github.com/chain5j/chain5j-pkg@v1.0.7/crypto/signature/secp256k1/btcecv1/ciphering.go (about)

     1  // Copyright (c) 2015-2016 The btcsuite developers
     2  // Use of this source code is governed by an ISC
     3  // license that can be found in the LICENSE file.
     4  
     5  package btcecv1
     6  
     7  import (
     8  	"bytes"
     9  	"crypto/aes"
    10  	"crypto/cipher"
    11  	"crypto/hmac"
    12  	"crypto/rand"
    13  	"crypto/sha256"
    14  	"crypto/sha512"
    15  	"errors"
    16  	"io"
    17  )
    18  
    19  var (
    20  	// ErrInvalidMAC occurs when Message Authentication Check (MAC) fails
    21  	// during decryption. This happens because of either invalid private key or
    22  	// corrupt ciphertext.
    23  	ErrInvalidMAC = errors.New("invalid mac hash")
    24  
    25  	// errInputTooShort occurs when the input ciphertext to the Decrypt
    26  	// function is less than 134 bytes long.
    27  	errInputTooShort = errors.New("ciphertext too short")
    28  
    29  	// errUnsupportedCurve occurs when the first two bytes of the encrypted
    30  	// text aren't 0x02CA (= 712 = secp256k1, from OpenSSL).
    31  	errUnsupportedCurve = errors.New("unsupported curve")
    32  
    33  	errInvalidXLength = errors.New("invalid X length, must be 32")
    34  	errInvalidYLength = errors.New("invalid Y length, must be 32")
    35  	errInvalidPadding = errors.New("invalid PKCS#7 padding")
    36  
    37  	// 0x02CA = 714
    38  	ciphCurveBytes = [2]byte{0x02, 0xCA}
    39  	// 0x20 = 32
    40  	ciphCoordLength = [2]byte{0x00, 0x20}
    41  )
    42  
    43  // GenerateSharedSecret generates a shared secret based on a private key and a
    44  // public key using Diffie-Hellman key exchange (ECDH) (RFC 4753).
    45  // RFC5903 Section 9 states we should only return x.
    46  func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte {
    47  	x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes())
    48  	return x.Bytes()
    49  }
    50  
    51  // Encrypt encrypts data for the target public key using AES-256-CBC. It also
    52  // generates a private key (the pubkey of which is also in the output). The only
    53  // supported curve is secp256k1. The `structure' that it encodes everything into
    54  // is:
    55  //
    56  //	struct {
    57  //		// Initialization Vector used for AES-256-CBC
    58  //		IV [16]byte
    59  //		// Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX +
    60  //		// len_of_pubkeyY(2) + pubkeyY (curve = 714)
    61  //		PublicKey [70]byte
    62  //		// Cipher text
    63  //		Data []byte
    64  //		// HMAC-SHA-256 Message Authentication Code
    65  //		HMAC [32]byte
    66  //	}
    67  //
    68  // The primary aim is to ensure byte compatibility with Pyelliptic.  Also, refer
    69  // to section 5.8.1 of ANSI X9.63 for rationale on this format.
    70  func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) {
    71  	ephemeral, err := NewPrivateKey(S256())
    72  	if err != nil {
    73  		return nil, err
    74  	}
    75  	ecdhKey := GenerateSharedSecret(ephemeral, pubkey)
    76  	derivedKey := sha512.Sum512(ecdhKey)
    77  	keyE := derivedKey[:32]
    78  	keyM := derivedKey[32:]
    79  
    80  	paddedIn := addPKCSPadding(in)
    81  	// IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256
    82  	out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size)
    83  	iv := out[:aes.BlockSize]
    84  	if _, err = io.ReadFull(rand.Reader, iv); err != nil {
    85  		return nil, err
    86  	}
    87  	// start writing public key
    88  	pb := ephemeral.PubKey().SerializeUncompressed()
    89  	offset := aes.BlockSize
    90  
    91  	// curve and X length
    92  	copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...))
