github.com/cilium/ebpf@v0.15.1-0.20240517100537-8079b37aa138/btf/testdata/bpf_core_read.h (about)

     1  /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
     2  #ifndef __BPF_CORE_READ_H__
     3  #define __BPF_CORE_READ_H__
     4  
     5  /*
     6   * enum bpf_field_info_kind is passed as a second argument into
     7   * __builtin_preserve_field_info() built-in to get a specific aspect of
     8   * a field, captured as a first argument. __builtin_preserve_field_info(field,
     9   * info_kind) returns __u32 integer and produces BTF field relocation, which
    10   * is understood and processed by libbpf during BPF object loading. See
    11   * selftests/bpf for examples.
    12   */
    13  enum bpf_field_info_kind {
    14  	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
    15  	BPF_FIELD_BYTE_SIZE = 1,
    16  	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
    17  	BPF_FIELD_SIGNED = 3,
    18  	BPF_FIELD_LSHIFT_U64 = 4,
    19  	BPF_FIELD_RSHIFT_U64 = 5,
    20  };
    21  
    22  /* second argument to __builtin_btf_type_id() built-in */
    23  enum bpf_type_id_kind {
    24  	BPF_TYPE_ID_LOCAL = 0,		/* BTF type ID in local program */
    25  	BPF_TYPE_ID_TARGET = 1,		/* BTF type ID in target kernel */
    26  };
    27  
    28  /* second argument to __builtin_preserve_type_info() built-in */
    29  enum bpf_type_info_kind {
    30  	BPF_TYPE_EXISTS = 0,	/* type existence in target kernel */
    31  	BPF_TYPE_SIZE = 1,		/* type size in target kernel */
    32  	BPF_TYPE_MATCHES = 2, 	/* type match in target kernel */
    33  };
    34  
    35  /* second argument to __builtin_preserve_enum_value() built-in */
    36  enum bpf_enum_value_kind {
    37  	BPF_ENUMVAL_EXISTS = 0,		/* enum value existence in kernel */
    38  	BPF_ENUMVAL_VALUE = 1,		/* enum value value relocation */
    39  };
    40  
    41  #define __CORE_RELO(src, field, info)					      \
    42  	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
    43  
    44  #if __BYTE_ORDER == __LITTLE_ENDIAN
    45  #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
    46  	bpf_probe_read_kernel(						      \
    47  			(void *)dst,				      \
    48  			__CORE_RELO(src, fld, BYTE_SIZE),		      \
    49  			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
    50  #else
    51  /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
    52   * for big-endian we need to adjust destination pointer accordingly, based on
    53   * field byte size
    54   */
    55  #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
    56  	bpf_probe_read_kernel(						      \
    57  			(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
    58  			__CORE_RELO(src, fld, BYTE_SIZE),		      \
    59  			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
    60  #endif
    61  
    62  /*
    63   * Extract bitfield, identified by s->field, and return its value as u64.
    64   * All this is done in relocatable manner, so bitfield changes such as
    65   * signedness, bit size, offset changes, this will be handled automatically.
    66   * This version of macro is using bpf_probe_read_kernel() to read underlying
    67   * integer storage. Macro functions as an expression and its return type is
    68   * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
    69   */
    70  #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
    71  	unsigned long long val = 0;					      \
    72  									      \
    73  	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
    74  	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
    75  	if (__CORE_RELO(s, field, SIGNED))				      \
    76  		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
    77  	else								      \
    78  		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
    79  	val;								      \
    80  })
    81  
    82  /*
    83   * Extract bitfield, identified by s->field, and return its value as u64.
    84   * This version of macro is using direct memory reads and should be used from
    85   * BPF program types that support such functionality (e.g., typed raw
    86   * tracepoints).
    87   */
    88  #define BPF_CORE_READ_BITFIELD(s, field) ({				      \
    89  	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
    90  	unsigned long long val;						      \
    91  									      \
    92  	/* This is a so-called barrier_var() operation that makes specified   \
    93  	 * variable "a black box" for optimizing compiler.		      \
    94  	 * It forces compiler to perform BYTE_OFFSET relocation on p and use  \
    95  	 * its calculated value in the switch below, instead of applying      \
    96  	 * the same relocation 4 times for each individual memory load.       \
    97  	 */								      \
    98  	asm volatile("" : "=r"(p) : "0"(p));				      \
    99  									      \
   100  	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
   101  	case 1: val = *(const unsigned char *)p; break;			      \
   102  	case 2: val = *(const unsigned short *)p; break;		      \
   103  	case 4: val = *(const unsigned int *)p; break;			      \
   104  	case 8: val = *(const unsigned long long *)p; break;		      \
   105  	}								      \
   106  	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
   107  	if (__CORE_RELO(s, field, SIGNED))				      \
   108  		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
   109  	else								      \
   110  		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
   111  	val;								      \
   112  })
   113  
   114  /*
   115   * Convenience macro to check that field actually exists in target kernel's.
