github.com/cockroachdb/pebble@v1.1.1-0.20240513155919-3622ade60459/iterator.go (about)

     1  // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
     2  // of this source code is governed by a BSD-style license that can be found in
     3  // the LICENSE file.
     4  
     5  package pebble
     6  
     7  import (
     8  	"bytes"
     9  	"context"
    10  	"io"
    11  	"sync"
    12  	"unsafe"
    13  
    14  	"github.com/cockroachdb/errors"
    15  	"github.com/cockroachdb/pebble/internal/base"
    16  	"github.com/cockroachdb/pebble/internal/bytealloc"
    17  	"github.com/cockroachdb/pebble/internal/fastrand"
    18  	"github.com/cockroachdb/pebble/internal/humanize"
    19  	"github.com/cockroachdb/pebble/internal/invariants"
    20  	"github.com/cockroachdb/pebble/internal/keyspan"
    21  	"github.com/cockroachdb/pebble/internal/manifest"
    22  	"github.com/cockroachdb/pebble/internal/rangekey"
    23  	"github.com/cockroachdb/pebble/sstable"
    24  	"github.com/cockroachdb/redact"
    25  )
    26  
    27  // iterPos describes the state of the internal iterator, in terms of whether it
    28  // is at the position returned to the user (cur), one ahead of the position
    29  // returned (next for forward iteration and prev for reverse iteration). The cur
    30  // position is split into two states, for forward and reverse iteration, since
    31  // we need to differentiate for switching directions.
    32  //
    33  // There is subtlety in what is considered the current position of the Iterator.
    34  // The internal iterator exposes a sequence of internal keys. There is not
    35  // always a single internalIterator position corresponding to the position
    36  // returned to the user. Consider the example:
    37  //
    38  //	a.MERGE.9 a.MERGE.8 a.MERGE.7 a.SET.6 b.DELETE.9 b.DELETE.5 b.SET.4
    39  //	\                                   /
    40  //	  \       Iterator.Key() = 'a'    /
    41  //
    42  // The Iterator exposes one valid position at user key 'a' and the two exhausted
    43  // positions at the beginning and end of iteration. The underlying
    44  // internalIterator contains 7 valid positions and 2 exhausted positions.
    45  //
    46  // Iterator positioning methods must set iterPos to iterPosCur{Foward,Backward}
    47  // iff the user key at the current internalIterator position equals the
    48  // Iterator.Key returned to the user. This guarantees that a call to nextUserKey
    49  // or prevUserKey will advance to the next or previous iterator position.
    50  // iterPosCur{Forward,Backward} does not make any guarantee about the internal
    51  // iterator position among internal keys with matching user keys, and it will
    52  // vary subtly depending on the particular key kinds encountered. In the above
    53  // example, the iterator returning 'a' may set iterPosCurForward if the internal
    54  // iterator is positioned at any of a.MERGE.9, a.MERGE.8, a.MERGE.7 or a.SET.6.
    55  //
    56  // When setting iterPos to iterPosNext or iterPosPrev, the internal iterator
    57  // must be advanced to the first internalIterator position at a user key greater
    58  // (iterPosNext) or less (iterPosPrev) than the key returned to the user. An
    59  // internalIterator position that's !Valid() must also be considered greater or
    60  // less—depending on the direction of iteration—than the last valid Iterator
    61  // position.
    62  type iterPos int8
    63  
    64  const (
    65  	iterPosCurForward iterPos = 0
    66  	iterPosNext       iterPos = 1
    67  	iterPosPrev       iterPos = -1
    68  	iterPosCurReverse iterPos = -2
    69  
    70  	// For limited iteration. When the iterator is at iterPosCurForwardPaused
    71  	// - Next*() call should behave as if the internal iterator is already
    72  	//   at next (akin to iterPosNext).
    73  	// - Prev*() call should behave as if the internal iterator is at the
    74  	//   current key (akin to iterPosCurForward).
    75  	//
    76  	// Similar semantics apply to CurReversePaused.
    77  	iterPosCurForwardPaused iterPos = 2
    78  	iterPosCurReversePaused iterPos = -3
    79  )
    80  
    81  // Approximate gap in bytes between samples of data read during iteration.
    82  // This is multiplied with a default ReadSamplingMultiplier of 1 << 4 to yield
    83  // 1 << 20 (1MB). The 1MB factor comes from:
    84  // https://github.com/cockroachdb/pebble/issues/29#issuecomment-494477985
    85  const readBytesPeriod uint64 = 1 << 16
    86  
    87  var errReversePrefixIteration = errors.New("pebble: unsupported reverse prefix iteration")
    88  
    89  // IteratorMetrics holds per-iterator metrics. These do not change over the
    90  // lifetime of the iterator.
    91  type IteratorMetrics struct {
    92  	// The read amplification experienced by this iterator. This is the sum of
    93  	// the memtables, the L0 sublevels and the non-empty Ln levels. Higher read
    94  	// amplification generally results in slower reads, though allowing higher
    95  	// read amplification can also result in faster writes.
    96  	ReadAmp int
    97  }
    98  
    99  // IteratorStatsKind describes the two kind of iterator stats.
   100  type IteratorStatsKind int8
   101  
   102  const (
   103  	// InterfaceCall represents calls to Iterator.
   104  	InterfaceCall IteratorStatsKind = iota
   105  	// InternalIterCall represents calls by Iterator to its internalIterator.
   106  	InternalIterCall
   107  	// NumStatsKind is the number of kinds, and is used for array sizing.
   108  	NumStatsKind
   109  )
   110  
   111  // IteratorStats contains iteration stats.
   112  type IteratorStats struct {
   113  	// ForwardSeekCount includes SeekGE, SeekPrefixGE, First.
   114  	ForwardSeekCount [NumStatsKind]int
   115  	// ReverseSeek includes SeekLT, Last.
   116  	ReverseSeekCount [NumStatsKind]int
   117  	// ForwardStepCount includes Next.
   118  	ForwardStepCount [NumStatsKind]int
   119  	// ReverseStepCount includes Prev.
   120  	ReverseStepCount [NumStatsKind]int
   121  	InternalStats    InternalIteratorStats
   122  	RangeKeyStats    RangeKeyIteratorStats
   123  }
   124  
   125  var _ redact.SafeFormatter = &IteratorStats{}
   126  
   127  // InternalIteratorStats contains miscellaneous stats produced by internal
   128  // iterators.
   129  type InternalIteratorStats = base.InternalIteratorStats
   130  
   131  // RangeKeyIteratorStats contains miscellaneous stats about range keys
   132  // encountered by the iterator.
   133  type RangeKeyIteratorStats struct {
   134  	// Count records the number of range keys encountered during
   135  	// iteration. Range keys may be counted multiple times if the iterator
   136  	// leaves a range key's bounds and then returns.
   137  	Count int
   138  	// ContainedPoints records the number of point keys encountered within the
   139  	// bounds of a range key. Note that this includes point keys with suffixes
   140  	// that sort both above and below the covering range key's suffix.
   141  	ContainedPoints int
   142  	// SkippedPoints records the count of the subset of ContainedPoints point
   143  	// keys that were skipped during iteration due to range-key masking. It does
   144  	// not include point keys that were never loaded because a
   145  	// RangeKeyMasking.Filter excluded the entire containing block.
   146  	SkippedPoints int
   147  }
   148  
   149  // Merge adds all of the argument's statistics to the receiver. It may be used
   150  // to accumulate stats across multiple iterators.
   151  func (s *RangeKeyIteratorStats) Merge(o RangeKeyIteratorStats) {
   152  	s.Count += o.Count
   153  	s.ContainedPoints += o.ContainedPoints
   154  	s.SkippedPoints += o.SkippedPoints
   155  }
   156  
   157  // LazyValue is a lazy value. See the long comment in base.LazyValue.
   158  type LazyValue = base.LazyValue
   159  
   160  // Iterator iterates over a DB's key/value pairs in key order.
   161  //
   162  // An iterator must be closed after use, but it is not necessary to read an
   163  // iterator until exhaustion.
   164  //
   165  // An iterator is not goroutine-safe, but it is safe to use multiple iterators
   166  // concurrently, with each in a dedicated goroutine.
   167  //
   168  // It is also safe to use an iterator concurrently with modifying its
   169  // underlying DB, if that DB permits modification. However, the resultant
   170  // key/value pairs are not guaranteed to be a consistent snapshot of that DB
   171  // at a particular point in time.
   172  //
   173  // If an iterator encounters an error during any operation, it is stored by
   174  // the Iterator and surfaced through the Error method. All absolute
   175  // positioning methods (eg, SeekLT, SeekGT, First, Last, etc) reset any
   176  // accumulated error before positioning. All relative positioning methods (eg,
   177  // Next, Prev) return without advancing if the iterator has an accumulated
   178  // error.
   179  type Iterator struct {
   180  	// The context is stored here since (a) Iterators are expected to be
   181  	// short-lived (since they pin memtables and sstables), (b) plumbing a
   182  	// context into every method is very painful, (c) they do not (yet) respect
   183  	// context cancellation and are only used for tracing.
   184  	ctx       context.Context
   185  	opts      IterOptions
   186  	merge     Merge
   187  	comparer  base.Comparer
   188  	iter      internalIterator
   189  	pointIter internalIterator
   190  	// Either readState or version is set, but not both.
   191  	readState *readState
   192  	version   *version
   193  	// rangeKey holds iteration state specific to iteration over range keys.
   194  	// The range key field may be nil if the Iterator has never been configured
   195  	// to iterate over range keys. Its non-nilness cannot be used to determine
   196  	// if the Iterator is currently iterating over range keys: For that, consult
   197  	// the IterOptions using opts.rangeKeys(). If non-nil, its rangeKeyIter
   198  	// field is guaranteed to be non-nil too.
   199  	rangeKey *iteratorRangeKeyState
   200  	// rangeKeyMasking holds state for range-key masking of point keys.
   201  	rangeKeyMasking rangeKeyMasking
   202  	err             error
   203  	// When iterValidityState=IterValid, key represents the current key, which
   204  	// is backed by keyBuf.
   205  	key    []byte
   206  	keyBuf []byte
   207  	value  LazyValue
   208  	// For use in LazyValue.Clone.
   209  	valueBuf []byte
   210  	fetcher  base.LazyFetcher
   211  	// For use in LazyValue.Value.
   212  	lazyValueBuf []byte
   213  	valueCloser  io.Closer
   214  	// boundsBuf holds two buffers used to store the lower and upper bounds.
   215  	// Whenever the Iterator's bounds change, the new bounds are copied into
   216  	// boundsBuf[boundsBufIdx]. The two bounds share a slice to reduce
   217  	// allocations. opts.LowerBound and opts.UpperBound point into this slice.
   218  	boundsBuf    [2][]byte
   219  	boundsBufIdx int
   220  	// iterKey, iterValue reflect the latest position of iter, except when
   221  	// SetBounds is called. In that case, these are explicitly set to nil.
   222  	iterKey             *InternalKey
   223  	iterValue           LazyValue
   224  	alloc               *iterAlloc
   225  	getIterAlloc        *getIterAlloc
   226  	prefixOrFullSeekKey []byte
   227  	readSampling        readSampling
   228  	stats               IteratorStats
   229  	externalReaders     [][]*sstable.Reader
   230  
   231  	// Following fields used when constructing an iterator stack, eg, in Clone
   232  	// and SetOptions or when re-fragmenting a batch's range keys/range dels.
   233  	// Non-nil if this Iterator includes a Batch.
   234  	batch            *Batch
   235  	newIters         tableNewIters
   236  	newIterRangeKey  keyspan.TableNewSpanIter
   237  	lazyCombinedIter lazyCombinedIter
   238  	seqNum           uint64
   239  	// batchSeqNum is used by Iterators over indexed batches to detect when the
   240  	// underlying batch has been mutated. The batch beneath an indexed batch may
   241  	// be mutated while the Iterator is open, but new keys are not surfaced
   242  	// until the next call to SetOptions.
   243  	batchSeqNum uint64
   244  	// batch{PointIter,RangeDelIter,RangeKeyIter} are used when the Iterator is
   245  	// configured to read through an indexed batch. If a batch is set, these
   246  	// iterators will be included within the iterator stack regardless of
   247  	// whether the batch currently contains any keys of their kind. These
   248  	// pointers are used during a call to SetOptions to refresh the Iterator's
   249  	// view of its indexed batch.
   250  	batchPointIter    batchIter
   251  	batchRangeDelIter keyspan.Iter
   252  	batchRangeKeyIter keyspan.Iter
   253  	// merging is a pointer to this iterator's point merging iterator. It
   254  	// appears here because key visibility is handled by the merging iterator.
   255  	// During SetOptions on an iterator over an indexed batch, this field is
   256  	// used to update the merging iterator's batch snapshot.
   257  	merging *mergingIter
   258  
   259  	// Keeping the bools here after all the 8 byte aligned fields shrinks the
   260  	// sizeof this struct by 24 bytes.
   261  
   262  	// INVARIANT:
   263  	// iterValidityState==IterAtLimit <=>
   264  	//  pos==iterPosCurForwardPaused || pos==iterPosCurReversePaused
   265  	iterValidityState IterValidityState
   266  	// Set to true by SetBounds, SetOptions. Causes the Iterator to appear
   267  	// exhausted externally, while preserving the correct iterValidityState for
   268  	// the iterator's internal state. Preserving the correct internal validity
   269  	// is used for SeekPrefixGE(..., trySeekUsingNext), and SeekGE/SeekLT
   270  	// optimizations after "no-op" calls to SetBounds and SetOptions.
   271  	requiresReposition bool
   272  	// The position of iter. When this is iterPos{Prev,Next} the iter has been
   273  	// moved past the current key-value, which can only happen if
   274  	// iterValidityState=IterValid, i.e., there is something to return to the
   275  	// client for the current position.
   276  	pos iterPos
   277  	// Relates to the prefixOrFullSeekKey field above.
   278  	hasPrefix bool
   279  	// Used for deriving the value of SeekPrefixGE(..., trySeekUsingNext),
   280  	// and SeekGE/SeekLT optimizations
   281  	lastPositioningOp lastPositioningOpKind
   282  	// Used for determining when it's safe to perform SeekGE optimizations that
   283  	// reuse the iterator state to avoid the cost of a full seek if the iterator
   284  	// is already positioned in the correct place. If the iterator's view of its
   285  	// indexed batch was just refreshed, some optimizations cannot be applied on
   286  	// the first seek after the refresh:
   287  	// - SeekGE has a no-op optimization that does not seek on the internal
   288  	//   iterator at all if the iterator is already in the correct place.
   289  	//   This optimization cannot be performed if the internal iterator was
   290  	//   last positioned when the iterator had a different view of an
   291  	//   underlying batch.
   292  	// - Seek[Prefix]GE set flags.TrySeekUsingNext()=true when the seek key is
   293  	//   greater than the previous operation's seek key, under the expectation
   294  	//   that the various internal iterators can use their current position to
   295  	//   avoid a full expensive re-seek. This applies to the batchIter as well.
   296  	//   However, if the view of the batch was just refreshed, the batchIter's
   297  	//   position is not useful because it may already be beyond new keys less
   298  	//   than the seek key. To prevent the use of this optimization in
   299  	//   batchIter, Seek[Prefix]GE set flags.BatchJustRefreshed()=true if this
   300  	//   bit is enabled.
   301  	batchJustRefreshed bool
   302  	// Used for an optimization in external iterators to reduce the number of
   303  	// merging levels.
   304  	forwardOnly bool
   305  	// closePointIterOnce is set to true if this point iter can only be Close()d
   306  	// once, _and_ closing i.iter and then i.pointIter would close i.pointIter
   307  	// twice. This is necessary to track if the point iter is an internal iterator
   308  	// that could release its resources to a pool on Close(), making it harder for
   309  	// that iterator to make its own closes idempotent.
   310  	//
   311  	// TODO(bilal): Update SetOptions to always close out point key iterators when
   312  	// they won't be used, so that Close() doesn't need to default to closing
   313  	// point iterators twice.
   314  	closePointIterOnce bool
   315  	// Used in some tests to disable the random disabling of seek optimizations.
   316  	forceEnableSeekOpt bool
   317  	// Set to true if NextPrefix is not currently permitted. Defaults to false
   318  	// in case an iterator never had any bounds.
   319  	nextPrefixNotPermittedByUpperBound bool
   320  }
   321  
   322  // cmp is a convenience shorthand for the i.comparer.Compare function.
   323  func (i *Iterator) cmp(a, b []byte) int {
   324  	return i.comparer.Compare(a, b)
   325  }
   326  
   327  // split is a convenience shorthand for the i.comparer.Split function.
   328  func (i *Iterator) split(a []byte) int {
   329  	return i.comparer.Split(a)
   330  }
   331  
   332  // equal is a convenience shorthand for the i.comparer.Equal function.
   333  func (i *Iterator) equal(a, b []byte) bool {
   334  	return i.comparer.Equal(a, b)
   335  }
   336  
   337  // iteratorRangeKeyState holds an iterator's range key iteration state.
   338  type iteratorRangeKeyState struct {
   339  	opts  *IterOptions
   340  	cmp   base.Compare
   341  	split base.Split
   342  	// rangeKeyIter holds the range key iterator stack that iterates over the
   343  	// merged spans across the entirety of the LSM.
