.z.Sub(rOut.z, I)
    42  
    43  	t := newGFp2(pool).Sub(V, rOut.x)
    44  	t.Mul(t, L1, pool)
    45  	t2 := newGFp2(pool).Mul(r.y, J, pool)
    46  	t2.Add(t2, t2)
    47  	rOut.y.Sub(t, t2)
    48  
    49  	rOut.t.Square(rOut.z, pool)
    50  
    51  	t.Add(p.y, rOut.z)
    52  	t.Square(t, pool)
    53  	t.Sub(t, r2)
    54  	t.Sub(t, rOut.t)
    55  
    56  	t2.Mul(L1, p.x, pool)
    57  	t2.Add(t2, t2)
    58  	a = newGFp2(pool)
    59  	a.Sub(t2, t)
    60  
    61  	c = newGFp2(pool)
    62  	c.MulScalar(rOut.z, q.y)
    63  	c.Add(c, c)
    64  
    65  	b = newGFp2(pool)
    66  	b.SetZero()
    67  	b.Sub(b, L1)
    68  	b.MulScalar(b, q.x)
    69  	b.Add(b, b)
    70  
    71  	B.Put(pool)
    72  	D.Put(pool)
    73  	H.Put(pool)
    74  	I.Put(pool)
    75  	E.Put(pool)
    76  	J.Put(pool)
    77  	L1.Put(pool)
    78  	V.Put(pool)
    79  	t.Put(pool)
    80  	t2.Put(pool)
    81  
    82  	return
    83  }
    84  
    85  func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
    86  	// See the doubling algorithm for a=0 from "Faster Computation of the
    87  	// Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
    88  
    89  	A := newGFp2(pool).Square(r.x, pool)
    90  	B := newGFp2(pool).Square(r.y, pool)
    91  	C_ := newGFp2(pool).Square(B, pool)
    92  
    93  	D := newGFp2(pool).Add(r.x, B)
    94  	D.Square(D, pool)
    95  	D.Sub(D, A)
    96  	D.Sub(D, C_)
    97  	D.Add(D, D)
    98  
    99  	E := newGFp2(pool).Add(A, A)
   100  	E.Add(E, A)
   101  
   102  	G := newGFp2(pool).Square(E, pool)
   103  
   104  	rOut = newTwistPoint(pool)
   105  	rOut.x.Sub(G, D)
   106  	rOut.x.Sub(rOut.x, D)
   107  
   108  	rOut.z.Add(r.y, r.z)
   109  	rOut.z.Square(rOut.z, pool)
   110  	rOut.z.Sub(rOut.z, B)
   111  	rOut.z.Sub(rOut.z, r.t)
   112  
   113  	rOut.y.Sub(D, rOut.x)
   114  	rOut.y.Mul(rOut.y, E, pool)
   115  	t := newGFp2(pool).Add(C_, C_)
   116  	t.Add(t, t)
   117  	t.Add(t, t)
   118  	rOut.y.Sub(rOut.y, t)
   119  
   120  	rOut.t.Square(rOut.z, pool)
   121  
   122  	t.Mul(E, r.t, pool)
   123  	t.Add(t, t)
   124  	b = newGFp2(pool)
   125  	b.SetZero()
   126  	b.Sub(b, t)
   127  	b.MulScalar(b, q.x)
   128  
   129  	a = newGFp2(pool)
   130  	a.Add(r.x, E)
   131  	a.Square(a, pool)
   132  	a.Sub(a, A)
   133  	a.Sub(a, G)
   134  	t.Add(B, B)
   135  	t.Add(t, t)
   136  	a.Sub(a, t)
   137  
   138  	c = newGFp2(pool)
   139  	c.Mul(rOut.z, r.t, pool)
   140  	c.Add(c, c)
   141  	c.MulScalar(c, q.y)
   142  
   143  	A.Put(pool)
   144  	B.Put(pool)
   145  	C_.Put(pool)
   146  	D.Put(pool)
   147  	E.Put(pool)
   148  	G.Put(pool)
   149  	t.Put(pool)
   150  
   151  	return
   152  }
   153  
   154  func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
   155  	a2 := newGFp6(pool)
   156  	a2.x.SetZero()
   157  	a2.y.Set(a)
   158  	a2.z.Set(b)
   159  	a2.Mul(a2, ret.x, pool)
   160  	t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
   161  
   162  	t := newGFp2(pool)
   163  	t.Add(b, c)
   164  	t2 := newGFp6(pool)
   165  	t2.x.SetZero()
   166  	t2.y.Set(a)
   167  	t2.z.Set(t)
   168  	ret.x.Add(ret.x, ret.y)
   169  
   170  	ret.y.Set(t3)
   171  
   172  	ret.x.Mul(ret.x, t2, pool)
   173  	ret.x.Sub(ret.x, a2)
   174  	ret.x.Sub(ret.x, ret.y)
   175  	a2.MulTau(a2, pool)
   176  	ret.y.Add(ret.y, a2)
   177  
   178  	a2.Put(pool)
   179  	t3.Put(pool)
   180  	t2.Put(pool)
   181  	t.Put(pool)
   182  }
   183  
   184  // sixuPlus2NAF is 6u+2 in non-adjacent form.
