github.com/cheng762/platon-go@v1.8.17-0.20190529111256-7deff2d7be26/core/vm/interpreter.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "fmt" 21 "sync/atomic" 22 23 "github.com/PlatONnetwork/PlatON-Go/common/math" 24 "github.com/PlatONnetwork/PlatON-Go/params" 25 ) 26 27 // Interpreter is used to run Ethereum based contracts and will utilise the 28 // passed environment to query external sources for state information. 29 // The Interpreter will run the byte code VM based on the passed 30 // configuration. 31 type Interpreter interface { 32 // Run loops and evaluates the contract's code with the given input data and returns 33 // the return byte-slice and an error if one occurred. 34 Run(contract *Contract, input []byte, static bool) ([]byte, error) 35 // CanRun tells if the contract, passed as an argument, can be 36 // run by the current interpreter. This is meant so that the 37 // caller can do something like: 38 // 39 // ```golang 40 // for _, interpreter := range interpreters { 41 // if interpreter.CanRun(contract.code) { 42 // interpreter.Run(contract.code, input) 43 // } 44 // } 45 // ``` 46 CanRun([]byte) bool 47 } 48 49 // EVMInterpreter represents an EVM interpreter 50 type EVMInterpreter struct { 51 evm *EVM 52 cfg Config 53 gasTable params.GasTable 54 intPool *intPool 55 56 readOnly bool // Whether to throw on stateful modifications 57 returnData []byte // Last CALL's return data for subsequent reuse 58 } 59 60 // NewEVMInterpreter returns a new instance of the Interpreter. 61 func NewEVMInterpreter(evm *EVM, cfg Config) *EVMInterpreter { 62 // We use the STOP instruction whether to see 63 // the jump table was initialised. If it was not 64 // we'll set the default jump table. 65 if !cfg.JumpTable[STOP].valid { 66 switch { 67 case evm.ChainConfig().IsConstantinople(evm.BlockNumber): 68 cfg.JumpTable = constantinopleInstructionSet 69 case evm.ChainConfig().IsByzantium(evm.BlockNumber): 70 cfg.JumpTable = byzantiumInstructionSet 71 case evm.ChainConfig().IsHomestead(evm.BlockNumber): 72 cfg.JumpTable = homesteadInstructionSet 73 default: 74 cfg.JumpTable = frontierInstructionSet 75 } 76 } 77 78 return &EVMInterpreter{ 79 evm: evm, 80 cfg: cfg, 81 gasTable: evm.ChainConfig().GasTable(evm.BlockNumber), 82 } 83 } 84 85 func (in *EVMInterpreter) enforceRestrictions(op OpCode, operation operation, stack *Stack) error { 86 if in.evm.chainRules.IsByzantium { 87 if in.readOnly { 88 // If the interpreter is operating in readonly mode, make sure no 89 // state-modifying operation is performed. The 3rd stack item 90 // for a call operation is the value. Transferring value from one 91 // account to the others means the state is modified and should also 92 // return with an error. 93 if operation.writes || (op == CALL && stack.Back(2).BitLen() > 0) { 94 return errWriteProtection 95 } 96 } 97 } 98 return nil 99 } 100 101 // Run loops and evaluates the contract's code with the given input data and returns 102 // the return byte-slice and an error if one occurred. 103 // 104 // It's important to note that any errors returned by the interpreter should be 105 // considered a revert-and-consume-all-gas operation except for 106 // errExecutionReverted which means revert-and-keep-gas-left. 107 func (in *EVMInterpreter) Run(contract *Contract, input []byte, readOnly bool) (ret []byte, err error) { 108 if in.intPool == nil { 109 in.intPool = poolOfIntPools.get() 110 defer func() { 111 poolOfIntPools.put(in.intPool) 112 in.intPool = nil 113 }() 114 } 115 116 // Increment the call depth which is restricted to 1024 117 in.evm.depth++ 118 defer func() { in.evm.depth-- }() 119 120 // Make sure the readOnly is only set if we aren't in readOnly yet. 121 // This makes also sure that the readOnly flag isn't removed for child calls. 122 if readOnly && !in.readOnly { 123 in.readOnly = true 124 defer func() { in.readOnly = false }() 125 } 126 127 // Reset the previous call's return data. It's unimportant to preserve the old buffer 128 // as every returning call will return new data anyway. 