   344  	rangeKeyIter keyspan.FragmentIterator
   345  	iiter        keyspan.InterleavingIter
   346  	// stale is set to true when the range key state recorded here (in start,
   347  	// end and keys) may not be in sync with the current range key at the
   348  	// interleaving iterator's current position.
   349  	//
   350  	// When the interelaving iterator passes over a new span, it invokes the
   351  	// SpanChanged hook defined on the `rangeKeyMasking` type,  which sets stale
   352  	// to true if the span is non-nil.
   353  	//
   354  	// The parent iterator may not be positioned over the interleaving
   355  	// iterator's current position (eg, i.iterPos = iterPos{Next,Prev}), so
   356  	// {keys,start,end} are only updated to the new range key during a call to
   357  	// Iterator.saveRangeKey.
   358  	stale bool
   359  	// updated is used to signal to the Iterator client whether the state of
   360  	// range keys has changed since the previous iterator position through the
   361  	// `RangeKeyChanged` method. It's set to true during an Iterator positioning
   362  	// operation that changes the state of the current range key. Each Iterator
   363  	// positioning operation sets it back to false before executing.
   364  	//
   365  	// TODO(jackson): The lifecycle of {stale,updated,prevPosHadRangeKey} is
   366  	// intricate and confusing. Try to refactor to reduce complexity.
   367  	updated bool
   368  	// prevPosHadRangeKey records whether the previous Iterator position had a
   369  	// range key (HasPointAndRage() = (_, true)). It's updated at the beginning
   370  	// of each new Iterator positioning operation. It's required by saveRangeKey to
   371  	// to set `updated` appropriately: Without this record of the previous iterator
   372  	// state, it's ambiguous whether an iterator only temporarily stepped onto a
   373  	// position without a range key.
   374  	prevPosHadRangeKey bool
   375  	// rangeKeyOnly is set to true if at the current iterator position there is
   376  	// no point key, only a range key start boundary.
   377  	rangeKeyOnly bool
   378  	// hasRangeKey is true when the current iterator position has a covering
   379  	// range key (eg, a range key with bounds [<lower>,<upper>) such that
   380  	// <lower> ≤ Key() < <upper>).
   381  	hasRangeKey bool
   382  	// start and end are the [start, end) boundaries of the current range keys.
   383  	start []byte
   384  	end   []byte
   385  
   386  	rangeKeyBuffers
   387  
   388  	// iterConfig holds fields that are used for the construction of the
   389  	// iterator stack, but do not need to be directly accessed during iteration.
   390  	// This struct is bundled within the iteratorRangeKeyState struct to reduce
   391  	// allocations.
   392  	iterConfig rangekey.UserIteratorConfig
   393  }
   394  
   395  type rangeKeyBuffers struct {
   396  	// keys is sorted by Suffix ascending.
   397  	keys []RangeKeyData
   398  	// buf is used to save range-key data before moving the range-key iterator.
   399  	// Start and end boundaries, suffixes and values are all copied into buf.
   400  	buf bytealloc.A
   401  	// internal holds buffers used by the range key internal iterators.
   402  	internal rangekey.Buffers
   403  }
   404  
   405  func (b *rangeKeyBuffers) PrepareForReuse() {
   406  	const maxKeysReuse = 100
   407  	if len(b.keys) > maxKeysReuse {
   408  		b.keys = nil
   409  	}
   410  	// Avoid caching the key buf if it is overly large. The constant is
   411  	// fairly arbitrary.
   412  	if cap(b.buf) >= maxKeyBufCacheSize {
   413  		b.buf = nil
   414  	} else {
   415  		b.buf = b.buf[:0]
   416  	}
   417  	b.internal.PrepareForReuse()
   418  }
   419  
   420  func (i *iteratorRangeKeyState) init(cmp base.Compare, split base.Split, opts *IterOptions) {
   421  	i.cmp = cmp
   422  	i.split = split
   423  	i.opts = opts
   424  }
   425  
   426  var iterRangeKeyStateAllocPool = sync.Pool{
   427  	New: func() interface{} {
   428  		return &iteratorRangeKeyState{}
   429  	},
   430  }
   431  
   432  // isEphemeralPosition returns true iff the current iterator position is
   433  // ephemeral, and won't be visited during subsequent relative positioning
   434  // operations.
   435  //
   436  // The iterator position resulting from a SeekGE or SeekPrefixGE that lands on a
   437  // straddling range key without a coincident point key is such a position.
   438  func (i *Iterator) isEphemeralPosition() bool {
   439  	return i.opts.rangeKeys() && i.rangeKey != nil && i.rangeKey.rangeKeyOnly &&
   440  		!i.equal(i.rangeKey.start, i.key)
   441  }
   442  
   443  type lastPositioningOpKind int8
   444  
   445  const (
   446  	unknownLastPositionOp lastPositioningOpKind = iota
   447  	seekPrefixGELastPositioningOp
   448  	seekGELastPositioningOp
   449  	seekLTLastPositioningOp
   450  	// internalNextOp is a special internal iterator positioning operation used
   451  	// by CanDeterministicallySingleDelete. It exists for enforcing requirements
   452  	// around calling CanDeterministicallySingleDelete at most once per external
   453  	// iterator position.
   454  	internalNextOp
   455  	// invalidatedLastPositionOp is similar to unknownLastPositionOp and the
   456  	// only reason to distinguish this is for the wider set of SeekGE
   457  	// optimizations we permit for the external iterator Iterator.forwardOnly
   458  	// case. Most code predicates should be doing equality comparisons with one
   459  	// of the seek* enum values, so this duplication should not result in code
   460  	// of the form:
   461  	//  if unknownLastPositionOp || invalidLastPositionOp
   462  	invalidatedLastPositionOp
   463  )
   464  
   465  // Limited iteration mode. Not for use with prefix iteration.
   466  //
   467  // SeekGE, SeekLT, Prev, Next have WithLimit variants, that pause the iterator
   468  // at the limit in a best-effort manner. The client should behave correctly
   469  // even if the limits are ignored. These limits are not "deep", in that they
   470  // are not passed down to the underlying collection of internalIterators. This
   471  // is because the limits are transient, and apply only until the next
   472  // iteration call. They serve mainly as a way to bound the amount of work when
   473  // two (or more) Iterators are being coordinated at a higher level.
   474  //
   475  // In limited iteration mode:
   476  // - Avoid using Iterator.Valid if the last call was to a *WithLimit() method.
   477  //   The return value from the *WithLimit() method provides a more precise
   478  //   disposition.
   479  // - The limit is exclusive for forward and inclusive for reverse.
   480  //
   481  //
   482  // Limited iteration mode & range keys
   483  //
   484  // Limited iteration interacts with range-key iteration. When range key
   485  // iteration is enabled, range keys are interleaved at their start boundaries.
   486  // Limited iteration must ensure that if a range key exists within the limit,
   487  // the iterator visits the range key.
   488  //
   489  // During forward limited iteration, this is trivial: An overlapping range key
   490  // must have a start boundary less than the limit, and the range key's start
   491  // boundary will be interleaved and found to be within the limit.
   492  //
   493  // During reverse limited iteration, the tail of the range key may fall within
   494  // the limit. The range key must be surfaced even if the range key's start
   495  // boundary is less than the limit, and if there are no point keys between the
   496  // current iterator position and the limit. To provide this guarantee, reverse
   497  // limited iteration ignores the limit as long as there is a range key
   498  // overlapping the iteration position.
   499  
   500  // IterValidityState captures the state of the Iterator.
   501  type IterValidityState int8
   502  
   503  const (
   504  	// IterExhausted represents an Iterator that is exhausted.
   505  	IterExhausted IterValidityState = iota
   506  	// IterValid represents an Iterator that is valid.
   507  	IterValid
   508  	// IterAtLimit represents an Iterator that has a non-exhausted
   509  	// internalIterator, but has reached a limit without any key for the
   510  	// caller.
   511  	IterAtLimit
   512  )
   513  
   514  // readSampling stores variables used to sample a read to trigger a read
   515  // compaction
   516  type readSampling struct {
   517  	bytesUntilReadSampling uint64
   518  	initialSamplePassed    bool
   519  	pendingCompactions     readCompactionQueue
   520  	// forceReadSampling is used for testing purposes to force a read sample on every
   521  	// call to Iterator.maybeSampleRead()
   522  	forceReadSampling bool
   523  }
   524  
   525  func (i *Iterator) findNextEntry(limit []byte) {
   526  	i.iterValidityState = IterExhausted
   527  	i.pos = iterPosCurForward
   528  	if i.opts.rangeKeys() && i.rangeKey != nil {
   529  		i.rangeKey.rangeKeyOnly = false
   530  	}
   531  
   532  	// Close the closer for the current value if one was open.
   533  	if i.closeValueCloser() != nil {
   534  		return
   535  	}
   536  
   537  	for i.iterKey != nil {
   538  		key := *i.iterKey
   539  
   540  		if i.hasPrefix {
   541  			if n := i.split(key.UserKey); !i.equal(i.prefixOrFullSeekKey, key.UserKey[:n]) {
   542  				return
   543  			}
   544  		}
   545  		// Compare with limit every time we start at a different user key.
   546  		// Note that given the best-effort contract of limit, we could avoid a
   547  		// comparison in the common case by doing this only after
   548  		// i.nextUserKey is called for the deletes below. However that makes
   549  		// the behavior non-deterministic (since the behavior will vary based
   550  		// on what has been compacted), which makes it hard to test with the
   551  		// metamorphic test. So we forego that performance optimization.
   552  		if limit != nil && i.cmp(limit, i.iterKey.UserKey) <= 0 {
   553  			i.iterValidityState = IterAtLimit
   554  			i.pos = iterPosCurForwardPaused
   555  			return
   556  		}
   557  
   558  		// If the user has configured a SkipPoint function, invoke it to see
   559  		// whether we should skip over the current user key.
   560  		if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(i.iterKey.UserKey) {
   561  			// NB: We could call nextUserKey, but in some cases the SkipPoint
   562  			// predicate function might be cheaper than nextUserKey's key copy
   563  			// and key comparison. This should be the case for MVCC suffix
   564  			// comparisons, for example. In the future, we could expand the
   565  			// SkipPoint interface to give the implementor more control over
   566  			// whether we skip over just the internal key, the user key, or even
   567  			// the key prefix.
   568  			i.stats.ForwardStepCount[InternalIterCall]++
   569  			i.iterKey, i.iterValue = i.iter.Next()
   570  			continue
   571  		}
   572  
   573  		switch key.Kind() {
   574  		case InternalKeyKindRangeKeySet:
   575  			// Save the current key.
   576  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
   577  			i.key = i.keyBuf
   578  			i.value = LazyValue{}
   579  			// There may also be a live point key at this userkey that we have
   580  			// not yet read. We need to find the next entry with this user key
   581  			// to find it. Save the range key so we don't lose it when we Next
   582  			// the underlying iterator.
   583  			i.saveRangeKey()
   584  			pointKeyExists := i.nextPointCurrentUserKey()
   585  			if i.err != nil {
   586  				i.iterValidityState = IterExhausted
   587  				return
   588  			}
   589  			i.rangeKey.rangeKeyOnly = !pointKeyExists
   590  			i.iterValidityState = IterValid
   591  			return
   592  
   593  		case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
   594  			// NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
   595  			// only simpler, but is also necessary for correctness due to
   596  			// InternalKeyKindSSTableInternalObsoleteBit.
   597  			i.nextUserKey()
   598  			continue
   599  
   600  		case InternalKeyKindSet, InternalKeyKindSetWithDelete:
   601  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
   602  			i.key = i.keyBuf
   603  			i.value = i.iterValue
   604  			i.iterValidityState = IterValid
   605  			i.saveRangeKey()
   606  			return
   607  
   608  		case InternalKeyKindMerge:
   609  			// Resolving the merge may advance us to the next point key, which
   610  			// may be covered by a different set of range keys. Save the range
   611  			// key state so we don't lose it.
   612  			i.saveRangeKey()
   613  			if i.mergeForward(key) {
   614  				i.iterValidityState = IterValid
   615  				return
   616  			}
   617  
   618  			// The merge didn't yield a valid key, either because the value
   619  			// merger indicated it should be deleted, or because an error was
   620  			// encountered.
   621  			i.iterValidityState = IterExhausted
   622  			if i.err != nil {
   623  				return
   624  			}
   625  			if i.pos != iterPosNext {
   626  				i.nextUserKey()
   627  			}
   628  			if i.closeValueCloser() != nil {
   629  				return
   630  			}
   631  			i.pos = iterPosCurForward
   632  
   633  		default:
   634  			i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
   635  			i.iterValidityState = IterExhausted
   636  			return
   637  		}
   638  	}
   639  }
   640  
   641  func (i *Iterator) nextPointCurrentUserKey() bool {
   642  	// If the user has configured a SkipPoint function and the current user key
   643  	// would be skipped by it, there's no need to step forward looking for a
   644  	// point key. If we were to find one, it should be skipped anyways.
   645  	if i.opts.SkipPoint != nil && i.opts.SkipPoint(i.key) {
   646  		return false
   647  	}
   648  
   649  	i.pos = iterPosCurForward
   650  
   651  	i.iterKey, i.iterValue = i.iter.Next()
   652  	i.stats.ForwardStepCount[InternalIterCall]++
   653  	if i.iterKey == nil || !i.equal(i.key, i.iterKey.UserKey) {
   654  		i.pos = iterPosNext
   655  		return false
   656  	}
   657  
   658  	key := *i.iterKey
   659  	switch key.Kind() {
   660  	case InternalKeyKindRangeKeySet:
   661  		// RangeKeySets must always be interleaved as the first internal key
   662  		// for a user key.
   663  		i.err = base.CorruptionErrorf("pebble: unexpected range key set mid-user key")
   664  		return false
   665  
   666  	case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
   667  		// NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
   668  		// only simpler, but is also necessary for correctness due to
   669  		// InternalKeyKindSSTableInternalObsoleteBit.
   670  		return false
   671  
   672  	case InternalKeyKindSet, InternalKeyKindSetWithDelete:
   673  		i.value = i.iterValue
   674  		return true
   675  
   676  	case InternalKeyKindMerge:
   677  		return i.mergeForward(key)
   678  
   679  	default:
   680  		i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
   681  		return false
   682  	}
   683  }
   684  
   685  // mergeForward resolves a MERGE key, advancing the underlying iterator forward
   686  // to merge with subsequent keys with the same userkey. mergeForward returns a
   687  // boolean indicating whether or not the merge yielded a valid key. A merge may
   688  // not yield a valid key if an error occurred, in which case i.err is non-nil,
   689  // or the user's value merger specified the key to be deleted.
   690  //
   691  // mergeForward does not update iterValidityState.
   692  func (i *Iterator) mergeForward(key base.InternalKey) (valid bool) {
   693  	var iterValue []byte
   694  	iterValue, _, i.err = i.iterValue.Value(nil)
   695  	if i.err != nil {
   696  		return false
   697  	}
   698  	var valueMerger ValueMerger
   699  	valueMerger, i.err = i.merge(key.UserKey, iterValue)
   700  	if i.err != nil {
   701  		return false
   702  	}
   703  
   704  	i.mergeNext(key, valueMerger)
   705  	if i.err != nil {
   706  		return false
   707  	}
   708  
   709  	var needDelete bool
   710  	var value []byte
   711  	value, needDelete, i.valueCloser, i.err = finishValueMerger(
   712  		valueMerger, true /* includesBase */)
   713  	i.value = base.MakeInPlaceValue(value)
   714  	if i.err != nil {
   715  		return false
   716  	}
   717  	if needDelete {
   718  		_ = i.closeValueCloser()
   719  		return false
   720  	}
   721  	return true
   722  }
   723  
   724  func (i *Iterator) closeValueCloser() error {
   725  	if i.valueCloser != nil {
   726  		i.err = i.valueCloser.Close()
   727  		i.valueCloser = nil
   728  	}
   729  	return i.err
   730  }
   731  
   732  func (i *Iterator) nextUserKey() {
   733  	if i.iterKey == nil {
   734  		return
   735  	}
   736  	trailer := i.iterKey.Trailer
   737  	done := i.iterKey.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
   738  	if i.iterValidityState != IterValid {
   739  		i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
   740  		i.key = i.keyBuf
   741  	}
   742  	for {
   743  		i.iterKey, i.iterValue = i.iter.Next()
   744  		i.stats.ForwardStepCount[InternalIterCall]++
   745  		// NB: We're guaranteed to be on the next user key if the previous key
   746  		// had a zero sequence number (`done`), or the new key has a trailer
   747  		// greater or equal to the previous key's trailer. This is true because
   748  		// internal keys with the same user key are sorted by Trailer in
   749  		// strictly monotonically descending order. We expect the trailer
   750  		// optimization to trigger around 50% of the time with randomly
   751  		// distributed writes. We expect it to trigger very frequently when
   752  		// iterating through ingested sstables, which contain keys that all have
   753  		// the same sequence number.