    93  	offset += 4
    94  	// X
    95  	copy(out[offset:offset+32], pb[1:33])
    96  	offset += 32
    97  	// Y length
    98  	copy(out[offset:offset+2], ciphCoordLength[:])
    99  	offset += 2
   100  	// Y
   101  	copy(out[offset:offset+32], pb[33:])
   102  	offset += 32
   103  
   104  	// start encryption
   105  	block, err := aes.NewCipher(keyE)
   106  	if err != nil {
   107  		return nil, err
   108  	}
   109  	mode := cipher.NewCBCEncrypter(block, iv)
   110  	mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn)
   111  
   112  	// start HMAC-SHA-256
   113  	hm := hmac.New(sha256.New, keyM)
   114  	hm.Write(out[:len(out)-sha256.Size])          // everything is hashed
   115  	copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum
   116  
   117  	return out, nil
   118  }
   119  
   120  // Decrypt decrypts data that was encrypted using the Encrypt function.
   121  func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) {
   122  	// IV + Curve params/X/Y + 1 block + HMAC-256
   123  	if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size {
   124  		return nil, errInputTooShort
   125  	}
   126  
   127  	// read iv
   128  	iv := in[:aes.BlockSize]
   129  	offset := aes.BlockSize
   130  
   131  	// start reading pubkey
   132  	if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) {
   133  		return nil, errUnsupportedCurve
   134  	}
   135  	offset += 2
   136  
   137  	if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
   138  		return nil, errInvalidXLength
   139  	}
   140  	offset += 2
   141  
   142  	xBytes := in[offset : offset+32]
   143  	offset += 32
   144  
   145  	if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
   146  		return nil, errInvalidYLength
   147  	}
   148  	offset += 2
   149  
   150  	yBytes := in[offset : offset+32]
   151  	offset += 32
   152  
   153  	pb := make([]byte, 65)
   154  	pb[0] = byte(0x04) // uncompressed
   155  	copy(pb[1:33], xBytes)
   156  	copy(pb[33:], yBytes)
   157  	// check if (X, Y) lies on the curve and create a Pubkey if it does
   158  	pubkey, err := ParsePubKey(pb, S256())
   159  	if err != nil {
   160  		return nil, err
   161  	}
   162  
   163  	// check for cipher text length
   164  	if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 {
   165  		return nil, errInvalidPadding // not padded to 16 bytes
   166  	}
   167  
   168  	// read hmac
   169  	messageMAC := in[len(in)-sha256.Size:]
   170  
   171  	// generate shared secret
   172  	ecdhKey := GenerateSharedSecret(priv, pubkey)
   173  	derivedKey := sha512.Sum512(ecdhKey)
   174  	keyE := derivedKey[:32]
   175  	keyM := derivedKey[32:]
   176  
   177  	// verify mac
   178  	hm := hmac.New(sha256.New, keyM)
   179  	hm.Write(in[:len(in)-sha256.Size]) // everything is hashed
   180  	expectedMAC := hm.Sum(nil)
   181  	if !hmac.Equal(messageMAC, expectedMAC) {
   182  		return nil, ErrInvalidMAC
   183  	}
   184  
   185  	// start decryption
   186  	block, err := aes.NewCipher(keyE)
   187  	if err != nil {
   188  		return nil, err
   189  	}
   190  	mode := cipher.NewCBCDecrypter(block, iv)
   191  	// same length as ciphertext
   192  	plaintext := make([]byte, len(in)-offset-sha256.Size)
   193  	mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size])
   194  
   195  	return removePKCSPadding(plaintext)
   196  }
   197  
   198  // Implement PKCS#7 padding with block size of 16 (AES block size).
   199  
   200  // addPKCSPadding adds padding to a block of data
   201  func addPKCSPadding(src []byte) []byte {
   202  	padding := aes.BlockSize - len(src)%aes.BlockSize
   203  	padtext := bytes.Repeat([]byte{byte(padding)}, padding)
   204  	return append(src, padtext...)
   205  }
   206  
   207  // removePKCSPadding removes padding from data that was added with addPKCSPadding
   208  func removePKCSPadding(src []byte) ([]byte, error) {
   209  	length := len(src)
   210  	padLength := int(src[length-1])
   211  	if padLength > aes.BlockSize || length < aes.BlockSize {
   212  		return nil, errInvalidPadding
   213  	}
   214  
   215  	return src[:length-padLength], nil
   216  }