   185  var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
   186  	0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
   187  	1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
   188  	1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
   189  
   190  // miller implements the Miller loop for calculating the Optimal Ate pairing.
   191  // See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
   192  func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
   193  	ret := newGFp12(pool)
   194  	ret.SetOne()
   195  
   196  	aAffine := newTwistPoint(pool)
   197  	aAffine.Set(q)
   198  	aAffine.MakeAffine(pool)
   199  
   200  	bAffine := newCurvePoint(pool)
   201  	bAffine.Set(p)
   202  	bAffine.MakeAffine(pool)
   203  
   204  	minusA := newTwistPoint(pool)
   205  	minusA.Negative(aAffine, pool)
   206  
   207  	r := newTwistPoint(pool)
   208  	r.Set(aAffine)
   209  
   210  	r2 := newGFp2(pool)
   211  	r2.Square(aAffine.y, pool)
   212  
   213  	for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
   214  		a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
   215  		if i != len(sixuPlus2NAF)-1 {
   216  			ret.Square(ret, pool)
   217  		}
   218  
   219  		mulLine(ret, a, b, c, pool)
   220  		a.Put(pool)
   221  		b.Put(pool)
   222  		c.Put(pool)
   223  		r.Put(pool)
   224  		r = newR
   225  
   226  		switch sixuPlus2NAF[i-1] {
   227  		case 1:
   228  			a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
   229  		case -1:
   230  			a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
   231  		default:
   232  			continue
   233  		}
   234  
   235  		mulLine(ret, a, b, c, pool)
   236  		a.Put(pool)
   237  		b.Put(pool)
   238  		c.Put(pool)
   239  		r.Put(pool)
   240  		r = newR
   241  	}
   242  
   243  	// In order to calculate Q1 we have to convert q from the sextic twist
   244  	// to the full GF(p^12) group, apply the Frobenius there, and convert
   245  	// back.
   246  	//
   247  	// The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
   248  	// x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
   249  	// where x̄ is the conjugate of x. If we are going to apply the inverse
   250  	// isomorphism we need a value with a single coefficient of ω² so we
   251  	// rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
   252  	// p, 2p-2 is a multiple of six. Therefore we can rewrite as
   253  	// x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
   254  	// ω².
   255  	//
   256  	// A similar argument can be made for the y value.
   257  
   258  	q1 := newTwistPoint(pool)
   259  	q1.x.Conjugate(aAffine.x)
   260  	q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
   261  	q1.y.Conjugate(aAffine.y)
   262  	q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
   263  	q1.z.SetOne()
   264  	q1.t.SetOne()
   265  
   266  	// For Q2 we are applying the p² Frobenius. The two conjugations cancel
   267  	// out and we are left only with the factors from the isomorphism. In
   268  	// the case of x, we end up with a pure number which is why
   269  	// xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
   270  	// ignore this to end up with -Q2.