   754  		if done || i.iterKey == nil || i.iterKey.Trailer >= trailer {
   755  			break
   756  		}
   757  		if !i.equal(i.key, i.iterKey.UserKey) {
   758  			break
   759  		}
   760  		done = i.iterKey.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
   761  		trailer = i.iterKey.Trailer
   762  	}
   763  }
   764  
   765  func (i *Iterator) maybeSampleRead() {
   766  	// This method is only called when a public method of Iterator is
   767  	// returning, and below we exclude the case were the iterator is paused at
   768  	// a limit. The effect of these choices is that keys that are deleted, but
   769  	// are encountered during iteration, are not accounted for in the read
   770  	// sampling and will not cause read driven compactions, even though we are
   771  	// incurring cost in iterating over them. And this issue is not limited to
   772  	// Iterator, which does not see the effect of range deletes, which may be
   773  	// causing iteration work in mergingIter. It is not clear at this time
   774  	// whether this is a deficiency worth addressing.
   775  	if i.iterValidityState != IterValid {
   776  		return
   777  	}
   778  	if i.readState == nil {
   779  		return
   780  	}
   781  	if i.readSampling.forceReadSampling {
   782  		i.sampleRead()
   783  		return
   784  	}
   785  	samplingPeriod := int32(int64(readBytesPeriod) * i.readState.db.opts.Experimental.ReadSamplingMultiplier)
   786  	if samplingPeriod <= 0 {
   787  		return
   788  	}
   789  	bytesRead := uint64(len(i.key) + i.value.Len())
   790  	for i.readSampling.bytesUntilReadSampling < bytesRead {
   791  		i.readSampling.bytesUntilReadSampling += uint64(fastrand.Uint32n(2 * uint32(samplingPeriod)))
   792  		// The block below tries to adjust for the case where this is the
   793  		// first read in a newly-opened iterator. As bytesUntilReadSampling
   794  		// starts off at zero, we don't want to sample the first read of
   795  		// every newly-opened iterator, but we do want to sample some of them.
   796  		if !i.readSampling.initialSamplePassed {
   797  			i.readSampling.initialSamplePassed = true
   798  			if fastrand.Uint32n(uint32(i.readSampling.bytesUntilReadSampling)) > uint32(bytesRead) {
   799  				continue
   800  			}
   801  		}
   802  		i.sampleRead()
   803  	}
   804  	i.readSampling.bytesUntilReadSampling -= bytesRead
   805  }
   806  
   807  func (i *Iterator) sampleRead() {
   808  	var topFile *manifest.FileMetadata
   809  	topLevel, numOverlappingLevels := numLevels, 0
   810  	mi := i.merging
   811  	if mi == nil {
   812  		return
   813  	}
   814  	if len(mi.levels) > 1 {
   815  		mi.ForEachLevelIter(func(li *levelIter) bool {
   816  			l := manifest.LevelToInt(li.level)
   817  			if f := li.iterFile; f != nil {
   818  				var containsKey bool
   819  				if i.pos == iterPosNext || i.pos == iterPosCurForward ||
   820  					i.pos == iterPosCurForwardPaused {
   821  					containsKey = i.cmp(f.SmallestPointKey.UserKey, i.key) <= 0
   822  				} else if i.pos == iterPosPrev || i.pos == iterPosCurReverse ||
   823  					i.pos == iterPosCurReversePaused {
   824  					containsKey = i.cmp(f.LargestPointKey.UserKey, i.key) >= 0
   825  				}
   826  				// Do nothing if the current key is not contained in f's
   827  				// bounds. We could seek the LevelIterator at this level
   828  				// to find the right file, but the performance impacts of
   829  				// doing that are significant enough to negate the benefits
   830  				// of read sampling in the first place. See the discussion
   831  				// at:
   832  				// https://github.com/cockroachdb/pebble/pull/1041#issuecomment-763226492
   833  				if containsKey {
   834  					numOverlappingLevels++
   835  					if numOverlappingLevels >= 2 {
   836  						// Terminate the loop early if at least 2 overlapping levels are found.
   837  						return true
   838  					}
   839  					topLevel = l
   840  					topFile = f
   841  				}
   842  			}
   843  			return false
   844  		})
   845  	}
   846  	if topFile == nil || topLevel >= numLevels {
   847  		return
   848  	}
   849  	if numOverlappingLevels >= 2 {
   850  		allowedSeeks := topFile.AllowedSeeks.Add(-1)
   851  		if allowedSeeks == 0 {
   852  
   853  			// Since the compaction queue can handle duplicates, we can keep
   854  			// adding to the queue even once allowedSeeks hits 0.
   855  			// In fact, we NEED to keep adding to the queue, because the queue
   856  			// is small and evicts older and possibly useful compactions.
   857  			topFile.AllowedSeeks.Add(topFile.InitAllowedSeeks)
   858  
   859  			read := readCompaction{
   860  				start:   topFile.SmallestPointKey.UserKey,
   861  				end:     topFile.LargestPointKey.UserKey,
   862  				level:   topLevel,
   863  				fileNum: topFile.FileNum,
   864  			}
   865  			i.readSampling.pendingCompactions.add(&read, i.cmp)
   866  		}
   867  	}
   868  }
   869  
   870  func (i *Iterator) findPrevEntry(limit []byte) {
   871  	i.iterValidityState = IterExhausted
   872  	i.pos = iterPosCurReverse
   873  	if i.opts.rangeKeys() && i.rangeKey != nil {
   874  		i.rangeKey.rangeKeyOnly = false
   875  	}
   876  
   877  	// Close the closer for the current value if one was open.
   878  	if i.valueCloser != nil {
   879  		i.err = i.valueCloser.Close()
   880  		i.valueCloser = nil
   881  		if i.err != nil {
   882  			i.iterValidityState = IterExhausted
   883  			return
   884  		}
   885  	}
   886  
   887  	var valueMerger ValueMerger
   888  	firstLoopIter := true
   889  	rangeKeyBoundary := false
   890  	// The code below compares with limit in multiple places. As documented in
   891  	// findNextEntry, this is being done to make the behavior of limit
   892  	// deterministic to allow for metamorphic testing. It is not required by
   893  	// the best-effort contract of limit.
   894  	for i.iterKey != nil {
   895  		key := *i.iterKey
   896  
   897  		// NB: We cannot pause if the current key is covered by a range key.
   898  		// Otherwise, the user might not ever learn of a range key that covers
   899  		// the key space being iterated over in which there are no point keys.
   900  		// Since limits are best effort, ignoring the limit in this case is
   901  		// allowed by the contract of limit.
   902  		if firstLoopIter && limit != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
   903  			i.iterValidityState = IterAtLimit
   904  			i.pos = iterPosCurReversePaused
   905  			return
   906  		}
   907  		firstLoopIter = false
   908  
   909  		if i.iterValidityState == IterValid {
   910  			if !i.equal(key.UserKey, i.key) {
   911  				// We've iterated to the previous user key.
   912  				i.pos = iterPosPrev
   913  				if valueMerger != nil {
   914  					var needDelete bool
   915  					var value []byte
   916  					value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
   917  					i.value = base.MakeInPlaceValue(value)
   918  					if i.err == nil && needDelete {
   919  						// The point key at this key is deleted. If we also have
   920  						// a range key boundary at this key, we still want to
   921  						// return. Otherwise, we need to continue looking for
   922  						// a live key.
   923  						i.value = LazyValue{}
   924  						if rangeKeyBoundary {
   925  							i.rangeKey.rangeKeyOnly = true
   926  						} else {
   927  							i.iterValidityState = IterExhausted
   928  							if i.closeValueCloser() == nil {
   929  								continue
   930  							}
   931  						}
   932  					}
   933  				}
   934  				if i.err != nil {
   935  					i.iterValidityState = IterExhausted
   936  				}
   937  				return
   938  			}
   939  		}
   940  
   941  		// If the user has configured a SkipPoint function, invoke it to see
   942  		// whether we should skip over the current user key.
   943  		if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(key.UserKey) {
   944  			// NB: We could call prevUserKey, but in some cases the SkipPoint
   945  			// predicate function might be cheaper than prevUserKey's key copy
   946  			// and key comparison. This should be the case for MVCC suffix
   947  			// comparisons, for example. In the future, we could expand the
   948  			// SkipPoint interface to give the implementor more control over
   949  			// whether we skip over just the internal key, the user key, or even
   950  			// the key prefix.
   951  			i.stats.ReverseStepCount[InternalIterCall]++
   952  			i.iterKey, i.iterValue = i.iter.Prev()
   953  			if limit != nil && i.iterKey != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
   954  				i.iterValidityState = IterAtLimit
   955  				i.pos = iterPosCurReversePaused
   956  				return
   957  			}
   958  			continue
   959  		}
   960  
   961  		switch key.Kind() {
   962  		case InternalKeyKindRangeKeySet:
   963  			// Range key start boundary markers are interleaved with the maximum
   964  			// sequence number, so if there's a point key also at this key, we
   965  			// must've already iterated over it.
   966  			// This is the final entry at this user key, so we may return
   967  			i.rangeKey.rangeKeyOnly = i.iterValidityState != IterValid
   968  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
   969  			i.key = i.keyBuf
   970  			i.iterValidityState = IterValid
   971  			i.saveRangeKey()
   972  			// In all other cases, previous iteration requires advancing to
   973  			// iterPosPrev in order to determine if the key is live and
   974  			// unshadowed by another key at the same user key. In this case,
   975  			// because range key start boundary markers are always interleaved
   976  			// at the maximum sequence number, we know that there aren't any
   977  			// additional keys with the same user key in the backward direction.
   978  			//
   979  			// We Prev the underlying iterator once anyways for consistency, so
   980  			// that we can maintain the invariant during backward iteration that
   981  			// i.iterPos = iterPosPrev.
   982  			i.stats.ReverseStepCount[InternalIterCall]++
   983  			i.iterKey, i.iterValue = i.iter.Prev()
   984  
   985  			// Set rangeKeyBoundary so that on the next iteration, we know to
   986  			// return the key even if the MERGE point key is deleted.
   987  			rangeKeyBoundary = true
   988  
   989  		case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
   990  			i.value = LazyValue{}
   991  			i.iterValidityState = IterExhausted
   992  			valueMerger = nil
   993  			i.iterKey, i.iterValue = i.iter.Prev()
   994  			i.stats.ReverseStepCount[InternalIterCall]++
   995  			// Compare with the limit. We could optimize by only checking when
   996  			// we step to the previous user key, but detecting that requires a
   997  			// comparison too. Note that this position may already passed a
   998  			// number of versions of this user key, but they are all deleted, so
   999  			// the fact that a subsequent Prev*() call will not see them is
  1000  			// harmless. Also note that this is the only place in the loop,
  1001  			// other than the firstLoopIter and SkipPoint cases above, where we
  1002  			// could step to a different user key and start processing it for
  1003  			// returning to the caller.
  1004  			if limit != nil && i.iterKey != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
  1005  				i.iterValidityState = IterAtLimit
  1006  				i.pos = iterPosCurReversePaused
  1007  				return
  1008  			}
  1009  			continue
  1010  
  1011  		case InternalKeyKindSet, InternalKeyKindSetWithDelete:
  1012  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
  1013  			i.key = i.keyBuf
  1014  			// iterValue is owned by i.iter and could change after the Prev()
  1015  			// call, so use valueBuf instead. Note that valueBuf is only used
  1016  			// in this one instance; everywhere else (eg. in findNextEntry),
  1017  			// we just point i.value to the unsafe i.iter-owned value buffer.
  1018  			i.value, i.valueBuf = i.iterValue.Clone(i.valueBuf[:0], &i.fetcher)
  1019  			i.saveRangeKey()
  1020  			i.iterValidityState = IterValid
  1021  			i.iterKey, i.iterValue = i.iter.Prev()
  1022  			i.stats.ReverseStepCount[InternalIterCall]++
  1023  			valueMerger = nil
  1024  			continue
  1025  
  1026  		case InternalKeyKindMerge:
  1027  			if i.iterValidityState == IterExhausted {
  1028  				i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
  1029  				i.key = i.keyBuf
  1030  				i.saveRangeKey()
  1031  				var iterValue []byte
  1032  				iterValue, _, i.err = i.iterValue.Value(nil)
  1033  				if i.err != nil {
  1034  					return
  1035  				}
  1036  				valueMerger, i.err = i.merge(i.key, iterValue)
  1037  				if i.err != nil {
  1038  					return
  1039  				}
  1040  				i.iterValidityState = IterValid
  1041  			} else if valueMerger == nil {
  1042  				// Extract value before iterValue since we use value before iterValue
  1043  				// and the underlying iterator is not required to provide backing
  1044  				// memory for both simultaneously.
  1045  				var value []byte
  1046  				var callerOwned bool
  1047  				value, callerOwned, i.err = i.value.Value(i.lazyValueBuf)
  1048  				if callerOwned {
  1049  					i.lazyValueBuf = value[:0]
  1050  				}
  1051  				if i.err != nil {
  1052  					return
  1053  				}
  1054  				valueMerger, i.err = i.merge(i.key, value)
  1055  				var iterValue []byte
  1056  				iterValue, _, i.err = i.iterValue.Value(nil)
  1057  				if i.err != nil {
  1058  					return
  1059  				}
  1060  				if i.err == nil {
  1061  					i.err = valueMerger.MergeNewer(iterValue)
  1062  				}
  1063  				if i.err != nil {
  1064  					i.iterValidityState = IterExhausted
  1065  					return
  1066  				}
  1067  			} else {
  1068  				var iterValue []byte
  1069  				iterValue, _, i.err = i.iterValue.Value(nil)
  1070  				if i.err != nil {
  1071  					return
  1072  				}
  1073  				i.err = valueMerger.MergeNewer(iterValue)
  1074  				if i.err != nil {
  1075  					i.iterValidityState = IterExhausted
  1076  					return
  1077  				}
  1078  			}
  1079  			i.iterKey, i.iterValue = i.iter.Prev()
  1080  			i.stats.ReverseStepCount[InternalIterCall]++
  1081  			continue
  1082  
  1083  		default:
  1084  			i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
  1085  			i.iterValidityState = IterExhausted
  1086  			return
  1087  		}
  1088  	}
  1089  
  1090  	// i.iterKey == nil, so broke out of the preceding loop.
  1091  	if i.iterValidityState == IterValid {
  1092  		i.pos = iterPosPrev
  1093  		if valueMerger != nil {
  1094  			var needDelete bool
  1095  			var value []byte
  1096  			value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
  1097  			i.value = base.MakeInPlaceValue(value)
  1098  			if i.err == nil && needDelete {
  1099  				i.key = nil
  1100  				i.value = LazyValue{}
  1101  				i.iterValidityState = IterExhausted
  1102  			}
  1103  		}
  1104  		if i.err != nil {
  1105  			i.iterValidityState = IterExhausted
  1106  		}
  1107  	}
  1108  }
  1109  
  1110  func (i *Iterator) prevUserKey() {
  1111  	if i.iterKey == nil {
  1112  		return
  1113  	}
  1114  	if i.iterValidityState != IterValid {
  1115  		// If we're going to compare against the prev key, we need to save the
  1116  		// current key.
  1117  		i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
  1118  		i.key = i.keyBuf
  1119  	}
  1120  	for {
  1121  		i.iterKey, i.iterValue = i.iter.Prev()
  1122  		i.stats.ReverseStepCount[InternalIterCall]++
  1123  		if i.iterKey == nil {
  1124  			break
  1125  		}
  1126  		if !i.equal(i.key, i.iterKey.UserKey) {
  1127  			break
  1128  		}
  1129  	}
  1130  }
  1131  
  1132  func (i *Iterator) mergeNext(key InternalKey, valueMerger ValueMerger) {
  1133  	// Save the current key.
  1134  	i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
  1135  	i.key = i.keyBuf
  1136  
  1137  	// Loop looking for older values for this key and merging them.
  1138  	for {
  1139  		i.iterKey, i.iterValue = i.iter.Next()
  1140  		i.stats.ForwardStepCount[InternalIterCall]++
  1141  		if i.iterKey == nil {
  1142  			i.pos = iterPosNext
  1143  			return
  1144  		}
  1145  		key = *i.iterKey
  1146  		if !i.equal(i.key, key.UserKey) {
  1147  			// We've advanced to the next key.
  1148  			i.pos = iterPosNext
  1149  			return
  1150  		}
  1151  		switch key.Kind() {
  1152  		case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
  1153  			// We've hit a deletion tombstone. Return everything up to this
  1154  			// point.
  1155  			//
  1156  			// NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
  1157  			// only simpler, but is also necessary for correctness due to
  1158  			// InternalKeyKindSSTableInternalObsoleteBit.
  1159  			return
  1160  
  1161  		case InternalKeyKindSet, InternalKeyKindSetWithDelete:
  1162  			// We've hit a Set value. Merge with the existing value and return.
  1163  			var iterValue []byte
  1164  			iterValue, _, i.err = i.iterValue.Value(nil)
  1165  			if i.err != nil {
  1166  				return
  1167  			}
  1168  			i.err = valueMerger.MergeOlder(iterValue)
  1169  			return
  1170  
  1171  		case InternalKeyKindMerge:
  1172  			// We've hit another Merge value. Merge with the existing value and
  1173  			// continue looping.
