github.com/chain5j/chain5j-pkg@v1.0.7/crypto/signature/secp256k1/signature.go (about) 1 // Package secp256k1 2 // 3 // @author: xwc1125 4 package secp256k1 5 6 import ( 7 "crypto/ecdsa" 8 "errors" 9 "fmt" 10 "math/big" 11 12 "github.com/chain5j/chain5j-pkg/crypto/signature/secp256k1/btcecv1" 13 ) 14 15 var ( 16 secp256k1N, _ = new(big.Int).SetString("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141", 16) 17 secp256k1halfN = new(big.Int).Div(secp256k1N, big.NewInt(2)) 18 ) 19 20 // RecoverPubkey returns the uncompressed public key that created the given signature. 21 func RecoverPubkey(hash, sig []byte) ([]byte, error) { 22 pub, err := SigToPub(hash, sig) 23 if err != nil { 24 return nil, err 25 } 26 p := (*btcecv1.PublicKey)(pub) 27 bytes := p.SerializeUncompressed() 28 return bytes, err 29 } 30 31 // SigToPub returns the public key that created the given signature. 32 func SigToPub(hash, sig []byte) (*ecdsa.PublicKey, error) { 33 // Convert to btcec input format with 'recovery id' v at the beginning. 34 btcsig := make([]byte, 65) 35 btcsig[0] = sig[64] + 27 36 copy(btcsig[1:], sig) 37 38 pub, _, err := btcecv1.RecoverCompact(btcecv1.S256(), btcsig, hash) 39 return pub.ToECDSA(), err 40 } 41 42 // Sign calculates an ECDSA signature. 43 // 44 // This function is susceptible to chosen plaintext attacks that can leak 45 // information about the private key that is used for signing. Callers must 46 // be aware that the given hash cannot be chosen by an adversery. Common 47 // solution is to hash any input before calculating the signature. 48 // 49 // The produced signature is in the [R || S || V] format where V is 0 or 1. 50 func Sign(prv *ecdsa.PrivateKey, hash []byte) ([]byte, error) { 51 if len(hash) != 32 { 52 return nil, fmt.Errorf("hash is required to be exactly 32 bytes (%d)", len(hash)) 53 } 54 if prv.Curve != btcecv1.S256() { 55 return nil, fmt.Errorf("private key curve is not secp256k1") 56 } 57 sig, err := btcecv1.SignCompact(btcecv1.S256(), (*btcecv1.PrivateKey)(prv), hash, false) 58 if err != nil { 59 return nil, err 60 } 61 // Convert to Ethereum signature format with 'recovery id' v at the end. 62 v := sig[0] - 27 63 copy(sig, sig[1:]) 64 sig[64] = v 65 return sig, nil 66 } 67 68 func Verify(pub *ecdsa.PublicKey, hash []byte, signature []byte) bool { 69 sig := &btcecv1.Signature{R: new(big.Int).SetBytes(signature[:32]), S: new(big.Int).SetBytes(signature[32:64])} 70 key := (*btcecv1.PublicKey)(pub) 71 return sig.Verify(hash, key) 72 } 73 74 // VerifySignature checks that the given public key created signature over hash. 75 // The public key should be in compressed (33 bytes) or uncompressed (65 bytes) format. 76 // The signature should have the 64 byte [R || S] format. 77 func VerifySignature(pubkey, hash, signature []byte) bool { 78 if len(signature) != 64 { 79 return false 80 } 81 sig := &btcecv1.Signature{R: new(big.Int).SetBytes(signature[:32]), S: new(big.Int).SetBytes(signature[32:])} 82 key, err := btcecv1.ParsePubKey(pubkey, btcecv1.S256()) 83 if err != nil { 84 return false 85 } 86 return sig.Verify(hash, key) 87 } 88 89 // DecompressPubkey parses a public key in the 33-byte compressed format. 90 func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) { 91 if len(pubkey) != 33 { 92 return nil, errors.New("invalid compressed public key length") 93 } 94 key, err := btcecv1.ParsePubKey(pubkey, btcecv1.S256()) 95 if err != nil { 96 return nil, err 97 } 98 return key.ToECDSA(), nil 99 } 100 101 // CompressPubkey encodes a public key to the 33-byte compressed format. 102 func CompressPubkey(pubkey *ecdsa.PublicKey) []byte { 103 return (*btcecv1.PublicKey)(pubkey).SerializeCompressed() 104 }