129 in.returnData = nil 130 131 // Don't bother with the execution if there's no code. 132 if len(contract.Code) == 0 { 133 return nil, nil 134 } 135 136 var ( 137 op OpCode // current opcode 138 mem = NewMemory() // bound memory 139 stack = newstack() // local stack 140 // For optimisation reason we're using uint64 as the program counter. 141 // It's theoretically possible to go above 2^64. The YP defines the PC 142 // to be uint256. Practically much less so feasible. 143 pc = uint64(0) // program counter 144 cost uint64 145 // copies used by tracer 146 pcCopy uint64 // needed for the deferred Tracer 147 gasCopy uint64 // for Tracer to log gas remaining before execution 148 logged bool // deferred Tracer should ignore already logged steps 149 ) 150 contract.Input = input 151 152 // Reclaim the stack as an int pool when the execution stops 153 defer func() { in.intPool.put(stack.data...) }() 154 155 if in.cfg.Debug { 156 defer func() { 157 if err != nil { 158 if !logged { 159 in.cfg.Tracer.CaptureState(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err) 160 } else { 161 in.cfg.Tracer.CaptureFault(in.evm, pcCopy, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err) 162 } 163 } 164 }() 165 } 166 // The Interpreter main run loop (contextual). This loop runs until either an 167 // explicit STOP, RETURN or SELFDESTRUCT is executed, an error occurred during 168 // the execution of one of the operations or until the done flag is set by the 169 // parent context. 170 for atomic.LoadInt32(&in.evm.abort) == 0 { 171 if in.cfg.Debug { 172 // Capture pre-execution values for tracing. 173 logged, pcCopy, gasCopy = false, pc, contract.Gas 174 } 175 176 // Get the operation from the jump table and validate the stack to ensure there are 177 // enough stack items available to perform the operation. 178 op = contract.GetOp(pc) 179 operation := in.cfg.JumpTable[op] 180 if !operation.valid { 181 return nil, fmt.Errorf("invalid opcode 0x%x", int(op)) 182 } 183 if err := operation.validateStack(stack); err != nil { 184 return nil, err 185 } 186 // If the operation is valid, enforce and write restrictions 187 if err := in.enforceRestrictions(op, operation, stack); err != nil { 188 return nil, err 189 } 190 191 var memorySize uint64 192 // calculate the new memory size and expand the memory to fit 193 // the operation 194 if operation.memorySize != nil { 195 memSize, overflow := bigUint64(operation.memorySize(stack)) 196 if overflow { 197 return nil, errGasUintOverflow 198 } 199 // memory is expanded in words of 32 bytes. Gas 200 // is also calculated in words. 201 if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow { 202 return nil, errGasUintOverflow 203 } 204 } 205 // consume the gas and return an error if not enough gas is available. 206 // cost is explicitly set so that the capture state defer method can get the proper cost 207 cost, err = operation.gasCost(in.gasTable, in.evm, contract, stack, mem, memorySize) 208 if err != nil || !contract.UseGas(cost) { 209 return nil, ErrOutOfGas 210 } 211 if memorySize > 0 { 212 mem.Resize(memorySize) 213 } 214 215 if in.cfg.Debug { 216 in.cfg.Tracer.CaptureState(in.evm, pc, op, gasCopy, cost, mem, stack, contract, in.evm.depth, err) 217 logged = true 218 } 219 220 // execute the operation 221 res, err := operation.execute(&pc, in, contract, mem, stack) 222 // verifyPool is a build flag. Pool verification makes sure the integrity 223 // of the integer pool by comparing values to a default value. 224 if verifyPool { 225 verifyIntegerPool(in.intPool) 226 } 227 // if the operation clears the return data (e.g. it has returning data) 228 // set the last return to the result of the operation. 229 if operation.returns { 230 in.returnData = res 231 } 232 233 switch { 234 case err != nil: 235 return nil, err 236 case operation.reverts: 237 return res, errExecutionReverted 238 case operation.halts: 239 return res, nil 240 case !operation.jumps: 241 pc++ 242 } 243 } 244 return nil, nil 245 } 246 247 // CanRun tells if the contract, passed as an argument, can be 248 // run by the current interpreter. 249 func (in *EVMInterpreter) CanRun(code []byte) bool { 250 return true 251 }