  1174  			var iterValue []byte
  1175  			iterValue, _, i.err = i.iterValue.Value(nil)
  1176  			if i.err != nil {
  1177  				return
  1178  			}
  1179  			i.err = valueMerger.MergeOlder(iterValue)
  1180  			if i.err != nil {
  1181  				return
  1182  			}
  1183  			continue
  1184  
  1185  		case InternalKeyKindRangeKeySet:
  1186  			// The RANGEKEYSET marker must sort before a MERGE at the same user key.
  1187  			i.err = base.CorruptionErrorf("pebble: out of order range key marker")
  1188  			return
  1189  
  1190  		default:
  1191  			i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
  1192  			return
  1193  		}
  1194  	}
  1195  }
  1196  
  1197  // SeekGE moves the iterator to the first key/value pair whose key is greater
  1198  // than or equal to the given key. Returns true if the iterator is pointing at
  1199  // a valid entry and false otherwise.
  1200  func (i *Iterator) SeekGE(key []byte) bool {
  1201  	return i.SeekGEWithLimit(key, nil) == IterValid
  1202  }
  1203  
  1204  // SeekGEWithLimit moves the iterator to the first key/value pair whose key is
  1205  // greater than or equal to the given key.
  1206  //
  1207  // If limit is provided, it serves as a best-effort exclusive limit. If the
  1208  // first key greater than or equal to the given search key is also greater than
  1209  // or equal to limit, the Iterator may pause and return IterAtLimit. Because
  1210  // limits are best-effort, SeekGEWithLimit may return a key beyond limit.
  1211  //
  1212  // If the Iterator is configured to iterate over range keys, SeekGEWithLimit
  1213  // guarantees it will surface any range keys with bounds overlapping the
  1214  // keyspace [key, limit).
  1215  func (i *Iterator) SeekGEWithLimit(key []byte, limit []byte) IterValidityState {
  1216  	if i.rangeKey != nil {
  1217  		// NB: Check Valid() before clearing requiresReposition.
  1218  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1219  		// If we have a range key but did not expose it at the previous iterator
  1220  		// position (because the iterator was not at a valid position), updated
  1221  		// must be true. This ensures that after an iterator op sequence like:
  1222  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1223  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1224  		//   - SeekGE(...)        → (IterValid, RangeBounds() = [a,b))
  1225  		// the iterator returns RangeKeyChanged()=true.
  1226  		//
  1227  		// The remainder of this function will only update i.rangeKey.updated if
  1228  		// the iterator moves into a new range key, or out of the current range
  1229  		// key.
  1230  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1231  	}
  1232  	lastPositioningOp := i.lastPositioningOp
  1233  	hasPrefix := i.hasPrefix
  1234  	// Set it to unknown, since this operation may not succeed, in which case
  1235  	// the SeekGE following this should not make any assumption about iterator
  1236  	// position.
  1237  	i.lastPositioningOp = unknownLastPositionOp
  1238  	i.requiresReposition = false
  1239  	i.err = nil // clear cached iteration error
  1240  	i.hasPrefix = false
  1241  	i.stats.ForwardSeekCount[InterfaceCall]++
  1242  	if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
  1243  		key = lowerBound
  1244  	} else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
  1245  		key = upperBound
  1246  	}
  1247  	seekInternalIter := true
  1248  
  1249  	var flags base.SeekGEFlags
  1250  	if i.batchJustRefreshed {
  1251  		i.batchJustRefreshed = false
  1252  		flags = flags.EnableBatchJustRefreshed()
  1253  	}
  1254  	if lastPositioningOp == seekGELastPositioningOp {
  1255  		cmp := i.cmp(i.prefixOrFullSeekKey, key)
  1256  		// If this seek is to the same or later key, and the iterator is
  1257  		// already positioned there, this is a noop. This can be helpful for
  1258  		// sparse key spaces that have many deleted keys, where one can avoid
  1259  		// the overhead of iterating past them again and again.
  1260  		if cmp <= 0 {
  1261  			if !flags.BatchJustRefreshed() &&
  1262  				(i.iterValidityState == IterExhausted ||
  1263  					(i.iterValidityState == IterValid && i.cmp(key, i.key) <= 0 &&
  1264  						(limit == nil || i.cmp(i.key, limit) < 0))) {
  1265  				// Noop
  1266  				if !invariants.Enabled || !disableSeekOpt(key, uintptr(unsafe.Pointer(i))) || i.forceEnableSeekOpt {
  1267  					i.lastPositioningOp = seekGELastPositioningOp
  1268  					return i.iterValidityState
  1269  				}
  1270  			}
  1271  			// cmp == 0 is not safe to optimize since
  1272  			// - i.pos could be at iterPosNext, due to a merge.
  1273  			// - Even if i.pos were at iterPosCurForward, we could have a DELETE,
  1274  			//   SET pair for a key, and the iterator would have moved past DELETE
  1275  			//   but stayed at iterPosCurForward. A similar situation occurs for a
  1276  			//   MERGE, SET pair where the MERGE is consumed and the iterator is
  1277  			//   at the SET.
  1278  			// We also leverage the IterAtLimit <=> i.pos invariant defined in the
  1279  			// comment on iterValidityState, to exclude any cases where i.pos
  1280  			// is iterPosCur{Forward,Reverse}Paused. This avoids the need to
  1281  			// special-case those iterator positions and their interactions with
  1282  			// TrySeekUsingNext, as the main uses for TrySeekUsingNext in CockroachDB
  1283  			// do not use limited Seeks in the first place.
  1284  			if cmp < 0 && i.iterValidityState != IterAtLimit && limit == nil {
  1285  				flags = flags.EnableTrySeekUsingNext()
  1286  			}
  1287  			if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1288  				flags = flags.DisableTrySeekUsingNext()
  1289  			}
  1290  			if !flags.BatchJustRefreshed() && i.pos == iterPosCurForwardPaused && i.cmp(key, i.iterKey.UserKey) <= 0 {
  1291  				// Have some work to do, but don't need to seek, and we can
  1292  				// start doing findNextEntry from i.iterKey.
  1293  				seekInternalIter = false
  1294  			}
  1295  		}
  1296  	}
  1297  	// Check for another TrySeekUsingNext optimization opportunity, currently
  1298  	// specifically tailored to external iterators. This case is intended to
  1299  	// trigger in instances of Seek-ing with monotonically increasing keys with
  1300  	// Nexts interspersed. At the time of writing, this is the case for
  1301  	// CockroachDB scans. This optimization is important for external iterators
  1302  	// to avoid re-seeking within an already-exhausted sstable. It is not always
  1303  	// a performance win more generally, so we restrict it to external iterators
  1304  	// that are configured to only use forward positioning operations.
  1305  	//
  1306  	// TODO(jackson): This optimization should be obsolete once we introduce and
  1307  	// use the NextPrefix iterator positioning operation.
  1308  	if seekInternalIter && i.forwardOnly && lastPositioningOp != invalidatedLastPositionOp &&
  1309  		i.pos == iterPosCurForward && !hasPrefix && i.iterValidityState == IterValid &&
  1310  		i.cmp(key, i.iterKey.UserKey) > 0 {
  1311  		flags = flags.EnableTrySeekUsingNext()
  1312  		if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1313  			flags = flags.DisableTrySeekUsingNext()
  1314  		}
  1315  	}
  1316  	if seekInternalIter {
  1317  		i.iterKey, i.iterValue = i.iter.SeekGE(key, flags)
  1318  		i.stats.ForwardSeekCount[InternalIterCall]++
  1319  	}
  1320  	i.findNextEntry(limit)
  1321  	i.maybeSampleRead()
  1322  	if i.Error() == nil {
  1323  		// Prepare state for a future noop optimization.
  1324  		i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
  1325  		i.lastPositioningOp = seekGELastPositioningOp
  1326  	}
  1327  	return i.iterValidityState
  1328  }
  1329  
  1330  // SeekPrefixGE moves the iterator to the first key/value pair whose key is
  1331  // greater than or equal to the given key and which has the same "prefix" as
  1332  // the given key. The prefix for a key is determined by the user-defined
  1333  // Comparer.Split function. The iterator will not observe keys not matching the
  1334  // "prefix" of the search key. Calling SeekPrefixGE puts the iterator in prefix
  1335  // iteration mode. The iterator remains in prefix iteration until a subsequent
  1336  // call to another absolute positioning method (SeekGE, SeekLT, First,
  1337  // Last). Reverse iteration (Prev) is not supported when an iterator is in
  1338  // prefix iteration mode. Returns true if the iterator is pointing at a valid
  1339  // entry and false otherwise.
  1340  //
  1341  // The semantics of SeekPrefixGE are slightly unusual and designed for
  1342  // iteration to be able to take advantage of bloom filters that have been
  1343  // created on the "prefix". If you're not using bloom filters, there is no
  1344  // reason to use SeekPrefixGE.
  1345  //
  1346  // An example Split function may separate a timestamp suffix from the prefix of
  1347  // the key.
  1348  //
  1349  //	Split(<key>@<timestamp>) -> <key>
  1350  //
  1351  // Consider the keys "a@1", "a@2", "aa@3", "aa@4". The prefixes for these keys
  1352  // are "a", and "aa". Note that despite "a" and "aa" sharing a prefix by the
  1353  // usual definition, those prefixes differ by the definition of the Split
  1354  // function. To see how this works, consider the following set of calls on this
  1355  // data set:
  1356  //
  1357  //	SeekPrefixGE("a@0") -> "a@1"
  1358  //	Next()              -> "a@2"
  1359  //	Next()              -> EOF
  1360  //
  1361  // If you're just looking to iterate over keys with a shared prefix, as
  1362  // defined by the configured comparer, set iterator bounds instead:
  1363  //
  1364  //	iter := db.NewIter(&pebble.IterOptions{
  1365  //	  LowerBound: []byte("prefix"),
  1366  //	  UpperBound: []byte("prefiy"),
  1367  //	})
  1368  //	for iter.First(); iter.Valid(); iter.Next() {
  1369  //	  // Only keys beginning with "prefix" will be visited.
  1370  //	}
  1371  //
  1372  // See ExampleIterator_SeekPrefixGE for a working example.
  1373  //
  1374  // When iterating with range keys enabled, all range keys encountered are
  1375  // truncated to the seek key's prefix's bounds. The truncation of the upper
  1376  // bound requires that the database's Comparer is configured with a
  1377  // ImmediateSuccessor method. For example, a SeekPrefixGE("a@9") call with the
  1378  // prefix "a" will truncate range key bounds to [a,ImmediateSuccessor(a)].
  1379  func (i *Iterator) SeekPrefixGE(key []byte) bool {
  1380  	if i.rangeKey != nil {
  1381  		// NB: Check Valid() before clearing requiresReposition.
  1382  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1383  		// If we have a range key but did not expose it at the previous iterator
  1384  		// position (because the iterator was not at a valid position), updated
  1385  		// must be true. This ensures that after an iterator op sequence like:
  1386  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1387  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1388  		//   - SeekPrefixGE(...)  → (IterValid, RangeBounds() = [a,b))
  1389  		// the iterator returns RangeKeyChanged()=true.
  1390  		//
  1391  		// The remainder of this function will only update i.rangeKey.updated if
  1392  		// the iterator moves into a new range key, or out of the current range
  1393  		// key.
  1394  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1395  	}
  1396  	lastPositioningOp := i.lastPositioningOp
  1397  	// Set it to unknown, since this operation may not succeed, in which case
  1398  	// the SeekPrefixGE following this should not make any assumption about
  1399  	// iterator position.
  1400  	i.lastPositioningOp = unknownLastPositionOp
  1401  	i.requiresReposition = false
  1402  	i.err = nil // clear cached iteration error
  1403  	i.stats.ForwardSeekCount[InterfaceCall]++
  1404  	if i.comparer.Split == nil {
  1405  		panic("pebble: split must be provided for SeekPrefixGE")
  1406  	}
  1407  	if i.comparer.ImmediateSuccessor == nil && i.opts.KeyTypes != IterKeyTypePointsOnly {
  1408  		panic("pebble: ImmediateSuccessor must be provided for SeekPrefixGE with range keys")
  1409  	}
  1410  	prefixLen := i.split(key)
  1411  	keyPrefix := key[:prefixLen]
  1412  	var flags base.SeekGEFlags
  1413  	if i.batchJustRefreshed {
  1414  		flags = flags.EnableBatchJustRefreshed()
  1415  		i.batchJustRefreshed = false
  1416  	}
  1417  	if lastPositioningOp == seekPrefixGELastPositioningOp {
  1418  		if !i.hasPrefix {
  1419  			panic("lastPositioningOpsIsSeekPrefixGE is true, but hasPrefix is false")
  1420  		}
  1421  		// The iterator has not been repositioned after the last SeekPrefixGE.
  1422  		// See if we are seeking to a larger key, since then we can optimize
  1423  		// the seek by using next. Note that we could also optimize if Next
  1424  		// has been called, if the iterator is not exhausted and the current
  1425  		// position is <= the seek key. We are keeping this limited for now
  1426  		// since such optimizations require care for correctness, and to not
  1427  		// become de-optimizations (if one usually has to do all the next
  1428  		// calls and then the seek). This SeekPrefixGE optimization
  1429  		// specifically benefits CockroachDB.
  1430  		cmp := i.cmp(i.prefixOrFullSeekKey, keyPrefix)
  1431  		// cmp == 0 is not safe to optimize since
  1432  		// - i.pos could be at iterPosNext, due to a merge.
  1433  		// - Even if i.pos were at iterPosCurForward, we could have a DELETE,
  1434  		//   SET pair for a key, and the iterator would have moved past DELETE
  1435  		//   but stayed at iterPosCurForward. A similar situation occurs for a
  1436  		//   MERGE, SET pair where the MERGE is consumed and the iterator is
  1437  		//   at the SET.
  1438  		// In general some versions of i.prefix could have been consumed by
  1439  		// the iterator, so we only optimize for cmp < 0.
  1440  		if cmp < 0 {
  1441  			flags = flags.EnableTrySeekUsingNext()
  1442  		}
  1443  		if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1444  			flags = flags.DisableTrySeekUsingNext()
  1445  		}
  1446  	}
  1447  	// Make a copy of the prefix so that modifications to the key after
  1448  	// SeekPrefixGE returns does not affect the stored prefix.
  1449  	if cap(i.prefixOrFullSeekKey) < prefixLen {
  1450  		i.prefixOrFullSeekKey = make([]byte, prefixLen)
  1451  	} else {
  1452  		i.prefixOrFullSeekKey = i.prefixOrFullSeekKey[:prefixLen]
  1453  	}
  1454  	i.hasPrefix = true
  1455  	copy(i.prefixOrFullSeekKey, keyPrefix)
  1456  
  1457  	if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
  1458  		if n := i.split(lowerBound); !bytes.Equal(i.prefixOrFullSeekKey, lowerBound[:n]) {
  1459  			i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of lower bound")
  1460  			i.iterValidityState = IterExhausted
  1461  			return false
  1462  		}
  1463  		key = lowerBound
  1464  	} else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
  1465  		if n := i.split(upperBound); !bytes.Equal(i.prefixOrFullSeekKey, upperBound[:n]) {
  1466  			i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of upper bound")
  1467  			i.iterValidityState = IterExhausted
  1468  			return false
  1469  		}
  1470  		key = upperBound
  1471  	}
  1472  	i.iterKey, i.iterValue = i.iter.SeekPrefixGE(i.prefixOrFullSeekKey, key, flags)
  1473  	i.stats.ForwardSeekCount[InternalIterCall]++
  1474  	i.findNextEntry(nil)
  1475  	i.maybeSampleRead()
  1476  	if i.Error() == nil {
  1477  		i.lastPositioningOp = seekPrefixGELastPositioningOp
  1478  	}
  1479  	return i.iterValidityState == IterValid
  1480  }
  1481  
  1482  // Deterministic disabling of the seek optimizations. It uses the iterator
  1483  // pointer, since we want diversity in iterator behavior for the same key.  Used
  1484  // for tests.
  1485  func disableSeekOpt(key []byte, ptr uintptr) bool {
  1486  	// Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
  1487  	simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
  1488  	return key != nil && key[0]&byte(1) == 0 && simpleHash == 0
  1489  }
  1490  
  1491  // SeekLT moves the iterator to the last key/value pair whose key is less than
  1492  // the given key. Returns true if the iterator is pointing at a valid entry and
  1493  // false otherwise.
  1494  func (i *Iterator) SeekLT(key []byte) bool {
  1495  	return i.SeekLTWithLimit(key, nil) == IterValid
  1496  }
  1497  
  1498  // SeekLTWithLimit moves the iterator to the last key/value pair whose key is
  1499  // less than the given key.
  1500  //
  1501  // If limit is provided, it serves as a best-effort inclusive limit. If the last
  1502  // key less than the given search key is also less than limit, the Iterator may
  1503  // pause and return IterAtLimit. Because limits are best-effort, SeekLTWithLimit
  1504  // may return a key beyond limit.
  1505  //
  1506  // If the Iterator is configured to iterate over range keys, SeekLTWithLimit
  1507  // guarantees it will surface any range keys with bounds overlapping the
  1508  // keyspace up to limit.
  1509  func (i *Iterator) SeekLTWithLimit(key []byte, limit []byte) IterValidityState {
  1510  	if i.rangeKey != nil {
  1511  		// NB: Check Valid() before clearing requiresReposition.