   271  
   272  	minusQ2 := newTwistPoint(pool)
   273  	minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
   274  	minusQ2.y.Set(aAffine.y)
   275  	minusQ2.z.SetOne()
   276  	minusQ2.t.SetOne()
   277  
   278  	r2.Square(q1.y, pool)
   279  	a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
   280  	mulLine(ret, a, b, c, pool)
   281  	a.Put(pool)
   282  	b.Put(pool)
   283  	c.Put(pool)
   284  	r.Put(pool)
   285  	r = newR
   286  
   287  	r2.Square(minusQ2.y, pool)
   288  	a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
   289  	mulLine(ret, a, b, c, pool)
   290  	a.Put(pool)
   291  	b.Put(pool)
   292  	c.Put(pool)
   293  	r.Put(pool)
   294  	r = newR
   295  
   296  	aAffine.Put(pool)
   297  	bAffine.Put(pool)
   298  	minusA.Put(pool)
   299  	r.Put(pool)
   300  	r2.Put(pool)
   301  
   302  	return ret
   303  }
   304  
   305  // finalExponentiation computes the (p¹²-1)/Order-th power of an element of
   306  // GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
   307  // http://cryptojedi.org/papers/dclxvi-20100714.pdf)
   308  func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
   309  	t1 := newGFp12(pool)
   310  
   311  	// This is the p^6-Frobenius
   312  	t1.x.Negative(in.x)
   313  	t1.y.Set(in.y)
   314  
   315  	inv := newGFp12(pool)
   316  	inv.Invert(in, pool)
   317  	t1.Mul(t1, inv, pool)
   318  
   319  	t2 := newGFp12(pool).FrobeniusP2(t1, pool)
   320  	t1.Mul(t1, t2, pool)
   321  
   322  	fp := newGFp12(pool).Frobenius(t1, pool)
   323  	fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
   324  	fp3 := newGFp12(pool).Frobenius(fp2, pool)
   325  
   326  	fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
   327  	fu.Exp(t1, u, pool)
   328  	fu2.Exp(fu, u, pool)
   329  	fu3.Exp(fu2, u, pool)
   330  
   331  	y3 := newGFp12(pool).Frobenius(fu, pool)
   332  	fu2p := newGFp12(pool).Frobenius(fu2, pool)
   333  	fu3p := newGFp12(pool).Frobenius(fu3, pool)
   334  	y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
   335  
   336  	y0 := newGFp12(pool)
   337  	y0.Mul(fp, fp2, pool)
   338  	y0.Mul(y0, fp3, pool)
   339  
   340  	y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
   341  	y1.Conjugate(t1)
   342  	y5.Conjugate(fu2)
   343  	y3.Conjugate(y3)
   344  	y4.Mul(fu, fu2p, pool)
   345  	y4.Conjugate(y4)
   346  
   347  	y6 := newGFp12(pool)
   348  	y6.Mul(fu3, fu3p, pool)
   349  	y6.Conjugate(y6)
   350  
   351  	t0 := newGFp12(pool)
   352  	t0.Square(y6, pool)
   353  	t0.Mul(t0, y4, pool)
   354  	t0.Mul(t0, y5, pool)
   355  	t1.Mul(y3, y5, pool)
   356  	t1.Mul(t1, t0, pool)
   357  	t0.Mul(t0, y2, pool)
   358  	t1.Square(t1, pool)
   359  	t1.Mul(t1, t0, pool)
   360  	t1.Square(t1, pool)
   361  	t0.Mul(t1, y1, pool)
   362  	t1.Mul(t1, y0, pool)
   363  	t0.Square(t0, pool)
   364  	t0.Mul(t0, t1, pool)
   365  
   366  	inv.Put(pool)
   367  	t1.Put(pool)
   368  	t2.Put(pool)
   369  	fp.Put(pool)
   370  	fp2.Put(pool)
   371  	fp3.Put(pool)
   372  	fu.Put(pool)
   373  	fu2.Put(pool)
   374  	fu3.Put(pool)
   375  	fu2p.Put(pool)
   376  	fu3p.Put(pool)
   377  	y0.Put(pool)
   378  	y1.Put(pool)
   379  	y2.Put(pool)
   380  	y3.Put(pool)
   381  	y4.Put(pool)
   382  	y5.Put(pool)
   383  	y6.Put(pool)
   384  
   385  	return t0
   386  }
   387  
   388  func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
   389  	e := miller(a, b, pool)
   390  	ret := finalExponentiation(e, pool)
   391  	e.Put(pool)
   392  
   393  	if a.IsInfinity() || b.IsInfinity() {
   394  		ret.SetOne()
   395  	}
   396  	return ret
   397  }