   116   * Returns:
   117   *    1, if matching field is present in target kernel;
   118   *    0, if no matching field found.
   119   */
   120  #define bpf_core_field_exists(field)					    \
   121  	__builtin_preserve_field_info(field, BPF_FIELD_EXISTS)
   122  
   123  /*
   124   * Convenience macro to get the byte size of a field. Works for integers,
   125   * struct/unions, pointers, arrays, and enums.
   126   */
   127  #define bpf_core_field_size(field)					    \
   128  	__builtin_preserve_field_info(field, BPF_FIELD_BYTE_SIZE)
   129  
   130  /*
   131   * Convenience macro to get BTF type ID of a specified type, using a local BTF
   132   * information. Return 32-bit unsigned integer with type ID from program's own
   133   * BTF. Always succeeds.
   134   */
   135  #define bpf_core_type_id_local(type)					    \
   136  	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
   137  
   138  /*
   139   * Convenience macro to get BTF type ID of a target kernel's type that matches
   140   * specified local type.
   141   * Returns:
   142   *    - valid 32-bit unsigned type ID in kernel BTF;
   143   *    - 0, if no matching type was found in a target kernel BTF.
   144   */
   145  #define bpf_core_type_id_kernel(type)					    \
   146  	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
   147  
   148  /*
   149   * Convenience macro to check that provided named type
   150   * (struct/union/enum/typedef) exists in a target kernel.
   151   * Returns:
   152   *    1, if such type is present in target kernel's BTF;
   153   *    0, if no matching type is found.
   154   */
   155  #define bpf_core_type_exists(type)					    \
   156  	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
   157  
   158  /*
   159   * Convenience macro to check that provided named type
   160   * (struct/union/enum/typedef) "matches" that in a target kernel.
   161   * Returns:
   162   *    1, if the type matches in the target kernel's BTF;
   163   *    0, if the type does not match any in the target kernel
   164   */
   165  #define bpf_core_type_matches(type)					    \
   166  	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_MATCHES)
   167  
   168  
   169  /*
   170   * Convenience macro to get the byte size of a provided named type
   171   * (struct/union/enum/typedef) in a target kernel.
   172   * Returns:
   173   *    >= 0 size (in bytes), if type is present in target kernel's BTF;
   174   *    0, if no matching type is found.
   175   */
   176  #define bpf_core_type_size(type)					    \
   177  	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
   178  
   179  /*
   180   * Convenience macro to check that provided enumerator value is defined in
   181   * a target kernel.
   182   * Returns:
   183   *    1, if specified enum type and its enumerator value are present in target
   184   *    kernel's BTF;
   185   *    0, if no matching enum and/or enum value within that enum is found.
   186   */
   187  #define bpf_core_enum_value_exists(enum_type, enum_value)		    \
   188  	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
   189  
   190  /*
   191   * Convenience macro to get the integer value of an enumerator value in
   192   * a target kernel.
   193   * Returns:
   194   *    64-bit value, if specified enum type and its enumerator value are
   195   *    present in target kernel's BTF;
   196   *    0, if no matching enum and/or enum value within that enum is found.
   197   */
   198  #define bpf_core_enum_value(enum_type, enum_value)			    \
   199  	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
   200  
   201  /*
   202   * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
   203   * offset relocation for source address using __builtin_preserve_access_index()
   204   * built-in, provided by Clang.
   205   *
   206   * __builtin_preserve_access_index() takes as an argument an expression of
   207   * taking an address of a field within struct/union. It makes compiler emit
   208   * a relocation, which records BTF type ID describing root struct/union and an
   209   * accessor string which describes exact embedded field that was used to take
   210   * an address. See detailed description of this relocation format and
   211   * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
   212   *
   213   * This relocation allows libbpf to adjust BPF instruction to use correct
   214   * actual field offset, based on target kernel BTF type that matches original
   215   * (local) BTF, used to record relocation.