  1512  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1513  		// If we have a range key but did not expose it at the previous iterator
  1514  		// position (because the iterator was not at a valid position), updated
  1515  		// must be true. This ensures that after an iterator op sequence like:
  1516  		//   - Next()               → (IterValid, RangeBounds() = [a,b))
  1517  		//   - NextWithLimit(...)   → (IterAtLimit, RangeBounds() = -)
  1518  		//   - SeekLTWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1519  		// the iterator returns RangeKeyChanged()=true.
  1520  		//
  1521  		// The remainder of this function will only update i.rangeKey.updated if
  1522  		// the iterator moves into a new range key, or out of the current range
  1523  		// key.
  1524  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1525  	}
  1526  	lastPositioningOp := i.lastPositioningOp
  1527  	// Set it to unknown, since this operation may not succeed, in which case
  1528  	// the SeekLT following this should not make any assumption about iterator
  1529  	// position.
  1530  	i.lastPositioningOp = unknownLastPositionOp
  1531  	i.batchJustRefreshed = false
  1532  	i.requiresReposition = false
  1533  	i.err = nil // clear cached iteration error
  1534  	i.stats.ReverseSeekCount[InterfaceCall]++
  1535  	if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
  1536  		key = upperBound
  1537  	} else if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
  1538  		key = lowerBound
  1539  	}
  1540  	i.hasPrefix = false
  1541  	seekInternalIter := true
  1542  	// The following noop optimization only applies when i.batch == nil, since
  1543  	// an iterator over a batch is iterating over mutable data, that may have
  1544  	// changed since the last seek.
  1545  	if lastPositioningOp == seekLTLastPositioningOp && i.batch == nil {
  1546  		cmp := i.cmp(key, i.prefixOrFullSeekKey)
  1547  		// If this seek is to the same or earlier key, and the iterator is
  1548  		// already positioned there, this is a noop. This can be helpful for
  1549  		// sparse key spaces that have many deleted keys, where one can avoid
  1550  		// the overhead of iterating past them again and again.
  1551  		if cmp <= 0 {
  1552  			// NB: when pos != iterPosCurReversePaused, the invariant
  1553  			// documented earlier implies that iterValidityState !=
  1554  			// IterAtLimit.
  1555  			if i.iterValidityState == IterExhausted ||
  1556  				(i.iterValidityState == IterValid && i.cmp(i.key, key) < 0 &&
  1557  					(limit == nil || i.cmp(limit, i.key) <= 0)) {
  1558  				if !invariants.Enabled || !disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1559  					i.lastPositioningOp = seekLTLastPositioningOp
  1560  					return i.iterValidityState
  1561  				}
  1562  			}
  1563  			if i.pos == iterPosCurReversePaused && i.cmp(i.iterKey.UserKey, key) < 0 {
  1564  				// Have some work to do, but don't need to seek, and we can
  1565  				// start doing findPrevEntry from i.iterKey.
  1566  				seekInternalIter = false
  1567  			}
  1568  		}
  1569  	}
  1570  	if seekInternalIter {
  1571  		i.iterKey, i.iterValue = i.iter.SeekLT(key, base.SeekLTFlagsNone)
  1572  		i.stats.ReverseSeekCount[InternalIterCall]++
  1573  	}
  1574  	i.findPrevEntry(limit)
  1575  	i.maybeSampleRead()
  1576  	if i.Error() == nil && i.batch == nil {
  1577  		// Prepare state for a future noop optimization.
  1578  		i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
  1579  		i.lastPositioningOp = seekLTLastPositioningOp
  1580  	}
  1581  	return i.iterValidityState
  1582  }
  1583  
  1584  // First moves the iterator the the first key/value pair. Returns true if the
  1585  // iterator is pointing at a valid entry and false otherwise.
  1586  func (i *Iterator) First() bool {
  1587  	if i.rangeKey != nil {
  1588  		// NB: Check Valid() before clearing requiresReposition.
  1589  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1590  		// If we have a range key but did not expose it at the previous iterator
  1591  		// position (because the iterator was not at a valid position), updated
  1592  		// must be true. This ensures that after an iterator op sequence like:
  1593  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1594  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1595  		//   - First(...)         → (IterValid, RangeBounds() = [a,b))
  1596  		// the iterator returns RangeKeyChanged()=true.
  1597  		//
  1598  		// The remainder of this function will only update i.rangeKey.updated if
  1599  		// the iterator moves into a new range key, or out of the current range
  1600  		// key.
  1601  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1602  	}
  1603  	i.err = nil // clear cached iteration error
  1604  	i.hasPrefix = false
  1605  	i.batchJustRefreshed = false
  1606  	i.lastPositioningOp = unknownLastPositionOp
  1607  	i.requiresReposition = false
  1608  	i.stats.ForwardSeekCount[InterfaceCall]++
  1609  
  1610  	i.iterFirstWithinBounds()
  1611  	i.findNextEntry(nil)
  1612  	i.maybeSampleRead()
  1613  	return i.iterValidityState == IterValid
  1614  }
  1615  
  1616  // Last moves the iterator the the last key/value pair. Returns true if the
  1617  // iterator is pointing at a valid entry and false otherwise.
  1618  func (i *Iterator) Last() bool {
  1619  	if i.rangeKey != nil {
  1620  		// NB: Check Valid() before clearing requiresReposition.
  1621  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1622  		// If we have a range key but did not expose it at the previous iterator
  1623  		// position (because the iterator was not at a valid position), updated
  1624  		// must be true. This ensures that after an iterator op sequence like:
  1625  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1626  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1627  		//   - Last(...)          → (IterValid, RangeBounds() = [a,b))
  1628  		// the iterator returns RangeKeyChanged()=true.
  1629  		//
  1630  		// The remainder of this function will only update i.rangeKey.updated if
  1631  		// the iterator moves into a new range key, or out of the current range
  1632  		// key.
  1633  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1634  	}
  1635  	i.err = nil // clear cached iteration error
  1636  	i.hasPrefix = false
  1637  	i.batchJustRefreshed = false
  1638  	i.lastPositioningOp = unknownLastPositionOp
  1639  	i.requiresReposition = false
  1640  	i.stats.ReverseSeekCount[InterfaceCall]++
  1641  
  1642  	i.iterLastWithinBounds()
  1643  	i.findPrevEntry(nil)
  1644  	i.maybeSampleRead()
  1645  	return i.iterValidityState == IterValid
  1646  }
  1647  
  1648  // Next moves the iterator to the next key/value pair. Returns true if the
  1649  // iterator is pointing at a valid entry and false otherwise.
  1650  func (i *Iterator) Next() bool {
  1651  	return i.nextWithLimit(nil) == IterValid
  1652  }
  1653  
  1654  // NextWithLimit moves the iterator to the next key/value pair.
  1655  //
  1656  // If limit is provided, it serves as a best-effort exclusive limit. If the next
  1657  // key  is greater than or equal to limit, the Iterator may pause and return
  1658  // IterAtLimit. Because limits are best-effort, NextWithLimit may return a key
  1659  // beyond limit.
  1660  //
  1661  // If the Iterator is configured to iterate over range keys, NextWithLimit
  1662  // guarantees it will surface any range keys with bounds overlapping the
  1663  // keyspace up to limit.
  1664  func (i *Iterator) NextWithLimit(limit []byte) IterValidityState {
  1665  	return i.nextWithLimit(limit)
  1666  }
  1667  
  1668  // NextPrefix moves the iterator to the next key/value pair with a key
  1669  // containing a different prefix than the current key. Prefixes are determined
  1670  // by Comparer.Split. Exhausts the iterator if invoked while in prefix-iteration
  1671  // mode.
  1672  //
  1673  // It is not permitted to invoke NextPrefix while at a IterAtLimit position.
  1674  // When called in this condition, NextPrefix has non-deterministic behavior.
  1675  //
  1676  // It is not permitted to invoke NextPrefix when the Iterator has an
  1677  // upper-bound that is a versioned MVCC key (see the comment for
  1678  // Comparer.Split). It returns an error in this case.
  1679  func (i *Iterator) NextPrefix() bool {
  1680  	if i.nextPrefixNotPermittedByUpperBound {
  1681  		i.lastPositioningOp = unknownLastPositionOp
  1682  		i.requiresReposition = false
  1683  		i.err = errors.Errorf("NextPrefix not permitted with upper bound %s",
  1684  			i.comparer.FormatKey(i.opts.UpperBound))
  1685  		i.iterValidityState = IterExhausted
  1686  		return false
  1687  	}
  1688  	if i.hasPrefix {
  1689  		i.iterValidityState = IterExhausted
  1690  		return false
  1691  	}
  1692  	return i.nextPrefix() == IterValid
  1693  }
  1694  
  1695  func (i *Iterator) nextPrefix() IterValidityState {
  1696  	if i.rangeKey != nil {
  1697  		// NB: Check Valid() before clearing requiresReposition.
  1698  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1699  		// If we have a range key but did not expose it at the previous iterator
  1700  		// position (because the iterator was not at a valid position), updated
  1701  		// must be true. This ensures that after an iterator op sequence like:
  1702  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1703  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1704  		//   - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1705  		// the iterator returns RangeKeyChanged()=true.
  1706  		//
  1707  		// The remainder of this function will only update i.rangeKey.updated if
  1708  		// the iterator moves into a new range key, or out of the current range
  1709  		// key.
  1710  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1711  	}
  1712  
  1713  	// Although NextPrefix documents that behavior at IterAtLimit is undefined,
  1714  	// this function handles these cases as a simple prefix-agnostic Next. This
  1715  	// is done for deterministic behavior in the metamorphic tests.
  1716  	//
  1717  	// TODO(jackson): If the metamorphic test operation generator is adjusted to
  1718  	// make generation of some operations conditional on the previous
  1719  	// operations, then we can remove this behavior and explicitly error.
  1720  
  1721  	i.lastPositioningOp = unknownLastPositionOp
  1722  	i.requiresReposition = false
  1723  	switch i.pos {
  1724  	case iterPosCurForward:
  1725  		// Positioned on the current key. Advance to the next prefix.
  1726  		i.internalNextPrefix(i.split(i.key))
  1727  	case iterPosCurForwardPaused:
  1728  		// Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
  1729  		// up above. The iterator is already positioned at the next key.
  1730  	case iterPosCurReverse:
  1731  		// Switching directions.
  1732  		// Unless the iterator was exhausted, reverse iteration needs to
  1733  		// position the iterator at iterPosPrev.
  1734  		if i.iterKey != nil {
  1735  			i.err = errors.New("switching from reverse to forward but iter is not at prev")
  1736  			i.iterValidityState = IterExhausted
  1737  			return i.iterValidityState
  1738  		}
  1739  		// The Iterator is exhausted and i.iter is positioned before the first
  1740  		// key. Reposition to point to the first internal key.
  1741  		i.iterFirstWithinBounds()
  1742  	case iterPosCurReversePaused:
  1743  		// Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
  1744  		// up above.
  1745  		//
  1746  		// Switching directions; The iterator must not be exhausted since it
  1747  		// paused.
  1748  		if i.iterKey == nil {
  1749  			i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
  1750  			i.iterValidityState = IterExhausted
  1751  			return i.iterValidityState
  1752  		}
  1753  		i.nextUserKey()
  1754  	case iterPosPrev:
  1755  		// The underlying iterator is pointed to the previous key (this can
  1756  		// only happen when switching iteration directions).
  1757  		if i.iterKey == nil {
  1758  			// We're positioned before the first key. Need to reposition to point to
  1759  			// the first key.
  1760  			i.iterFirstWithinBounds()
  1761  		} else {
  1762  			// Move the internal iterator back onto the user key stored in
  1763  			// i.key. iterPosPrev guarantees that it's positioned at the last
  1764  			// key with the user key less than i.key, so we're guaranteed to
  1765  			// land on the correct key with a single Next.
  1766  			i.iterKey, i.iterValue = i.iter.Next()
  1767  			if invariants.Enabled && !i.equal(i.iterKey.UserKey, i.key) {
  1768  				i.opts.logger.Fatalf("pebble: invariant violation: Nexting internal iterator from iterPosPrev landed on %q, not %q",
  1769  					i.iterKey.UserKey, i.key)
  1770  			}
  1771  		}
  1772  		// The internal iterator is now positioned at i.key. Advance to the next
  1773  		// prefix.
  1774  		i.internalNextPrefix(i.split(i.key))
  1775  	case iterPosNext:
  1776  		// Already positioned on the next key. Only call nextPrefixKey if the
  1777  		// next key shares the same prefix.
  1778  		if i.iterKey != nil {
  1779  			currKeyPrefixLen := i.split(i.key)
  1780  			iterKeyPrefixLen := i.split(i.iterKey.UserKey)
  1781  			if bytes.Equal(i.iterKey.UserKey[:iterKeyPrefixLen], i.key[:currKeyPrefixLen]) {
  1782  				i.internalNextPrefix(currKeyPrefixLen)
  1783  			}
  1784  		}
  1785  	}
  1786  
  1787  	i.stats.ForwardStepCount[InterfaceCall]++
  1788  	i.findNextEntry(nil /* limit */)
  1789  	i.maybeSampleRead()
  1790  	return i.iterValidityState
  1791  }
  1792  
  1793  func (i *Iterator) internalNextPrefix(currKeyPrefixLen int) {
  1794  	if i.iterKey == nil {
  1795  		return
  1796  	}
  1797  	// The Next "fast-path" is not really a fast-path when there is more than
  1798  	// one version. However, even with TableFormatPebblev3, there is a small
  1799  	// slowdown (~10%) for one version if we remove it and only call NextPrefix.
  1800  	// When there are two versions, only calling NextPrefix is ~30% faster.
  1801  	i.stats.ForwardStepCount[InternalIterCall]++
  1802  	if i.iterKey, i.iterValue = i.iter.Next(); i.iterKey == nil {
  1803  		return
  1804  	}
  1805  	iterKeyPrefixLen := i.split(i.iterKey.UserKey)
  1806  	if !bytes.Equal(i.iterKey.UserKey[:iterKeyPrefixLen], i.key[:currKeyPrefixLen]) {
  1807  		return
  1808  	}
  1809  	i.stats.ForwardStepCount[InternalIterCall]++
  1810  	i.prefixOrFullSeekKey = i.comparer.ImmediateSuccessor(i.prefixOrFullSeekKey[:0], i.key[:currKeyPrefixLen])
  1811  	i.iterKey, i.iterValue = i.iter.NextPrefix(i.prefixOrFullSeekKey)
  1812  	if invariants.Enabled && i.iterKey != nil {
  1813  		if iterKeyPrefixLen := i.split(i.iterKey.UserKey); i.cmp(i.iterKey.UserKey[:iterKeyPrefixLen], i.prefixOrFullSeekKey) < 0 {
  1814  			panic(errors.AssertionFailedf("pebble: iter.NextPrefix did not advance beyond the current prefix: now at %q; expected to be geq %q",
  1815  				i.iterKey, i.prefixOrFullSeekKey))
  1816  		}
  1817  	}
  1818  }
  1819  
  1820  func (i *Iterator) nextWithLimit(limit []byte) IterValidityState {
  1821  	i.stats.ForwardStepCount[InterfaceCall]++
  1822  	if i.hasPrefix {
  1823  		if limit != nil {
  1824  			i.err = errors.New("cannot use limit with prefix iteration")
  1825  			i.iterValidityState = IterExhausted
  1826  			return i.iterValidityState
  1827  		} else if i.iterValidityState == IterExhausted {
  1828  			// No-op, already exhasuted. We avoid executing the Next because it
  1829  			// can break invariants: Specifically, a file that fails the bloom
  1830  			// filter test may result in its level being removed from the
  1831  			// merging iterator. The level's removal can cause a lazy combined
  1832  			// iterator to miss range keys and trigger a switch to combined
  1833  			// iteration at a larger key, breaking keyspan invariants.
  1834  			return i.iterValidityState
  1835  		}
  1836  	}
  1837  	if i.err != nil {
  1838  		return i.iterValidityState
  1839  	}
  1840  	if i.rangeKey != nil {
  1841  		// NB: Check Valid() before clearing requiresReposition.
  1842  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1843  		// If we have a range key but did not expose it at the previous iterator
  1844  		// position (because the iterator was not at a valid position), updated
  1845  		// must be true. This ensures that after an iterator op sequence like:
  1846  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1847  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1848  		//   - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1849  		// the iterator returns RangeKeyChanged()=true.
  1850  		//
  1851  		// The remainder of this function will only update i.rangeKey.updated if
  1852  		// the iterator moves into a new range key, or out of the current range
  1853  		// key.
  1854  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1855  	}
  1856  	i.lastPositioningOp = unknownLastPositionOp
  1857  	i.requiresReposition = false
  1858  	switch i.pos {
  1859  	case iterPosCurForward:
  1860  		i.nextUserKey()
  1861  	case iterPosCurForwardPaused:
  1862  		// Already at the right place.
  1863  	case iterPosCurReverse:
  1864  		// Switching directions.
  1865  		// Unless the iterator was exhausted, reverse iteration needs to
  1866  		// position the iterator at iterPosPrev.
