github.com/cheng762/platon-go@v1.8.17-0.20190529111256-7deff2d7be26/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "errors" 22 "math/big" 23 24 "github.com/PlatONnetwork/PlatON-Go/common" 25 "github.com/PlatONnetwork/PlatON-Go/common/math" 26 "github.com/PlatONnetwork/PlatON-Go/crypto" 27 "github.com/PlatONnetwork/PlatON-Go/crypto/bn256" 28 "github.com/PlatONnetwork/PlatON-Go/params" 29 "golang.org/x/crypto/ripemd160" 30 "github.com/PlatONnetwork/PlatON-Go/log" 31 ) 32 33 // PrecompiledContract is the basic interface for native Go contracts. The implementation 34 // requires a deterministic gas count based on the input size of the Run method of the 35 // contract. 36 type PrecompiledContract interface { 37 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 38 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 39 } 40 41 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 42 // contracts used in the Frontier and Homestead releases. 43 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 44 common.BytesToAddress([]byte{1}): &ecrecover{}, 45 common.BytesToAddress([]byte{2}): &sha256hash{}, 46 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 47 common.BytesToAddress([]byte{4}): &dataCopy{}, 48 } 49 50 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 51 // contracts used in the Byzantium release. 52 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 53 common.BytesToAddress([]byte{1}): &ecrecover{}, 54 common.BytesToAddress([]byte{2}): &sha256hash{}, 55 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 56 common.BytesToAddress([]byte{4}): &dataCopy{}, 57 common.BytesToAddress([]byte{5}): &bigModExp{}, 58 common.BytesToAddress([]byte{6}): &bn256Add{}, 59 common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, 60 common.BytesToAddress([]byte{8}): &bn256Pairing{}, 61 } 62 63 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 64 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 65 log.Info("IN PPOS PrecompiledContractsPpos RUN Previous ... ") 66 gas := p.RequiredGas(input) 67 if contract.UseGas(gas) { 68 return p.Run(input) 69 } 70 return nil, ErrOutOfGas 71 } 72 73 // ECRECOVER implemented as a native contract. 74 type ecrecover struct{} 75 76 func (c *ecrecover) RequiredGas(input []byte) uint64 { 77 return params.EcrecoverGas 78 } 79 80 func (c *ecrecover) Run(input []byte) ([]byte, error) { 81 const ecRecoverInputLength = 128 82 83 input = common.RightPadBytes(input, ecRecoverInputLength) 84 // "input" is (hash, v, r, s), each 32 bytes 85 // but for ecrecover we want (r, s, v) 86 87 r := new(big.Int).SetBytes(input[64:96]) 88 s := new(big.Int).SetBytes(input[96:128]) 89 v := input[63] - 27 90 91 // tighter sig s values input homestead only apply to tx sigs 92 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 93 return nil, nil 94 } 95 // v needs to be at the end for libsecp256k1 96 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) 97 // make sure the public key is a valid one 98 if err != nil { 99 return nil, nil 100 } 101 102 // the first byte of pubkey is bitcoin heritage 103 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 104 } 105 106 // SHA256 implemented as a native contract. 107 type sha256hash struct{} 108 109 // RequiredGas returns the gas required to execute the pre-compiled contract. 110 // 111 // This method does not require any overflow checking as the input size gas costs 112 // required for anything significant is so high it's impossible to pay for. 113 func (c *sha256hash) RequiredGas(input []byte) uint64 { 114 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 115 } 116 func (c *sha256hash) Run(input []byte) ([]byte, error) { 117 h := sha256.Sum256(input) 118 return h[:], nil 119 } 120 121 // RIPEMD160 implemented as a native contract. 122 type ripemd160hash struct{} 123 124 // RequiredGas returns the gas required to execute the pre-compiled contract. 125 // 126 // This method does not require any overflow checking as the input size gas costs 127 // required for anything significant is so high it's impossible to pay for. 128 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 129 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 130 } 131 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 132 ripemd := ripemd160.New() 133 ripemd.Write(input) 134 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 135 } 136 137 // data copy implemented as a native contract. 138 type dataCopy struct{} 139 140 // RequiredGas returns the gas required to execute the pre-compiled contract. 141 // 142 // This method does not require any overflow checking as the input size gas costs 143 // required for anything significant is so high it's impossible to pay for. 144 func (c *dataCopy) RequiredGas(input []byte) uint64 { 145 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 146 } 147 func (c *dataCopy) Run(in []byte) ([]byte, error) { 148 return in, nil 149 } 150 151 // bigModExp implements a native big integer exponential modular operation. 152 type bigModExp struct{} 153 154 var ( 155 big1 = big.NewInt(1) 156 big4 = big.NewInt(4) 157 big8 = big.NewInt(8) 158 big16 = big.NewInt(16) 159 big32 = big.NewInt(32) 160 big64 = big.NewInt(64) 161 big96 = big.NewInt(96) 162 big480 = big.NewInt(480) 163 big1024 = big.NewInt(1024) 164 big3072 = big.NewInt(3072) 165 big199680 = big.NewInt(199680) 166 ) 167 168 // RequiredGas returns the gas required to execute the pre-compiled contract. 