   216   */
   217  #define bpf_core_read(dst, sz, src)					    \
   218  	bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
   219  
   220  /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
   221  #define bpf_core_read_user(dst, sz, src)				    \
   222  	bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
   223  /*
   224   * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
   225   * additionally emitting BPF CO-RE field relocation for specified source
   226   * argument.
   227   */
   228  #define bpf_core_read_str(dst, sz, src)					    \
   229  	bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
   230  
   231  /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
   232  #define bpf_core_read_user_str(dst, sz, src)				    \
   233  	bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
   234  
   235  #define ___concat(a, b) a ## b
   236  #define ___apply(fn, n) ___concat(fn, n)
   237  #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
   238  
   239  /*
   240   * return number of provided arguments; used for switch-based variadic macro
   241   * definitions (see ___last, ___arrow, etc below)
   242   */
   243  #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
   244  /*
   245   * return 0 if no arguments are passed, N - otherwise; used for
   246   * recursively-defined macros to specify termination (0) case, and generic
   247   * (N) case (e.g., ___read_ptrs, ___core_read)
   248   */
   249  #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
   250  
   251  #define ___last1(x) x
   252  #define ___last2(a, x) x
   253  #define ___last3(a, b, x) x
   254  #define ___last4(a, b, c, x) x
   255  #define ___last5(a, b, c, d, x) x
   256  #define ___last6(a, b, c, d, e, x) x
   257  #define ___last7(a, b, c, d, e, f, x) x
   258  #define ___last8(a, b, c, d, e, f, g, x) x
   259  #define ___last9(a, b, c, d, e, f, g, h, x) x
   260  #define ___last10(a, b, c, d, e, f, g, h, i, x) x
   261  #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
   262  
   263  #define ___nolast2(a, _) a
   264  #define ___nolast3(a, b, _) a, b
   265  #define ___nolast4(a, b, c, _) a, b, c
   266  #define ___nolast5(a, b, c, d, _) a, b, c, d
   267  #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
   268  #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
   269  #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
   270  #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
   271  #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
   272  #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
   273  
   274  #define ___arrow1(a) a
   275  #define ___arrow2(a, b) a->b
   276  #define ___arrow3(a, b, c) a->b->c
   277  #define ___arrow4(a, b, c, d) a->b->c->d
   278  #define ___arrow5(a, b, c, d, e) a->b->c->d->e
   279  #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
   280  #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
   281  #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
   282  #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
   283  #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
   284  #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
   285  
   286  #define ___type(...) typeof(___arrow(__VA_ARGS__))
   287  
   288  #define ___read(read_fn, dst, src_type, src, accessor)			    \
   289  	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
   290  
   291  /* "recursively" read a sequence of inner pointers using local __t var */
   292  #define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
   293  #define ___rd_last(fn, ...)						    \
   294  	___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
   295  #define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
   296  #define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   297  #define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   298  #define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   299  #define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   300  #define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   301  #define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   302  #define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   303  #define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
   304  #define ___read_ptrs(fn, src, ...)					    \
   305  	___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
   306  
   307  #define ___core_read0(fn, fn_ptr, dst, src, a)				    \
   308  	___read(fn, dst, ___type(src), src, a);
   309  #define ___core_readN(fn, fn_ptr, dst, src, ...)			    \
   310  	___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__))		    \
   311  	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
   312  		___last(__VA_ARGS__));
   313  #define ___core_read(fn, fn_ptr, dst, src, a, ...)			    \
   314  	___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst,	    \
   315  						      src, a, ##__VA_ARGS__)
   316  
   317  /*
   318   * BPF_CORE_READ_INTO() is a more performance-conscious variant of
   319   * BPF_CORE_READ(), in which final field is read into user-provided storage.
   320   * See BPF_CORE_READ() below for more details on general usage.
   321   */
   322  #define BPF_CORE_READ_INTO(dst, src, a, ...) ({				    \
   323  	___core_read(bpf_core_read, bpf_core_read,			    \
   324  		     dst, (src), a, ##__VA_ARGS__)			    \
   325  })
   326  
   327  /*
   328   * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
   329   *
   330   * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
   331   */
   332  #define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({			    \
   333  	___core_read(bpf_core_read_user, bpf_core_read_user,		    \
   334  		     dst, (src), a, ##__VA_ARGS__)			    \
   335  })
   336  
   337  /* Non-CO-RE variant of BPF_CORE_READ_INTO() */
   338  #define BPF_PROBE_READ_INTO(dst, src, a, ...) ({			    \
   339  	___core_read(bpf_probe_read, bpf_probe_read,			    \
   340  		     dst, (src), a, ##__VA_ARGS__)			    \
   341  })
   342  
   343  /* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
   344   *
   345   * As no CO-RE relocations are emitted, source types can be arbitrary and are
   346   * not restricted to kernel types only.