  1867  		if i.iterKey != nil {
  1868  			i.err = errors.New("switching from reverse to forward but iter is not at prev")
  1869  			i.iterValidityState = IterExhausted
  1870  			return i.iterValidityState
  1871  		}
  1872  		// We're positioned before the first key. Need to reposition to point to
  1873  		// the first key.
  1874  		i.iterFirstWithinBounds()
  1875  	case iterPosCurReversePaused:
  1876  		// Switching directions.
  1877  		// The iterator must not be exhausted since it paused.
  1878  		if i.iterKey == nil {
  1879  			i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
  1880  			i.iterValidityState = IterExhausted
  1881  			return i.iterValidityState
  1882  		}
  1883  		i.nextUserKey()
  1884  	case iterPosPrev:
  1885  		// The underlying iterator is pointed to the previous key (this can
  1886  		// only happen when switching iteration directions). We set
  1887  		// i.iterValidityState to IterExhausted here to force the calls to
  1888  		// nextUserKey to save the current key i.iter is pointing at in order
  1889  		// to determine when the next user-key is reached.
  1890  		i.iterValidityState = IterExhausted
  1891  		if i.iterKey == nil {
  1892  			// We're positioned before the first key. Need to reposition to point to
  1893  			// the first key.
  1894  			i.iterFirstWithinBounds()
  1895  		} else {
  1896  			i.nextUserKey()
  1897  		}
  1898  		i.nextUserKey()
  1899  	case iterPosNext:
  1900  		// Already at the right place.
  1901  	}
  1902  	i.findNextEntry(limit)
  1903  	i.maybeSampleRead()
  1904  	return i.iterValidityState
  1905  }
  1906  
  1907  // Prev moves the iterator to the previous key/value pair. Returns true if the
  1908  // iterator is pointing at a valid entry and false otherwise.
  1909  func (i *Iterator) Prev() bool {
  1910  	return i.PrevWithLimit(nil) == IterValid
  1911  }
  1912  
  1913  // PrevWithLimit moves the iterator to the previous key/value pair.
  1914  //
  1915  // If limit is provided, it serves as a best-effort inclusive limit. If the
  1916  // previous key is less than limit, the Iterator may pause and return
  1917  // IterAtLimit. Because limits are best-effort, PrevWithLimit may return a key
  1918  // beyond limit.
  1919  //
  1920  // If the Iterator is configured to iterate over range keys, PrevWithLimit
  1921  // guarantees it will surface any range keys with bounds overlapping the
  1922  // keyspace up to limit.
  1923  func (i *Iterator) PrevWithLimit(limit []byte) IterValidityState {
  1924  	i.stats.ReverseStepCount[InterfaceCall]++
  1925  	if i.err != nil {
  1926  		return i.iterValidityState
  1927  	}
  1928  	if i.rangeKey != nil {
  1929  		// NB: Check Valid() before clearing requiresReposition.
  1930  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1931  		// If we have a range key but did not expose it at the previous iterator
  1932  		// position (because the iterator was not at a valid position), updated
  1933  		// must be true. This ensures that after an iterator op sequence like:
  1934  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1935  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1936  		//   - PrevWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1937  		// the iterator returns RangeKeyChanged()=true.
  1938  		//
  1939  		// The remainder of this function will only update i.rangeKey.updated if
  1940  		// the iterator moves into a new range key, or out of the current range
  1941  		// key.
  1942  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1943  	}
  1944  	i.lastPositioningOp = unknownLastPositionOp
  1945  	i.requiresReposition = false
  1946  	if i.hasPrefix {
  1947  		i.err = errReversePrefixIteration
  1948  		i.iterValidityState = IterExhausted
  1949  		return i.iterValidityState
  1950  	}
  1951  	switch i.pos {
  1952  	case iterPosCurForward:
  1953  		// Switching directions, and will handle this below.
  1954  	case iterPosCurForwardPaused:
  1955  		// Switching directions, and will handle this below.
  1956  	case iterPosCurReverse:
  1957  		i.prevUserKey()
  1958  	case iterPosCurReversePaused:
  1959  		// Already at the right place.
  1960  	case iterPosNext:
  1961  		// The underlying iterator is pointed to the next key (this can only happen
  1962  		// when switching iteration directions). We will handle this below.
  1963  	case iterPosPrev:
  1964  		// Already at the right place.
  1965  	}
  1966  	if i.pos == iterPosCurForward || i.pos == iterPosNext || i.pos == iterPosCurForwardPaused {
  1967  		// Switching direction.
  1968  		stepAgain := i.pos == iterPosNext
  1969  
  1970  		// Synthetic range key markers are a special case. Consider SeekGE(b)
  1971  		// which finds a range key [a, c). To ensure the user observes the range
  1972  		// key, the Iterator pauses at Key() = b. The iterator must advance the
  1973  		// internal iterator to see if there's also a coincident point key at
  1974  		// 'b', leaving the iterator at iterPosNext if there's not.
  1975  		//
  1976  		// This is a problem: Synthetic range key markers are only interleaved
  1977  		// during the original seek. A subsequent Prev() of i.iter will not move
  1978  		// back onto the synthetic range key marker. In this case where the
  1979  		// previous iterator position was a synthetic range key start boundary,
  1980  		// we must not step a second time.
  1981  		if i.isEphemeralPosition() {
  1982  			stepAgain = false
  1983  		}
  1984  
  1985  		// We set i.iterValidityState to IterExhausted here to force the calls
  1986  		// to prevUserKey to save the current key i.iter is pointing at in
  1987  		// order to determine when the prev user-key is reached.
  1988  		i.iterValidityState = IterExhausted
  1989  		if i.iterKey == nil {
  1990  			// We're positioned after the last key. Need to reposition to point to
  1991  			// the last key.
  1992  			i.iterLastWithinBounds()
  1993  		} else {
  1994  			i.prevUserKey()
  1995  		}
  1996  		if stepAgain {
  1997  			i.prevUserKey()
  1998  		}
  1999  	}
  2000  	i.findPrevEntry(limit)
  2001  	i.maybeSampleRead()
  2002  	return i.iterValidityState
  2003  }
  2004  
  2005  // iterFirstWithinBounds moves the internal iterator to the first key,
  2006  // respecting bounds.
  2007  func (i *Iterator) iterFirstWithinBounds() {
  2008  	i.stats.ForwardSeekCount[InternalIterCall]++
  2009  	if lowerBound := i.opts.GetLowerBound(); lowerBound != nil {
  2010  		i.iterKey, i.iterValue = i.iter.SeekGE(lowerBound, base.SeekGEFlagsNone)
  2011  	} else {
  2012  		i.iterKey, i.iterValue = i.iter.First()
  2013  	}
  2014  }
  2015  
  2016  // iterLastWithinBounds moves the internal iterator to the last key, respecting
  2017  // bounds.
  2018  func (i *Iterator) iterLastWithinBounds() {
  2019  	i.stats.ReverseSeekCount[InternalIterCall]++
  2020  	if upperBound := i.opts.GetUpperBound(); upperBound != nil {
  2021  		i.iterKey, i.iterValue = i.iter.SeekLT(upperBound, base.SeekLTFlagsNone)
  2022  	} else {
  2023  		i.iterKey, i.iterValue = i.iter.Last()
  2024  	}
  2025  }
  2026  
  2027  // RangeKeyData describes a range key's data, set through RangeKeySet. The key
  2028  // boundaries of the range key is provided by Iterator.RangeBounds.
  2029  type RangeKeyData struct {
  2030  	Suffix []byte
  2031  	Value  []byte
  2032  }
  2033  
  2034  // rangeKeyWithinLimit is called during limited reverse iteration when
  2035  // positioned over a key beyond the limit. If there exists a range key that lies
  2036  // within the limit, the iterator must not pause in order to ensure the user has
  2037  // an opportunity to observe the range key within limit.
  2038  //
  2039  // It would be valid to ignore the limit whenever there's a range key covering
  2040  // the key, but that would introduce nondeterminism. To preserve determinism for
  2041  // testing, the iterator ignores the limit only if the covering range key does
  2042  // cover the keyspace within the limit.
  2043  //
  2044  // This awkwardness exists because range keys are interleaved at their inclusive
  2045  // start positions. Note that limit is inclusive.
  2046  func (i *Iterator) rangeKeyWithinLimit(limit []byte) bool {
  2047  	if i.rangeKey == nil || !i.opts.rangeKeys() {
  2048  		return false
  2049  	}
  2050  	s := i.rangeKey.iiter.Span()
  2051  	// If the range key ends beyond the limit, then the range key does not cover
  2052  	// any portion of the keyspace within the limit and it is safe to pause.
  2053  	return s != nil && i.cmp(s.End, limit) > 0
  2054  }
  2055  
  2056  // saveRangeKey saves the current range key to the underlying iterator's current
  2057  // range key state. If the range key has not changed, saveRangeKey is a no-op.
  2058  // If there is a new range key, saveRangeKey copies all of the key, value and
  2059  // suffixes into Iterator-managed buffers.
  2060  func (i *Iterator) saveRangeKey() {
  2061  	if i.rangeKey == nil || i.opts.KeyTypes == IterKeyTypePointsOnly {
  2062  		return
  2063  	}
  2064  
  2065  	s := i.rangeKey.iiter.Span()
  2066  	if s == nil {
  2067  		i.rangeKey.hasRangeKey = false
  2068  		i.rangeKey.updated = i.rangeKey.prevPosHadRangeKey
  2069  		return
  2070  	} else if !i.rangeKey.stale {
  2071  		// The range key `s` is identical to the one currently saved. No-op.
  2072  		return
  2073  	}
  2074  
  2075  	if s.KeysOrder != keyspan.BySuffixAsc {
  2076  		panic("pebble: range key span's keys unexpectedly not in ascending suffix order")
  2077  	}
  2078  
  2079  	// Although `i.rangeKey.stale` is true, the span s may still be identical
  2080  	// to the currently saved span. This is possible when seeking the iterator,
  2081  	// which may land back on the same range key. If we previously had a range
  2082  	// key and the new one has an identical start key, then it must be the same
  2083  	// range key and we can avoid copying and keep `i.rangeKey.updated=false`.
  2084  	//
  2085  	// TODO(jackson): These key comparisons could be avoidable during relative
  2086  	// positioning operations continuing in the same direction, because these
  2087  	// ops will never encounter the previous position's range key while
  2088  	// stale=true. However, threading whether the current op is a seek or step
  2089  	// maybe isn't worth it. This key comparison is only necessary once when we
  2090  	// step onto a new range key, which should be relatively rare.
  2091  	if i.rangeKey.prevPosHadRangeKey && i.equal(i.rangeKey.start, s.Start) &&
  2092  		i.equal(i.rangeKey.end, s.End) {
  2093  		i.rangeKey.updated = false
  2094  		i.rangeKey.stale = false
  2095  		i.rangeKey.hasRangeKey = true
  2096  		return
  2097  	}
  2098  	i.stats.RangeKeyStats.Count += len(s.Keys)
  2099  	i.rangeKey.buf.Reset()
  2100  	i.rangeKey.hasRangeKey = true
  2101  	i.rangeKey.updated = true
  2102  	i.rangeKey.stale = false
  2103  	i.rangeKey.buf, i.rangeKey.start = i.rangeKey.buf.Copy(s.Start)
  2104  	i.rangeKey.buf, i.rangeKey.end = i.rangeKey.buf.Copy(s.End)
  2105  	i.rangeKey.keys = i.rangeKey.keys[:0]
  2106  	for j := 0; j < len(s.Keys); j++ {
  2107  		if invariants.Enabled {
  2108  			if s.Keys[j].Kind() != base.InternalKeyKindRangeKeySet {
  2109  				panic("pebble: user iteration encountered non-RangeKeySet key kind")
  2110  			} else if j > 0 && i.cmp(s.Keys[j].Suffix, s.Keys[j-1].Suffix) < 0 {
  2111  				panic("pebble: user iteration encountered range keys not in suffix order")
  2112  			}
  2113  		}
  2114  		var rkd RangeKeyData
  2115  		i.rangeKey.buf, rkd.Suffix = i.rangeKey.buf.Copy(s.Keys[j].Suffix)
  2116  		i.rangeKey.buf, rkd.Value = i.rangeKey.buf.Copy(s.Keys[j].Value)
  2117  		i.rangeKey.keys = append(i.rangeKey.keys, rkd)
  2118  	}
  2119  }
  2120  
  2121  // RangeKeyChanged indicates whether the most recent iterator positioning
  2122  // operation resulted in the iterator stepping into or out of a new range key.
  2123  // If true, previously returned range key bounds and data has been invalidated.
  2124  // If false, previously obtained range key bounds, suffix and value slices are
  2125  // still valid and may continue to be read.
  2126  //
  2127  // Invalid iterator positions are considered to not hold range keys, meaning
  2128  // that if an iterator steps from an IterExhausted or IterAtLimit position onto
  2129  // a position with a range key, RangeKeyChanged will yield true.
  2130  func (i *Iterator) RangeKeyChanged() bool {
  2131  	return i.iterValidityState == IterValid && i.rangeKey != nil && i.rangeKey.updated
  2132  }
  2133  
  2134  // HasPointAndRange indicates whether there exists a point key, a range key or
  2135  // both at the current iterator position.
  2136  func (i *Iterator) HasPointAndRange() (hasPoint, hasRange bool) {
  2137  	if i.iterValidityState != IterValid || i.requiresReposition {
  2138  		return false, false
  2139  	}
  2140  	if i.opts.KeyTypes == IterKeyTypePointsOnly {
  2141  		return true, false
  2142  	}
  2143  	return i.rangeKey == nil || !i.rangeKey.rangeKeyOnly, i.rangeKey != nil && i.rangeKey.hasRangeKey
  2144  }
  2145  
  2146  // RangeBounds returns the start (inclusive) and end (exclusive) bounds of the
  2147  // range key covering the current iterator position. RangeBounds returns nil
  2148  // bounds if there is no range key covering the current iterator position, or
  2149  // the iterator is not configured to surface range keys.
  2150  //
  2151  // If valid, the returned start bound is less than or equal to Key() and the
  2152  // returned end bound is greater than Key().
  2153  func (i *Iterator) RangeBounds() (start, end []byte) {
  2154  	if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
  2155  		return nil, nil
  2156  	}
  2157  	return i.rangeKey.start, i.rangeKey.end
  2158  }
  2159  
  2160  // Key returns the key of the current key/value pair, or nil if done. The
  2161  // caller should not modify the contents of the returned slice, and its
  2162  // contents may change on the next call to Next.
  2163  //
  2164  // If positioned at an iterator position that only holds a range key, Key()
  2165  // always returns the start bound of the range key. Otherwise, it returns the
  2166  // point key's key.
  2167  func (i *Iterator) Key() []byte {
  2168  	return i.key
  2169  }
  2170  
  2171  // Value returns the value of the current key/value pair, or nil if done. The
  2172  // caller should not modify the contents of the returned slice, and its
  2173  // contents may change on the next call to Next.
  2174  //
  2175  // Only valid if HasPointAndRange() returns true for hasPoint.
  2176  // Deprecated: use ValueAndErr instead.
  2177  func (i *Iterator) Value() []byte {
  2178  	val, _ := i.ValueAndErr()
  2179  	return val
  2180  }
  2181  
  2182  // ValueAndErr returns the value, and any error encountered in extracting the value.
  2183  // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
  2184  //
  2185  // The caller should not modify the contents of the returned slice, and its
  2186  // contents may change on the next call to Next.
  2187  func (i *Iterator) ValueAndErr() ([]byte, error) {
  2188  	val, callerOwned, err := i.value.Value(i.lazyValueBuf)
  2189  	if err != nil {
  2190  		i.err = err
  2191  	}
  2192  	if callerOwned {
  2193  		i.lazyValueBuf = val[:0]
  2194  	}
  2195  	return val, err
  2196  }
  2197  
  2198  // LazyValue returns the LazyValue. Only for advanced use cases.
  2199  // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
  2200  func (i *Iterator) LazyValue() LazyValue {
  2201  	return i.value
  2202  }
  2203  
  2204  // RangeKeys returns the range key values and their suffixes covering the
  2205  // current iterator position. The range bounds may be retrieved separately
  2206  // through Iterator.RangeBounds().
  2207  func (i *Iterator) RangeKeys() []RangeKeyData {
  2208  	if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
  2209  		return nil
  2210  	}
  2211  	return i.rangeKey.keys
  2212  }
  2213  
  2214  // Valid returns true if the iterator is positioned at a valid key/value pair
  2215  // and false otherwise.
  2216  func (i *Iterator) Valid() bool {
  2217  	valid := i.iterValidityState == IterValid && !i.requiresReposition
  2218  	if invariants.Enabled {
  2219  		if err := i.Error(); valid && err != nil {
  2220  			panic(errors.WithSecondaryError(errors.AssertionFailedf("pebble: iterator is valid with non-nil Error"), err))
  2221  		}
  2222  	}
  2223  	return valid
  2224  }
  2225  
  2226  // Error returns any accumulated error.
  2227  func (i *Iterator) Error() error {
  2228  	if i.iter != nil {
  2229  		return firstError(i.err, i.iter.Error())
  2230  	}
  2231  	return i.err
  2232  }
  2233  
  2234  const maxKeyBufCacheSize = 4 << 10 // 4 KB
  2235  
  2236  // Close closes the iterator and returns any accumulated error. Exhausting
  2237  // all the key/value pairs in a table is not considered to be an error.
