github.com/cheng762/platon-go@v1.8.17-0.20190529111256-7deff2d7be26/accounts/usbwallet/ledger.go (about) 1 // Copyright 2017 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // This file contains the implementation for interacting with the Ledger hardware 18 // wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo: 19 // https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc 20 21 package usbwallet 22 23 import ( 24 "encoding/binary" 25 "encoding/hex" 26 "errors" 27 "fmt" 28 "io" 29 "math/big" 30 31 "github.com/PlatONnetwork/PlatON-Go/accounts" 32 "github.com/PlatONnetwork/PlatON-Go/common" 33 "github.com/PlatONnetwork/PlatON-Go/common/hexutil" 34 "github.com/PlatONnetwork/PlatON-Go/core/types" 35 "github.com/PlatONnetwork/PlatON-Go/log" 36 "github.com/PlatONnetwork/PlatON-Go/rlp" 37 ) 38 39 // ledgerOpcode is an enumeration encoding the supported Ledger opcodes. 40 type ledgerOpcode byte 41 42 // ledgerParam1 is an enumeration encoding the supported Ledger parameters for 43 // specific opcodes. The same parameter values may be reused between opcodes. 44 type ledgerParam1 byte 45 46 // ledgerParam2 is an enumeration encoding the supported Ledger parameters for 47 // specific opcodes. The same parameter values may be reused between opcodes. 48 type ledgerParam2 byte 49 50 const ( 51 ledgerOpRetrieveAddress ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path 52 ledgerOpSignTransaction ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters 53 ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration 54 55 ledgerP1DirectlyFetchAddress ledgerParam1 = 0x00 // Return address directly from the wallet 56 ledgerP1InitTransactionData ledgerParam1 = 0x00 // First transaction data block for signing 57 ledgerP1ContTransactionData ledgerParam1 = 0x80 // Subsequent transaction data block for signing 58 ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address 59 ) 60 61 // errLedgerReplyInvalidHeader is the error message returned by a Ledger data exchange 62 // if the device replies with a mismatching header. This usually means the device 63 // is in browser mode. 64 var errLedgerReplyInvalidHeader = errors.New("ledger: invalid reply header") 65 66 // errLedgerInvalidVersionReply is the error message returned by a Ledger version retrieval 67 // when a response does arrive, but it does not contain the expected data. 68 var errLedgerInvalidVersionReply = errors.New("ledger: invalid version reply") 69 70 // ledgerDriver implements the communication with a Ledger hardware wallet. 71 type ledgerDriver struct { 72 device io.ReadWriter // USB device connection to communicate through 73 version [3]byte // Current version of the Ledger firmware (zero if app is offline) 74 browser bool // Flag whether the Ledger is in browser mode (reply channel mismatch) 75 failure error // Any failure that would make the device unusable 76 log log.Logger // Contextual logger to tag the ledger with its id 77 } 78 79 // newLedgerDriver creates a new instance of a Ledger USB protocol driver. 80 func newLedgerDriver(logger log.Logger) driver { 81 return &ledgerDriver{ 82 log: logger, 83 } 84 } 85 86 // Status implements usbwallet.driver, returning various states the Ledger can 87 // currently be in. 88 func (w *ledgerDriver) Status() (string, error) { 89 if w.failure != nil { 90 return fmt.Sprintf("Failed: %v", w.failure), w.failure 91 } 92 if w.browser { 93 return "Ethereum app in browser mode", w.failure 94 } 95 if w.offline() { 96 return "Ethereum app offline", w.failure 97 } 98 return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2]), w.failure 99 } 100 101 // offline returns whether the wallet and the Ethereum app is offline or not. 102 // 103 // The method assumes that the state lock is held! 104 func (w *ledgerDriver) offline() bool { 105 return w.version == [3]byte{0, 0, 0} 106 } 107 108 // Open implements usbwallet.driver, attempting to initialize the connection to the 109 // Ledger hardware wallet. The Ledger does not require a user passphrase, so that 110 // parameter is silently discarded. 