   347   */
   348  #define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({			    \
   349  	___core_read(bpf_probe_read_user, bpf_probe_read_user,		    \
   350  		     dst, (src), a, ##__VA_ARGS__)			    \
   351  })
   352  
   353  /*
   354   * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
   355   * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
   356   * corresponding error code) bpf_core_read_str() for final string read.
   357   */
   358  #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({			    \
   359  	___core_read(bpf_core_read_str, bpf_core_read,			    \
   360  		     dst, (src), a, ##__VA_ARGS__)			    \
   361  })
   362  
   363  /*
   364   * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
   365   *
   366   * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
   367   */
   368  #define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
   369  	___core_read(bpf_core_read_user_str, bpf_core_read_user,	    \
   370  		     dst, (src), a, ##__VA_ARGS__)			    \
   371  })
   372  
   373  /* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
   374  #define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({			    \
   375  	___core_read(bpf_probe_read_str, bpf_probe_read,		    \
   376  		     dst, (src), a, ##__VA_ARGS__)			    \
   377  })
   378  
   379  /*
   380   * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
   381   *
   382   * As no CO-RE relocations are emitted, source types can be arbitrary and are
   383   * not restricted to kernel types only.
   384   */
   385  #define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
   386  	___core_read(bpf_probe_read_user_str, bpf_probe_read_user,	    \
   387  		     dst, (src), a, ##__VA_ARGS__)			    \
   388  })
   389  
   390  /*
   391   * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
   392   * when there are few pointer chasing steps.
   393   * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
   394   *	int x = s->a.b.c->d.e->f->g;
   395   * can be succinctly achieved using BPF_CORE_READ as:
   396   *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
   397   *
   398   * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
   399   * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
   400   * equivalent to:
   401   * 1. const void *__t = s->a.b.c;
   402   * 2. __t = __t->d.e;
   403   * 3. __t = __t->f;
   404   * 4. return __t->g;
   405   *
   406   * Equivalence is logical, because there is a heavy type casting/preservation
   407   * involved, as well as all the reads are happening through
   408   * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
   409   * emit CO-RE relocations.
   410   *
   411   * N.B. Only up to 9 "field accessors" are supported, which should be more
   412   * than enough for any practical purpose.
   413   */
   414  #define BPF_CORE_READ(src, a, ...) ({					    \
   415  	___type((src), a, ##__VA_ARGS__) __r;				    \
   416  	BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
   417  	__r;								    \
   418  })
   419  
   420  /*
   421   * Variant of BPF_CORE_READ() for reading from user-space memory.
   422   *
   423   * NOTE: all the source types involved are still *kernel types* and need to
   424   * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
   425   * fail. Custom user types are not relocatable with CO-RE.
   426   * The typical situation in which BPF_CORE_READ_USER() might be used is to
   427   * read kernel UAPI types from the user-space memory passed in as a syscall
   428   * input argument.
   429   */
   430  #define BPF_CORE_READ_USER(src, a, ...) ({				    \
   431  	___type((src), a, ##__VA_ARGS__) __r;				    \
   432  	BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
   433  	__r;								    \
   434  })
   435  
   436  /* Non-CO-RE variant of BPF_CORE_READ() */
   437  #define BPF_PROBE_READ(src, a, ...) ({					    \
   438  	___type((src), a, ##__VA_ARGS__) __r;				    \
   439  	BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
   440  	__r;								    \
   441  })
   442  
   443  /*
   444   * Non-CO-RE variant of BPF_CORE_READ_USER().
   445   *
   446   * As no CO-RE relocations are emitted, source types can be arbitrary and are
   447   * not restricted to kernel types only.
   448   */
   449  #define BPF_PROBE_READ_USER(src, a, ...) ({				    \
   450  	___type((src), a, ##__VA_ARGS__) __r;				    \
   451  	BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);	    \
   452  	__r;								    \
   453  })
   454  
   455  #endif
   456