  2238  // It is not valid to call any method, including Close, after the iterator
  2239  // has been closed.
  2240  func (i *Iterator) Close() error {
  2241  	// Close the child iterator before releasing the readState because when the
  2242  	// readState is released sstables referenced by the readState may be deleted
  2243  	// which will fail on Windows if the sstables are still open by the child
  2244  	// iterator.
  2245  	if i.iter != nil {
  2246  		i.err = firstError(i.err, i.iter.Close())
  2247  
  2248  		// Closing i.iter did not necessarily close the point and range key
  2249  		// iterators. Calls to SetOptions may have 'disconnected' either one
  2250  		// from i.iter if iteration key types were changed. Both point and range
  2251  		// key iterators are preserved in case the iterator needs to switch key
  2252  		// types again. We explicitly close both of these iterators here.
  2253  		//
  2254  		// NB: If the iterators were still connected to i.iter, they may be
  2255  		// closed, but calling Close on a closed internal iterator or fragment
  2256  		// iterator is allowed.
  2257  		if i.pointIter != nil && !i.closePointIterOnce {
  2258  			i.err = firstError(i.err, i.pointIter.Close())
  2259  		}
  2260  		if i.rangeKey != nil && i.rangeKey.rangeKeyIter != nil {
  2261  			i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
  2262  		}
  2263  	}
  2264  	err := i.err
  2265  
  2266  	if i.readState != nil {
  2267  		if i.readSampling.pendingCompactions.size > 0 {
  2268  			// Copy pending read compactions using db.mu.Lock()
  2269  			i.readState.db.mu.Lock()
  2270  			i.readState.db.mu.compact.readCompactions.combine(&i.readSampling.pendingCompactions, i.cmp)
  2271  			reschedule := i.readState.db.mu.compact.rescheduleReadCompaction
  2272  			i.readState.db.mu.compact.rescheduleReadCompaction = false
  2273  			concurrentCompactions := i.readState.db.mu.compact.compactingCount
  2274  			i.readState.db.mu.Unlock()
  2275  
  2276  			if reschedule && concurrentCompactions == 0 {
  2277  				// In a read heavy workload, flushes may not happen frequently enough to
  2278  				// schedule compactions.
  2279  				i.readState.db.compactionSchedulers.Add(1)
  2280  				go i.readState.db.maybeScheduleCompactionAsync()
  2281  			}
  2282  		}
  2283  
  2284  		i.readState.unref()
  2285  		i.readState = nil
  2286  	}
  2287  
  2288  	if i.version != nil {
  2289  		i.version.Unref()
  2290  	}
  2291  
  2292  	for _, readers := range i.externalReaders {
  2293  		for _, r := range readers {
  2294  			err = firstError(err, r.Close())
  2295  		}
  2296  	}
  2297  
  2298  	// Close the closer for the current value if one was open.
  2299  	if i.valueCloser != nil {
  2300  		err = firstError(err, i.valueCloser.Close())
  2301  		i.valueCloser = nil
  2302  	}
  2303  
  2304  	if i.rangeKey != nil {
  2305  
  2306  		i.rangeKey.rangeKeyBuffers.PrepareForReuse()
  2307  		*i.rangeKey = iteratorRangeKeyState{
  2308  			rangeKeyBuffers: i.rangeKey.rangeKeyBuffers,
  2309  		}
  2310  		iterRangeKeyStateAllocPool.Put(i.rangeKey)
  2311  		i.rangeKey = nil
  2312  	}
  2313  	if alloc := i.alloc; alloc != nil {
  2314  		// Avoid caching the key buf if it is overly large. The constant is fairly
  2315  		// arbitrary.
  2316  		if cap(i.keyBuf) >= maxKeyBufCacheSize {
  2317  			alloc.keyBuf = nil
  2318  		} else {
  2319  			alloc.keyBuf = i.keyBuf
  2320  		}
  2321  		if cap(i.prefixOrFullSeekKey) >= maxKeyBufCacheSize {
  2322  			alloc.prefixOrFullSeekKey = nil
  2323  		} else {
  2324  			alloc.prefixOrFullSeekKey = i.prefixOrFullSeekKey
  2325  		}
  2326  		for j := range i.boundsBuf {
  2327  			if cap(i.boundsBuf[j]) >= maxKeyBufCacheSize {
  2328  				alloc.boundsBuf[j] = nil
  2329  			} else {
  2330  				alloc.boundsBuf[j] = i.boundsBuf[j]
  2331  			}
  2332  		}
  2333  		*alloc = iterAlloc{
  2334  			keyBuf:              alloc.keyBuf,
  2335  			boundsBuf:           alloc.boundsBuf,
  2336  			prefixOrFullSeekKey: alloc.prefixOrFullSeekKey,
  2337  		}
  2338  		iterAllocPool.Put(alloc)
  2339  	} else if alloc := i.getIterAlloc; alloc != nil {
  2340  		if cap(i.keyBuf) >= maxKeyBufCacheSize {
  2341  			alloc.keyBuf = nil
  2342  		} else {
  2343  			alloc.keyBuf = i.keyBuf
  2344  		}
  2345  		*alloc = getIterAlloc{
  2346  			keyBuf: alloc.keyBuf,
  2347  		}
  2348  		getIterAllocPool.Put(alloc)
  2349  	}
  2350  	return err
  2351  }
  2352  
  2353  // SetBounds sets the lower and upper bounds for the iterator. Once SetBounds
  2354  // returns, the caller is free to mutate the provided slices.
  2355  //
  2356  // The iterator will always be invalidated and must be repositioned with a call
  2357  // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
  2358  func (i *Iterator) SetBounds(lower, upper []byte) {
  2359  	// Ensure that the Iterator appears exhausted, regardless of whether we
  2360  	// actually have to invalidate the internal iterator. Optimizations that
  2361  	// avoid exhaustion are an internal implementation detail that shouldn't
  2362  	// leak through the interface. The caller should still call an absolute
  2363  	// positioning method to reposition the iterator.
  2364  	i.requiresReposition = true
  2365  
  2366  	if ((i.opts.LowerBound == nil) == (lower == nil)) &&
  2367  		((i.opts.UpperBound == nil) == (upper == nil)) &&
  2368  		i.equal(i.opts.LowerBound, lower) &&
  2369  		i.equal(i.opts.UpperBound, upper) {
  2370  		// Unchanged, noop.
  2371  		return
  2372  	}
  2373  
  2374  	// Copy the user-provided bounds into an Iterator-owned buffer, and set them
  2375  	// on i.opts.{Lower,Upper}Bound.
  2376  	i.processBounds(lower, upper)
  2377  
  2378  	i.iter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2379  	// If the iterator has an open point iterator that's not currently being
  2380  	// used, propagate the new bounds to it.
  2381  	if i.pointIter != nil && !i.opts.pointKeys() {
  2382  		i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2383  	}
  2384  	// If the iterator has a range key iterator, propagate bounds to it. The
  2385  	// top-level SetBounds on the interleaving iterator (i.iter) won't propagate
  2386  	// bounds to the range key iterator stack, because the FragmentIterator
  2387  	// interface doesn't define a SetBounds method. We need to directly inform
  2388  	// the iterConfig stack.
  2389  	if i.rangeKey != nil {
  2390  		i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2391  	}
  2392  
  2393  	// Even though this is not a positioning operation, the alteration of the
  2394  	// bounds means we cannot optimize Seeks by using Next.
  2395  	i.invalidate()
  2396  }
  2397  
  2398  // Initialization and changing of the bounds must call processBounds.
  2399  // processBounds saves the bounds and computes derived state from those
  2400  // bounds.
  2401  func (i *Iterator) processBounds(lower, upper []byte) {
  2402  	// Copy the user-provided bounds into an Iterator-owned buffer. We can't
  2403  	// overwrite the current bounds, because some internal iterators compare old
  2404  	// and new bounds for optimizations.
  2405  
  2406  	buf := i.boundsBuf[i.boundsBufIdx][:0]
  2407  	if lower != nil {
  2408  		buf = append(buf, lower...)
  2409  		i.opts.LowerBound = buf
  2410  	} else {
  2411  		i.opts.LowerBound = nil
  2412  	}
  2413  	i.nextPrefixNotPermittedByUpperBound = false
  2414  	if upper != nil {
  2415  		buf = append(buf, upper...)
  2416  		i.opts.UpperBound = buf[len(buf)-len(upper):]
  2417  		if i.comparer.Split != nil {
  2418  			if i.comparer.Split(i.opts.UpperBound) != len(i.opts.UpperBound) {
  2419  				// Setting an upper bound that is a versioned MVCC key. This means
  2420  				// that a key can have some MVCC versions before the upper bound and
  2421  				// some after. This causes significant complications for NextPrefix,
  2422  				// so we bar the user of NextPrefix.
  2423  				i.nextPrefixNotPermittedByUpperBound = true
  2424  			}
  2425  		}
  2426  	} else {
  2427  		i.opts.UpperBound = nil
  2428  	}
  2429  	i.boundsBuf[i.boundsBufIdx] = buf
  2430  	i.boundsBufIdx = 1 - i.boundsBufIdx
  2431  }
  2432  
  2433  // SetOptions sets new iterator options for the iterator. Note that the lower
  2434  // and upper bounds applied here will supersede any bounds set by previous calls
  2435  // to SetBounds.
  2436  //
  2437  // Note that the slices provided in this SetOptions must not be changed by the
  2438  // caller until the iterator is closed, or a subsequent SetBounds or SetOptions
  2439  // has returned. This is because comparisons between the existing and new bounds
  2440  // are sometimes used to optimize seeking. See the extended commentary on
  2441  // SetBounds.
  2442  //
  2443  // If the iterator was created over an indexed mutable batch, the iterator's
  2444  // view of the mutable batch is refreshed.
  2445  //
  2446  // The iterator will always be invalidated and must be repositioned with a call
  2447  // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
  2448  //
  2449  // If only lower and upper bounds need to be modified, prefer SetBounds.
  2450  func (i *Iterator) SetOptions(o *IterOptions) {
  2451  	if i.externalReaders != nil {
  2452  		if err := validateExternalIterOpts(o); err != nil {
  2453  			panic(err)
  2454  		}
  2455  	}
  2456  
  2457  	// Ensure that the Iterator appears exhausted, regardless of whether we
  2458  	// actually have to invalidate the internal iterator. Optimizations that
  2459  	// avoid exhaustion are an internal implementation detail that shouldn't
  2460  	// leak through the interface. The caller should still call an absolute
  2461  	// positioning method to reposition the iterator.
  2462  	i.requiresReposition = true
  2463  
  2464  	// Check if global state requires we close all internal iterators.
  2465  	//
  2466  	// If the Iterator is in an error state, invalidate the existing iterators
  2467  	// so that we reconstruct an iterator state from scratch.
  2468  	//
  2469  	// If OnlyReadGuaranteedDurable changed, the iterator stacks are incorrect,
  2470  	// improperly including or excluding memtables. Invalidate them so that
  2471  	// finishInitializingIter will reconstruct them.
  2472  	//
  2473  	// If either the original options or the new options specify a table filter,
  2474  	// we need to reconstruct the iterator stacks. If they both supply a table
  2475  	// filter, we can't be certain that it's the same filter since we have no
  2476  	// mechanism to compare the filter closures.
  2477  	closeBoth := i.err != nil ||
  2478  		o.OnlyReadGuaranteedDurable != i.opts.OnlyReadGuaranteedDurable ||
  2479  		o.TableFilter != nil || i.opts.TableFilter != nil
  2480  
  2481  	// If either options specify block property filters for an iterator stack,
  2482  	// reconstruct it.
  2483  	if i.pointIter != nil && (closeBoth || len(o.PointKeyFilters) > 0 || len(i.opts.PointKeyFilters) > 0 ||
  2484  		o.RangeKeyMasking.Filter != nil || i.opts.RangeKeyMasking.Filter != nil || o.SkipPoint != nil ||
  2485  		i.opts.SkipPoint != nil) {
  2486  		i.err = firstError(i.err, i.pointIter.Close())
  2487  		i.pointIter = nil
  2488  	}
  2489  	if i.rangeKey != nil {
  2490  		if closeBoth || len(o.RangeKeyFilters) > 0 || len(i.opts.RangeKeyFilters) > 0 {
  2491  			i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
  2492  			i.rangeKey = nil
  2493  		} else {
  2494  			// If there's still a range key iterator stack, invalidate the
  2495  			// iterator. This ensures RangeKeyChanged() returns true if a
  2496  			// subsequent positioning operation discovers a range key. It also
  2497  			// prevents seek no-op optimizations.
  2498  			i.invalidate()
  2499  		}
  2500  	}
  2501  
  2502  	// If the iterator is backed by a batch that's been mutated, refresh its
  2503  	// existing point and range-key iterators, and invalidate the iterator to
  2504  	// prevent seek-using-next optimizations. If we don't yet have a point-key
  2505  	// iterator or range-key iterator but we require one, it'll be created in
  2506  	// the slow path that reconstructs the iterator in finishInitializingIter.
  2507  	if i.batch != nil {
  2508  		nextBatchSeqNum := (uint64(len(i.batch.data)) | base.InternalKeySeqNumBatch)
  2509  		if nextBatchSeqNum != i.batchSeqNum {
  2510  			i.batchSeqNum = nextBatchSeqNum
  2511  			if i.merging != nil {
  2512  				i.merging.batchSnapshot = nextBatchSeqNum
  2513  			}
  2514  			// Prevent a no-op seek optimization on the next seek. We won't be
  2515  			// able to reuse the top-level Iterator state, because it may be
  2516  			// incorrect after the inclusion of new batch mutations.
  2517  			i.batchJustRefreshed = true
  2518  			if i.pointIter != nil && i.batch.countRangeDels > 0 {
  2519  				if i.batchRangeDelIter.Count() == 0 {
  2520  					// When we constructed this iterator, there were no
  2521  					// rangedels in the batch. Iterator construction will
  2522  					// have excluded the batch rangedel iterator from the
  2523  					// point iterator stack. We need to reconstruct the
  2524  					// point iterator to add i.batchRangeDelIter into the
  2525  					// iterator stack.
  2526  					i.err = firstError(i.err, i.pointIter.Close())
  2527  					i.pointIter = nil
  2528  				} else {
  2529  					// There are range deletions in the batch and we already
  2530  					// have a batch rangedel iterator. We can update the
  2531  					// batch rangedel iterator in place.
  2532  					//
  2533  					// NB: There may or may not be new range deletions. We
  2534  					// can't tell based on i.batchRangeDelIter.Count(),
  2535  					// which is the count of fragmented range deletions, NOT
  2536  					// the number of range deletions written to the batch
  2537  					// [i.batch.countRangeDels].
  2538  					i.batch.initRangeDelIter(&i.opts, &i.batchRangeDelIter, nextBatchSeqNum)
  2539  				}
  2540  			}
  2541  			if i.rangeKey != nil && i.batch.countRangeKeys > 0 {
  2542  				if i.batchRangeKeyIter.Count() == 0 {
  2543  					// When we constructed this iterator, there were no range
  2544  					// keys in the batch. Iterator construction will have
  2545  					// excluded the batch rangekey iterator from the range key
  2546  					// iterator stack. We need to reconstruct the range key
  2547  					// iterator to add i.batchRangeKeyIter into the iterator
  2548  					// stack.
  2549  					i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
  2550  					i.rangeKey = nil
  2551  				} else {
  2552  					// There are range keys in the batch and we already
  2553  					// have a batch rangekey iterator. We can update the batch
  2554  					// rangekey iterator in place.
  2555  					//
  2556  					// NB: There may or may not be new range keys. We can't
  2557  					// tell based on i.batchRangeKeyIter.Count(), which is the
  2558  					// count of fragmented range keys, NOT the number of
  2559  					// range keys written to the batch [i.batch.countRangeKeys].
  2560  					i.batch.initRangeKeyIter(&i.opts, &i.batchRangeKeyIter, nextBatchSeqNum)
  2561  					i.invalidate()
  2562  				}
  2563  			}
  2564  		}
  2565  	}
  2566  
  2567  	// Reset combinedIterState.initialized in case the iterator key types
  2568  	// changed. If there's already a range key iterator stack, the combined
  2569  	// iterator is already initialized.  Additionally, if the iterator is not
  2570  	// configured to include range keys, mark it as initialized to signal that
  2571  	// lower level iterators should not trigger a switch to combined iteration.