111 func (w *ledgerDriver) Open(device io.ReadWriter, passphrase string) error { 112 w.device, w.failure = device, nil 113 114 _, err := w.ledgerDerive(accounts.DefaultBaseDerivationPath) 115 if err != nil { 116 // Ethereum app is not running or in browser mode, nothing more to do, return 117 if err == errLedgerReplyInvalidHeader { 118 w.browser = true 119 } 120 return nil 121 } 122 // Try to resolve the Ethereum app's version, will fail prior to v1.0.2 123 if w.version, err = w.ledgerVersion(); err != nil { 124 w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1 125 } 126 return nil 127 } 128 129 // Close implements usbwallet.driver, cleaning up and metadata maintained within 130 // the Ledger driver. 131 func (w *ledgerDriver) Close() error { 132 w.browser, w.version = false, [3]byte{} 133 return nil 134 } 135 136 // Heartbeat implements usbwallet.driver, performing a sanity check against the 137 // Ledger to see if it's still online. 138 func (w *ledgerDriver) Heartbeat() error { 139 if _, err := w.ledgerVersion(); err != nil && err != errLedgerInvalidVersionReply { 140 w.failure = err 141 return err 142 } 143 return nil 144 } 145 146 // Derive implements usbwallet.driver, sending a derivation request to the Ledger 147 // and returning the Ethereum address located on that derivation path. 148 func (w *ledgerDriver) Derive(path accounts.DerivationPath) (common.Address, error) { 149 return w.ledgerDerive(path) 150 } 151 152 // SignTx implements usbwallet.driver, sending the transaction to the Ledger and 153 // waiting for the user to confirm or deny the transaction. 154 // 155 // Note, if the version of the Ethereum application running on the Ledger wallet is 156 // too old to sign EIP-155 transactions, but such is requested nonetheless, an error 157 // will be returned opposed to silently signing in Homestead mode. 158 func (w *ledgerDriver) SignTx(path accounts.DerivationPath, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) { 159 // If the Ethereum app doesn't run, abort 160 if w.offline() { 161 return common.Address{}, nil, accounts.ErrWalletClosed 162 } 163 // Ensure the wallet is capable of signing the given transaction 164 if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 { 165 return common.Address{}, nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2]) 166 } 167 // All infos gathered and metadata checks out, request signing 168 return w.ledgerSign(path, tx, chainID) 169 } 170 171 // ledgerVersion retrieves the current version of the Ethereum wallet app running 172 // on the Ledger wallet. 173 // 174 // The version retrieval protocol is defined as follows: 175 // 176 // CLA | INS | P1 | P2 | Lc | Le 177 // ----+-----+----+----+----+--- 178 // E0 | 06 | 00 | 00 | 00 | 04 179 // 180 // With no input data, and the output data being: 181 // 182 // Description | Length 183 // ---------------------------------------------------+-------- 184 // Flags 01: arbitrary data signature enabled by user | 1 byte 185 // Application major version | 1 byte 186 // Application minor version | 1 byte 187 // Application patch version | 1 byte 188 func (w *ledgerDriver) ledgerVersion() ([3]byte, error) { 189 // Send the request and wait for the response 190 reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil) 191 if err != nil { 192 return [3]byte{}, err 193 } 194 if len(reply) != 4 { 195 return [3]byte{}, errLedgerInvalidVersionReply 196 } 197 // Cache the version for future reference 198 var version [3]byte 199 copy(version[:], reply[1:]) 200 return version, nil 201 } 202 203 // ledgerDerive retrieves the currently active Ethereum address from a Ledger 204 // wallet at the specified derivation path. 205 // 206 // The address derivation protocol is defined as follows: 207 // 208 // CLA | INS | P1 | P2 | Lc | Le 209 // ----+-----+----+----+-----+--- 210 // E0 | 02 | 00 return address 211 // 01 display address and confirm before returning 212 // | 00: do not return the chain code 213 // | 01: return the chain code 214 // | var | 00 215 // 216 // Where the input data is: 217 // 218 // Description | Length 219 // -------------------------------------------------+-------- 220 // Number of BIP 32 derivations to perform (max 10) | 1 byte 221 // First derivation index (big endian) | 4 bytes 222 // ... | 4 bytes 223 // Last derivation index (big endian) | 4 bytes 224 // 225 // And the output data is: 226 // 227 // Description | Length 228 // ------------------------+------------------- 229 // Public Key length | 1 byte 230 // Uncompressed Public Key | arbitrary 231 // Ethereum address length | 1 byte 232 // Ethereum address | 40 bytes hex ascii 233 // Chain code if requested | 32 bytes 234 func (w *ledgerDriver) ledgerDerive(derivationPath []uint32) (common.Address, error) { 235 // Flatten the derivation path into the Ledger request 236 path := make([]byte, 1+4*len(derivationPath)) 237 path[0] = byte(len(derivationPath)) 238 for i, component := range derivationPath { 239 binary.BigEndian.PutUint32(path[1+4*i:], component) 240 } 241 // Send the request and wait for the response 242 reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path) 243 if err != nil { 244 return common.Address{}, err 245 } 246 // Discard the public key, we don't need that for now 247 if len(reply) < 1 || len(reply) < 1+int(reply[0]) { 248 return common.Address{}, errors.New("reply lacks public key entry") 249 } 250 reply = reply[1+int(reply[0]):] 251 252 // Extract the Ethereum hex address string 253 if len(reply) < 1 || len(reply) < 1+int(reply[0]) { 254 return common.Address{}, errors.New("reply lacks address entry") 255 } 256 hexstr := reply[1 : 1+int(reply[0])] 257 258 // Decode the hex sting into an Ethereum address and return 259 var address common.Address 260 hex.Decode(address[:], hexstr) 261 return address, nil 262 } 263 264 // ledgerSign sends the transaction to the Ledger wallet, and waits for the user 265 // to confirm or deny the transaction. 266 // 267 // The transaction signing protocol is defined as follows: 268 // 269 // CLA | INS | P1 | P2 | Lc | Le 270 // ----+-----+----+----+-----+--- 271 // E0 | 04 | 00: first transaction data block 272 // 80: subsequent transaction data block 273 // | 00 | variable | variable 274 // 275 // Where the input for the first transaction block (first 255 bytes) is: 276 // 277 // Description | Length 278 // -------------------------------------------------+---------- 279 // Number of BIP 32 derivations to perform (max 10) | 1 byte 280 // First derivation index (big endian) | 4 bytes 281 // ... | 4 bytes 282 // Last derivation index (big endian) | 4 bytes 283 // RLP transaction chunk | arbitrary 284 // 285 // And the input for subsequent transaction blocks (first 255 bytes) are: 286 // 287 // Description | Length 288 // ----------------------+---------- 289 // RLP transaction chunk | arbitrary 290 // 291 // And the output data is: 292 // 293 // Description | Length 294 // ------------+--------- 295 // signature V | 1 byte 296 // signature R | 32 bytes 297 // signature S | 32 bytes 298 func (w *ledgerDriver) ledgerSign(derivationPath []uint32, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) { 299 // Flatten the derivation path into the Ledger request 300 path := make([]byte, 1+4*len(derivationPath)) 301 path[0] = byte(len(derivationPath)) 302 for i, component := range derivationPath { 303 binary.BigEndian.PutUint32(path[1+4*i:], component) 304 } 305 // Create the transaction RLP based on whether legacy or EIP155 signing was requested 306 var ( 307 txrlp []byte 308 err error 309 ) 310 if chainID == nil { 311 if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil { 312 return common.Address{}, nil, err 313 } 314 } else { 315 if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil { 316 return common.Address{}, nil, err 317 } 318 } 319 payload := append(path, txrlp...) 320 321 // Send the request and wait for the response 322 var ( 323 op = ledgerP1InitTransactionData 324 reply []byte 325 ) 326 for len(payload) > 0 { 327 // Calculate the size of the next data chunk 328 chunk := 255 329 if chunk > len(payload) { 330 chunk = len(payload) 331 } 332 // Send the chunk over, ensuring it's processed correctly 333 reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk]) 334 if err != nil { 335 return common.Address{}, nil, err 336 } 337 // Shift the payload and ensure subsequent chunks are marked as such 338 payload = payload[chunk:] 339 op = ledgerP1ContTransactionData 340 } 341 // Extract the Ethereum signature and do a sanity