169 func (c *bigModExp) RequiredGas(input []byte) uint64 { 170 var ( 171 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 172 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 173 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 174 ) 175 if len(input) > 96 { 176 input = input[96:] 177 } else { 178 input = input[:0] 179 } 180 // Retrieve the head 32 bytes of exp for the adjusted exponent length 181 var expHead *big.Int 182 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 183 expHead = new(big.Int) 184 } else { 185 if expLen.Cmp(big32) > 0 { 186 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 187 } else { 188 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 189 } 190 } 191 // Calculate the adjusted exponent length 192 var msb int 193 if bitlen := expHead.BitLen(); bitlen > 0 { 194 msb = bitlen - 1 195 } 196 adjExpLen := new(big.Int) 197 if expLen.Cmp(big32) > 0 { 198 adjExpLen.Sub(expLen, big32) 199 adjExpLen.Mul(big8, adjExpLen) 200 } 201 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 202 203 // Calculate the gas cost of the operation 204 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 205 switch { 206 case gas.Cmp(big64) <= 0: 207 gas.Mul(gas, gas) 208 case gas.Cmp(big1024) <= 0: 209 gas = new(big.Int).Add( 210 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 211 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 212 ) 213 default: 214 gas = new(big.Int).Add( 215 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 216 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 217 ) 218 } 219 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 220 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 221 222 if gas.BitLen() > 64 { 223 return math.MaxUint64 224 } 225 return gas.Uint64() 226 } 227 228 func (c *bigModExp) Run(input []byte) ([]byte, error) { 229 var ( 230 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 231 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 232 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 233 ) 234 if len(input) > 96 { 235 input = input[96:] 236 } else { 237 input = input[:0] 238 } 239 // Handle a special case when both the base and mod length is zero 240 if baseLen == 0 && modLen == 0 { 241 return []byte{}, nil 242 } 243 // Retrieve the operands and execute the exponentiation 244 var ( 245 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 246 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 247 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 248 ) 249 if mod.BitLen() == 0 { 250 // Modulo 0 is undefined, return zero 251 return common.LeftPadBytes([]byte{}, int(modLen)), nil 252 } 253 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 254 } 255 256 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 257 // returning it, or an error if the point is invalid. 258 func newCurvePoint(blob []byte) (*bn256.G1, error) { 259 p := new(bn256.G1) 260 if _, err := p.Unmarshal(blob); err != nil { 261 return nil, err 262 } 263 return p, nil 264 } 265 266 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 267 // returning it, or an error if the point is invalid. 268 func newTwistPoint(blob []byte) (*bn256.G2, error) { 269 p := new(bn256.G2) 270 if _, err := p.Unmarshal(blob); err != nil { 271 return nil, err 272 } 273 return p, nil 274 } 275 276 // bn256Add implements a native elliptic curve point addition. 277 type bn256Add struct{} 278 279 // RequiredGas returns the gas required to execute the pre-compiled contract. 280 func (c *bn256Add) RequiredGas(input []byte) uint64 { 281 return params.Bn256AddGas 282 } 283 284 func (c *bn256Add) Run(input []byte) ([]byte, error) { 285 x, err := newCurvePoint(getData(input, 0, 64)) 286 if err != nil { 287 return nil, err 288 } 289 y, err := newCurvePoint(getData(input, 64, 64)) 290 if err != nil { 291 return nil, err 292 } 293 res := new(bn256.G1) 294 res.Add(x, y) 295 return res.Marshal(), nil 296 } 297 298 // bn256ScalarMul implements a native elliptic curve scalar multiplication. 299 type bn256ScalarMul struct{} 300 301 // RequiredGas returns the gas required to execute the pre-compiled contract. 302 func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { 303 return params.Bn256ScalarMulGas 304 } 305 306 func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { 307 p, err := newCurvePoint(getData(input, 0, 64)) 308 if err != nil { 309 return nil, err 310 } 311 res := new(bn256.G1) 312 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 313 return res.Marshal(), nil 314 } 315 316 var ( 317 // true32Byte is returned if the bn256 pairing check succeeds. 318 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 319 320 // false32Byte is returned if the bn256 pairing check fails. 321 false32Byte = make([]byte, 32) 322 323 // errBadPairingInput is returned if the bn256 pairing input is invalid. 324 errBadPairingInput = errors.New("bad elliptic curve pairing size") 325 ) 326 327 // bn256Pairing implements a pairing pre-compile for the bn256 curve 328 type bn256Pairing struct{} 329 330 // RequiredGas returns the gas required to execute the pre-compiled contract. 331 func (c *bn256Pairing) RequiredGas(input []byte) uint64 { 332 return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas 333 } 334 335 func (c *bn256Pairing) Run(input []byte) ([]byte, error) { 336 // Handle some corner cases cheaply 337 if len(input)%192 > 0 { 338 return nil, errBadPairingInput 339 } 340 // Convert the input into a set of coordinates 341 var ( 342 cs []*bn256.G1 343 ts []*bn256.G2 344 ) 345 for i := 0; i < len(input); i += 192 { 346 c, err := newCurvePoint(input[i : i+64]) 347 if err != nil { 348 return nil, err 349 } 350 t, err := newTwistPoint(input[i+64 : i+192]) 351 if err != nil { 352 return nil, err 353 } 354 cs = append(cs, c) 355 ts = append(ts, t) 356 } 357 // Execute the pairing checks and return the results 358 if bn256.PairingCheck(cs, ts) { 359 return true32Byte, nil 360 } 361 return false32Byte, nil 362 }