github.com/chainopen/ethchaincode@v0.0.0-20190924072703-d975acdaa1c6/common/math/big.go (about) 1 // Copyright 2017 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package math provides integer math utilities. 18 package math 19 20 import ( 21 "fmt" 22 "math/big" 23 ) 24 25 // Various big integer limit values. 26 var ( 27 tt255 = BigPow(2, 255) 28 tt256 = BigPow(2, 256) 29 tt256m1 = new(big.Int).Sub(tt256, big.NewInt(1)) 30 tt63 = BigPow(2, 63) 31 MaxBig256 = new(big.Int).Set(tt256m1) 32 MaxBig63 = new(big.Int).Sub(tt63, big.NewInt(1)) 33 ) 34 35 const ( 36 // number of bits in a big.Word 37 wordBits = 32 << (uint64(^big.Word(0)) >> 63) 38 // number of bytes in a big.Word 39 wordBytes = wordBits / 8 40 ) 41 42 // HexOrDecimal256 marshals big.Int as hex or decimal. 43 type HexOrDecimal256 big.Int 44 45 // NewHexOrDecimal256 creates a new HexOrDecimal256 46 func NewHexOrDecimal256(x int64) *HexOrDecimal256 { 47 b := big.NewInt(x) 48 h := HexOrDecimal256(*b) 49 return &h 50 } 51 52 // UnmarshalText implements encoding.TextUnmarshaler. 53 func (i *HexOrDecimal256) UnmarshalText(input []byte) error { 54 bigint, ok := ParseBig256(string(input)) 55 if !ok { 56 return fmt.Errorf("invalid hex or decimal integer %q", input) 57 } 58 *i = HexOrDecimal256(*bigint) 59 return nil 60 } 61 62 // MarshalText implements encoding.TextMarshaler. 63 func (i *HexOrDecimal256) MarshalText() ([]byte, error) { 64 if i == nil { 65 return []byte("0x0"), nil 66 } 67 return []byte(fmt.Sprintf("%#x", (*big.Int)(i))), nil 68 } 69 70 // ParseBig256 parses s as a 256 bit integer in decimal or hexadecimal syntax. 71 // Leading zeros are accepted. The empty string parses as zero. 72 func ParseBig256(s string) (*big.Int, bool) { 73 if s == "" { 74 return new(big.Int), true 75 } 76 var bigint *big.Int 77 var ok bool 78 if len(s) >= 2 && (s[:2] == "0x" || s[:2] == "0X") { 79 bigint, ok = new(big.Int).SetString(s[2:], 16) 80 } else { 81 bigint, ok = new(big.Int).SetString(s, 10) 82 } 83 if ok && bigint.BitLen() > 256 { 84 bigint, ok = nil, false 85 } 86 return bigint, ok 87 } 88 89 // MustParseBig256 parses s as a 256 bit big integer and panics if the string is invalid. 90 func MustParseBig256(s string) *big.Int { 91 v, ok := ParseBig256(s) 92 if !ok { 93 panic("invalid 256 bit integer: " + s) 94 } 95 return v 96 } 97 98 // BigPow returns a ** b as a big integer. 99 func BigPow(a, b int64) *big.Int { 100 r := big.NewInt(a) 101 return r.Exp(r, big.NewInt(b), nil) 102 } 103 104 // BigMax returns the larger of x or y. 105 func BigMax(x, y *big.Int) *big.Int { 106 if x.Cmp(y) < 0 { 107 return y 108 } 109 return x 110 } 111 112 // BigMin returns the smaller of x or y. 113 func BigMin(x, y *big.Int) *big.Int { 114 if x.Cmp(y) > 0 { 115 return y 116 } 117 return x 118 } 119 120 // FirstBitSet returns the index of the first 1 bit in v, counting from LSB. 121 func FirstBitSet(v *big.Int) int { 122 for i := 0; i < v.BitLen(); i++ { 123 if v.Bit(i) > 0 { 124 return i 125 } 126 } 127 return v.BitLen() 128 } 129 130 // PaddedBigBytes encodes a big integer as a big-endian byte slice. The length 131 // of the slice is at least n bytes. 132 func PaddedBigBytes(bigint *big.Int, n int) []byte { 133 if bigint.BitLen()/8 >= n { 134 return bigint.Bytes() 135 } 136 ret := make([]byte, n) 137 ReadBits(bigint, ret) 138 return ret 139 } 140 141 // bigEndianByteAt returns the byte at position n, 142 // in Big-Endian encoding 143 // So n==0 returns the least significant byte 144 func bigEndianByteAt(bigint *big.Int, n int) byte { 145 words := bigint.Bits() 146 // Check word-bucket the byte will reside in 147 i := n / wordBytes 148 if i >= len(words) { 149 return byte(0) 150 } 151 word := words[i] 152 // Offset of the byte 153 shift := 8 * uint(n%wordBytes) 154 155 return byte(word >> shift) 156 } 157 158 // Byte returns the byte at position n, 159 // with the supplied padlength in Little-Endian encoding. 160 // n==0 returns the MSB 161 // Example: bigint '5', padlength 32, n=31 => 5 162 func Byte(bigint *big.Int, padlength, n int) byte { 163 if n >= padlength { 164 return byte(0) 165 } 166 return bigEndianByteAt(bigint, padlength-1-n) 167 } 168 169 // ReadBits encodes the absolute value of bigint as big-endian bytes. Callers must ensure 170 // that buf has enough space. If buf is too short the result will be incomplete. 171 func ReadBits(bigint *big.Int, buf []byte) { 172 i := len(buf) 173 for _, d := range bigint.Bits() { 174 for j := 0; j < wordBytes && i > 0; j++ { 175 i-- 176 buf[i] = byte(d) 177 d >>= 8 178 } 179 } 180 } 181 182 // U256 encodes as a 256 bit two's complement number. This operation is destructive. 183 func U256(x *big.Int) *big.Int { 184 return x.And(x, tt256m1) 185 } 186 187 // S256 interprets x as a two's complement number. 188 // x must not exceed 256 bits (the result is undefined if it does) and is not modified. 189 // 190 // S256(0) = 0 191 // S256(1) = 1 192 // S256(2**255) = -2**255 193 // S256(2**256-1) = -1 194 func S256(x *big.Int) *big.Int { 195 if x.Cmp(tt255) < 0 { 196 return x 197 } 198 return new(big.Int).Sub(x, tt256) 199 } 200 201 // Exp implements exponentiation by squaring. 202 // Exp returns a newly-allocated big integer and does not change 203 // base or exponent. The result is truncated to 256 bits. 204 // 205 // Courtesy @karalabe and @chfast 206 func Exp(base, exponent *big.Int) *big.Int { 207 result := big.NewInt(1) 208 209 for _, word := range exponent.Bits() { 210 for i := 0; i < wordBits; i++ { 211 if word&1 == 1 { 212 U256(result.Mul(result, base)) 213 } 214 U256(base.Mul(base, base)) 215 word >>= 1 216 } 217 } 218 return result 219 }