validation 342 if len(reply) != 65 { 343 return common.Address{}, nil, errors.New("reply lacks signature") 344 } 345 signature := append(reply[1:], reply[0]) 346 347 // Create the correct signer and signature transform based on the chain ID 348 var signer types.Signer 349 if chainID == nil { 350 signer = new(types.HomesteadSigner) 351 } else { 352 signer = types.NewEIP155Signer(chainID) 353 signature[64] = signature[64] - byte(chainID.Uint64()*2+35) 354 } 355 signed, err := tx.WithSignature(signer, signature) 356 if err != nil { 357 return common.Address{}, nil, err 358 } 359 sender, err := types.Sender(signer, signed) 360 if err != nil { 361 return common.Address{}, nil, err 362 } 363 return sender, signed, nil 364 } 365 366 // ledgerExchange performs a data exchange with the Ledger wallet, sending it a 367 // message and retrieving the response. 368 // 369 // The common transport header is defined as follows: 370 // 371 // Description | Length 372 // --------------------------------------+---------- 373 // Communication channel ID (big endian) | 2 bytes 374 // Command tag | 1 byte 375 // Packet sequence index (big endian) | 2 bytes 376 // Payload | arbitrary 377 // 378 // The Communication channel ID allows commands multiplexing over the same 379 // physical link. It is not used for the time being, and should be set to 0101 380 // to avoid compatibility issues with implementations ignoring a leading 00 byte. 381 // 382 // The Command tag describes the message content. Use TAG_APDU (0x05) for standard 383 // APDU payloads, or TAG_PING (0x02) for a simple link test. 384 // 385 // The Packet sequence index describes the current sequence for fragmented payloads. 386 // The first fragment index is 0x00. 387 // 388 // APDU Command payloads are encoded as follows: 389 // 390 // Description | Length 391 // ----------------------------------- 392 // APDU length (big endian) | 2 bytes 393 // APDU CLA | 1 byte 394 // APDU INS | 1 byte 395 // APDU P1 | 1 byte 396 // APDU P2 | 1 byte 397 // APDU length | 1 byte 398 // Optional APDU data | arbitrary 399 func (w *ledgerDriver) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) { 400 // Construct the message payload, possibly split into multiple chunks 401 apdu := make([]byte, 2, 7+len(data)) 402 403 binary.BigEndian.PutUint16(apdu, uint16(5+len(data))) 404 apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...) 405 apdu = append(apdu, data...) 406 407 // Stream all the chunks to the device 408 header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended 409 chunk := make([]byte, 64) 410 space := len(chunk) - len(header) 411 412 for i := 0; len(apdu) > 0; i++ { 413 // Construct the new message to stream 414 chunk = append(chunk[:0], header...) 415 binary.BigEndian.PutUint16(chunk[3:], uint16(i)) 416 417 if len(apdu) > space { 418 chunk = append(chunk, apdu[:space]...) 419 apdu = apdu[space:] 420 } else { 421 chunk = append(chunk, apdu...) 422 apdu = nil 423 } 424 // Send over to the device 425 w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk)) 426 if _, err := w.device.Write(chunk); err != nil { 427 return nil, err 428 } 429 } 430 // Stream the reply back from the wallet in 64 byte chunks 431 var reply []byte 432 chunk = chunk[:64] // Yeah, we surely have enough space 433 for { 434 // Read the next chunk from the Ledger wallet 435 if _, err := io.ReadFull(w.device, chunk); err != nil { 436 return nil, err 437 } 438 w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk)) 439 440 // Make sure the transport header matches 441 if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 { 442 return nil, errLedgerReplyInvalidHeader 443 } 444 // If it's the first chunk, retrieve the total message length 445 var payload []byte 446 447 if chunk[3] == 0x00 && chunk[4] == 0x00 { 448 reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7]))) 449 payload = chunk[7:] 450 } else { 451 payload = chunk[5:] 452 } 453 // Append to the reply and stop when filled up 454 if left := cap(reply) - len(reply); left > len(payload) { 455 reply = append(reply, payload...) 456 } else { 457 reply = append(reply, payload[:left]...) 458 break 459 } 460 } 461 return reply[:len(reply)-2], nil 462 }