  2572  	i.lazyCombinedIter.combinedIterState = combinedIterState{
  2573  		initialized: i.rangeKey != nil || !i.opts.rangeKeys(),
  2574  	}
  2575  
  2576  	boundsEqual := ((i.opts.LowerBound == nil) == (o.LowerBound == nil)) &&
  2577  		((i.opts.UpperBound == nil) == (o.UpperBound == nil)) &&
  2578  		i.equal(i.opts.LowerBound, o.LowerBound) &&
  2579  		i.equal(i.opts.UpperBound, o.UpperBound)
  2580  
  2581  	if boundsEqual && o.KeyTypes == i.opts.KeyTypes &&
  2582  		(i.pointIter != nil || !i.opts.pointKeys()) &&
  2583  		(i.rangeKey != nil || !i.opts.rangeKeys() || i.opts.KeyTypes == IterKeyTypePointsAndRanges) &&
  2584  		i.equal(o.RangeKeyMasking.Suffix, i.opts.RangeKeyMasking.Suffix) &&
  2585  		o.UseL6Filters == i.opts.UseL6Filters {
  2586  		// The options are identical, so we can likely use the fast path. In
  2587  		// addition to all the above constraints, we cannot use the fast path if
  2588  		// configured to perform lazy combined iteration but an indexed batch
  2589  		// used by the iterator now contains range keys. Lazy combined iteration
  2590  		// is not compatible with batch range keys because we always need to
  2591  		// merge the batch's range keys into iteration.
  2592  		if i.rangeKey != nil || !i.opts.rangeKeys() || i.batch == nil || i.batch.countRangeKeys == 0 {
  2593  			// Fast path. This preserves the Seek-using-Next optimizations as
  2594  			// long as the iterator wasn't already invalidated up above.
  2595  			return
  2596  		}
  2597  	}
  2598  	// Slow path.
  2599  
  2600  	// The options changed. Save the new ones to i.opts.
  2601  	if boundsEqual {
  2602  		// Copying the options into i.opts will overwrite LowerBound and
  2603  		// UpperBound fields with the user-provided slices. We need to hold on
  2604  		// to the Pebble-owned slices, so save them and re-set them after the
  2605  		// copy.
  2606  		lower, upper := i.opts.LowerBound, i.opts.UpperBound
  2607  		i.opts = *o
  2608  		i.opts.LowerBound, i.opts.UpperBound = lower, upper
  2609  	} else {
  2610  		i.opts = *o
  2611  		i.processBounds(o.LowerBound, o.UpperBound)
  2612  		// Propagate the changed bounds to the existing point iterator.
  2613  		// NB: We propagate i.opts.{Lower,Upper}Bound, not o.{Lower,Upper}Bound
  2614  		// because i.opts now point to buffers owned by Pebble.
  2615  		if i.pointIter != nil {
  2616  			i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2617  		}
  2618  		if i.rangeKey != nil {
  2619  			i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2620  		}
  2621  	}
  2622  
  2623  	// Even though this is not a positioning operation, the invalidation of the
  2624  	// iterator stack means we cannot optimize Seeks by using Next.
  2625  	i.invalidate()
  2626  
  2627  	// Iterators created through NewExternalIter have a different iterator
  2628  	// initialization process.
  2629  	if i.externalReaders != nil {
  2630  		finishInitializingExternal(i.ctx, i)
  2631  		return
  2632  	}
  2633  	finishInitializingIter(i.ctx, i.alloc)
  2634  }
  2635  
  2636  func (i *Iterator) invalidate() {
  2637  	i.lastPositioningOp = invalidatedLastPositionOp
  2638  	i.hasPrefix = false
  2639  	i.iterKey = nil
  2640  	i.iterValue = LazyValue{}
  2641  	i.err = nil
  2642  	// This switch statement isn't necessary for correctness since callers
  2643  	// should call a repositioning method. We could have arbitrarily set i.pos
  2644  	// to one of the values. But it results in more intuitive behavior in
  2645  	// tests, which do not always reposition.
  2646  	switch i.pos {
  2647  	case iterPosCurForward, iterPosNext, iterPosCurForwardPaused:
  2648  		i.pos = iterPosCurForward
  2649  	case iterPosCurReverse, iterPosPrev, iterPosCurReversePaused:
  2650  		i.pos = iterPosCurReverse
  2651  	}
  2652  	i.iterValidityState = IterExhausted
  2653  	if i.rangeKey != nil {
  2654  		i.rangeKey.iiter.Invalidate()
  2655  		i.rangeKey.prevPosHadRangeKey = false
  2656  	}
  2657  }
  2658  
  2659  // Metrics returns per-iterator metrics.
  2660  func (i *Iterator) Metrics() IteratorMetrics {
  2661  	m := IteratorMetrics{
  2662  		ReadAmp: 1,
  2663  	}
  2664  	if mi, ok := i.iter.(*mergingIter); ok {
  2665  		m.ReadAmp = len(mi.levels)
  2666  	}
  2667  	return m
  2668  }
  2669  
  2670  // ResetStats resets the stats to 0.
  2671  func (i *Iterator) ResetStats() {
  2672  	i.stats = IteratorStats{}
  2673  }
  2674  
  2675  // Stats returns the current stats.
  2676  func (i *Iterator) Stats() IteratorStats {
  2677  	return i.stats
  2678  }
  2679  
  2680  // CloneOptions configures an iterator constructed through Iterator.Clone.
  2681  type CloneOptions struct {
  2682  	// IterOptions, if non-nil, define the iterator options to configure a
  2683  	// cloned iterator. If nil, the clone adopts the same IterOptions as the
  2684  	// iterator being cloned.
  2685  	IterOptions *IterOptions
  2686  	// RefreshBatchView may be set to true when cloning an Iterator over an
  2687  	// indexed batch. When false, the clone adopts the same (possibly stale)
  2688  	// view of the indexed batch as the cloned Iterator. When true, the clone is
  2689  	// constructed with a refreshed view of the batch, observing all of the
  2690  	// batch's mutations at the time of the Clone. If the cloned iterator was
  2691  	// not constructed to read over an indexed batch, RefreshVatchView has no
  2692  	// effect.
  2693  	RefreshBatchView bool
  2694  }
  2695  
  2696  // Clone creates a new Iterator over the same underlying data, i.e., over the
  2697  // same {batch, memtables, sstables}). The resulting iterator is not positioned.
  2698  // It starts with the same IterOptions, unless opts.IterOptions is set.
  2699  //
  2700  // When called on an Iterator over an indexed batch, the clone's visibility of
  2701  // the indexed batch is determined by CloneOptions.RefreshBatchView. If false,
  2702  // the clone inherits the iterator's current (possibly stale) view of the batch,
  2703  // and callers may call SetOptions to subsequently refresh the clone's view to
  2704  // include all batch mutations. If true, the clone is constructed with a
  2705  // complete view of the indexed batch's mutations at the time of the Clone.
  2706  //
  2707  // Callers can use Clone if they need multiple iterators that need to see
  2708  // exactly the same underlying state of the DB. This should not be used to
  2709  // extend the lifetime of the data backing the original Iterator since that
  2710  // will cause an increase in memory and disk usage (use NewSnapshot for that
  2711  // purpose).
  2712  func (i *Iterator) Clone(opts CloneOptions) (*Iterator, error) {
  2713  	return i.CloneWithContext(context.Background(), opts)
  2714  }
  2715  
  2716  // CloneWithContext is like Clone, and additionally accepts a context for
  2717  // tracing.
  2718  func (i *Iterator) CloneWithContext(ctx context.Context, opts CloneOptions) (*Iterator, error) {
  2719  	if opts.IterOptions == nil {
  2720  		opts.IterOptions = &i.opts
  2721  	}
  2722  
  2723  	readState := i.readState
  2724  	vers := i.version
  2725  	if readState == nil && vers == nil {
  2726  		return nil, errors.Errorf("cannot Clone a closed Iterator")
  2727  	}
  2728  	// i is already holding a ref, so there is no race with unref here.
  2729  	//
  2730  	// TODO(bilal): If the underlying iterator was created on a snapshot, we could
  2731  	// grab a reference to the current readState instead of reffing the original
  2732  	// readState. This allows us to release references to some zombie sstables
  2733  	// and memtables.
  2734  	if readState != nil {
  2735  		readState.ref()
  2736  	}
  2737  	if vers != nil {
  2738  		vers.Ref()
  2739  	}
  2740  	// Bundle various structures under a single umbrella in order to allocate
  2741  	// them together.
  2742  	buf := iterAllocPool.Get().(*iterAlloc)
  2743  	dbi := &buf.dbi
  2744  	*dbi = Iterator{
  2745  		ctx:                 ctx,
  2746  		opts:                *opts.IterOptions,
  2747  		alloc:               buf,
  2748  		merge:               i.merge,
  2749  		comparer:            i.comparer,
  2750  		readState:           readState,
  2751  		version:             vers,
  2752  		keyBuf:              buf.keyBuf,
  2753  		prefixOrFullSeekKey: buf.prefixOrFullSeekKey,
  2754  		boundsBuf:           buf.boundsBuf,
  2755  		batch:               i.batch,
  2756  		batchSeqNum:         i.batchSeqNum,
  2757  		newIters:            i.newIters,
  2758  		newIterRangeKey:     i.newIterRangeKey,
  2759  		seqNum:              i.seqNum,
  2760  	}
  2761  	dbi.processBounds(dbi.opts.LowerBound, dbi.opts.UpperBound)
  2762  
  2763  	// If the caller requested the clone have a current view of the indexed
  2764  	// batch, set the clone's batch sequence number appropriately.
  2765  	if i.batch != nil && opts.RefreshBatchView {
  2766  		dbi.batchSeqNum = (uint64(len(i.batch.data)) | base.InternalKeySeqNumBatch)
  2767  	}
  2768  
  2769  	return finishInitializingIter(ctx, buf), nil
  2770  }
  2771  
  2772  // Merge adds all of the argument's statistics to the receiver. It may be used
  2773  // to accumulate stats across multiple iterators.
  2774  func (stats *IteratorStats) Merge(o IteratorStats) {
  2775  	for i := InterfaceCall; i < NumStatsKind; i++ {
  2776  		stats.ForwardSeekCount[i] += o.ForwardSeekCount[i]
  2777  		stats.ReverseSeekCount[i] += o.ReverseSeekCount[i]
  2778  		stats.ForwardStepCount[i] += o.ForwardStepCount[i]
  2779  		stats.ReverseStepCount[i] += o.ReverseStepCount[i]
  2780  	}
  2781  	stats.InternalStats.Merge(o.InternalStats)
  2782  	stats.RangeKeyStats.Merge(o.RangeKeyStats)
  2783  }
  2784  
  2785  func (stats *IteratorStats) String() string {
  2786  	return redact.StringWithoutMarkers(stats)
  2787  }
  2788  
  2789  // SafeFormat implements the redact.SafeFormatter interface.
  2790  func (stats *IteratorStats) SafeFormat(s redact.SafePrinter, verb rune) {
  2791  	for i := range stats.ForwardStepCount {
  2792  		switch IteratorStatsKind(i) {
  2793  		case InterfaceCall:
  2794  			s.SafeString("(interface (dir, seek, step): ")
  2795  		case InternalIterCall:
  2796  			s.SafeString(", (internal (dir, seek, step): ")
  2797  		}
  2798  		s.Printf("(fwd, %d, %d), (rev, %d, %d))",
  2799  			redact.Safe(stats.ForwardSeekCount[i]), redact.Safe(stats.ForwardStepCount[i]),
  2800  			redact.Safe(stats.ReverseSeekCount[i]), redact.Safe(stats.ReverseStepCount[i]))
  2801  	}
  2802  	if stats.InternalStats != (InternalIteratorStats{}) {
  2803  		s.SafeString(",\n(internal-stats: ")
  2804  		s.Printf("(block-bytes: (total %s, cached %s, read-time %s)), "+
  2805  			"(points: (count %s, key-bytes %s, value-bytes %s, tombstoned %s))",
  2806  			humanize.Bytes.Uint64(stats.InternalStats.BlockBytes),
  2807  			humanize.Bytes.Uint64(stats.InternalStats.BlockBytesInCache),
  2808  			humanize.FormattedString(stats.InternalStats.BlockReadDuration.String()),
  2809  			humanize.Count.Uint64(stats.InternalStats.PointCount),
  2810  			humanize.Bytes.Uint64(stats.InternalStats.KeyBytes),
  2811  			humanize.Bytes.Uint64(stats.InternalStats.ValueBytes),
  2812  			humanize.Count.Uint64(stats.InternalStats.PointsCoveredByRangeTombstones),
  2813  		)
  2814  		if stats.InternalStats.SeparatedPointValue.Count != 0 {
  2815  			s.Printf(", (separated: (count %s, bytes %s, fetched %s)))",
  2816  				humanize.Count.Uint64(stats.InternalStats.SeparatedPointValue.Count),
  2817  				humanize.Bytes.Uint64(stats.InternalStats.SeparatedPointValue.ValueBytes),
  2818  				humanize.Bytes.Uint64(stats.InternalStats.SeparatedPointValue.ValueBytesFetched))
  2819  		} else {
  2820  			s.Printf(")")
  2821  		}
  2822  	}
  2823  	if stats.RangeKeyStats != (RangeKeyIteratorStats{}) {
  2824  		s.SafeString(",\n(range-key-stats: ")
  2825  		s.Printf("(count %d), (contained points: (count %d, skipped %d)))",
  2826  			stats.RangeKeyStats.Count,
  2827  			stats.RangeKeyStats.ContainedPoints,
  2828  			stats.RangeKeyStats.SkippedPoints)
  2829  	}
  2830  }
  2831  
  2832  // CanDeterministicallySingleDelete takes a valid iterator and examines internal
  2833  // state to determine if a SingleDelete deleting Iterator.Key() would
  2834  // deterministically delete the key. CanDeterministicallySingleDelete requires
  2835  // the iterator to be oriented in the forward direction (eg, the last
  2836  // positioning operation must've been a First, a Seek[Prefix]GE, or a
  2837  // Next[Prefix][WithLimit]).
  2838  //
  2839  // This function does not change the external position of the iterator, and all
  2840  // positioning methods should behave the same as if it was never called. This
  2841  // function will only return a meaningful result the first time it's invoked at
  2842  // an iterator position. This function invalidates the iterator Value's memory,
  2843  // and the caller must not rely on the memory safety of the previous Iterator
  2844  // position.
  2845  //
  2846  // If CanDeterministicallySingleDelete returns true AND the key at the iterator
  2847  // position is not modified between the creation of the Iterator and the commit
  2848  // of a batch containing a SingleDelete over the key, then the caller can be
  2849  // assured that SingleDelete is equivalent to Delete on the local engine, but it
  2850  // may not be true on another engine that received the same writes and with
  2851  // logically equivalent state since this engine may have collapsed multiple SETs
  2852  // into one.
  2853  func CanDeterministicallySingleDelete(it *Iterator) (bool, error) {
  2854  	// This function may only be called once per external iterator position. We
  2855  	// can validate this by checking the last positioning operation.
  2856  	if it.lastPositioningOp == internalNextOp {
  2857  		return false, errors.New("pebble: CanDeterministicallySingleDelete called twice")
  2858  	}
  2859  	validity, kind := it.internalNext()
  2860  	var shadowedBySingleDelete bool
  2861  	for validity == internalNextValid {
  2862  		switch kind {
  2863  		case InternalKeyKindDelete, InternalKeyKindDeleteSized:
  2864  			// A DEL or DELSIZED tombstone is okay. An internal key
  2865  			// sequence like SINGLEDEL; SET; DEL; SET can be handled
  2866  			// deterministically. If there are SETs further down, we
  2867  			// don't care about them.
  2868  			return true, nil
  2869  		case InternalKeyKindSingleDelete:
  2870  			// A SingleDelete is okay as long as when that SingleDelete was
  2871  			// written, it was written deterministically (eg, with its own
  2872  			// CanDeterministicallySingleDelete check). Validate that it was
  2873  			// written deterministically. We'll allow one set to appear after
  2874  			// the SingleDelete.
  2875  			shadowedBySingleDelete = true
  2876  			validity, kind = it.internalNext()
  2877  			continue
  2878  		case InternalKeyKindSet, InternalKeyKindSetWithDelete, InternalKeyKindMerge:
  2879  			// If we observed a single delete, it's allowed to delete 1 key.
  2880  			// We'll keep looping to validate that the internal keys beneath the
  2881  			// already-written single delete are copacetic.
  2882  			if shadowedBySingleDelete {
  2883  				shadowedBySingleDelete = false
  2884  				validity, kind = it.internalNext()
  2885  				continue
  2886  			}
  2887  			// We encountered a shadowed SET, SETWITHDEL, MERGE. A SINGLEDEL
  2888  			// that deleted the KV at the original iterator position could
  2889  			// result in this key becoming visible.
  2890  			return false, nil
  2891  		case InternalKeyKindRangeDelete:
  2892  			// RangeDeletes are handled by the merging iterator and should never
  2893  			// be observed by the top-level Iterator.
  2894  			panic(errors.AssertionFailedf("pebble: unexpected range delete"))
  2895  		case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
  2896  			// Range keys are interleaved at the maximal sequence number and
  2897  			// should never be observed within a user key.
  2898  			panic(errors.AssertionFailedf("pebble: unexpected range key"))
  2899  		default:
  2900  			panic(errors.AssertionFailedf("pebble: unexpected key kind: %s", errors.Safe(kind)))
  2901  		}
  2902  	}
  2903  	if validity == internalNextError {
  2904  		return false, it.Error()
  2905  	}
  2906  	return true, nil
  2907  }
  2908  
  2909  // internalNextValidity enumerates the potential outcomes of a call to
  2910  // internalNext.
  2911  type internalNextValidity int8
  2912  
  2913  const (
  2914  	// internalNextError is returned by internalNext when an error occurred and
  2915  	// the caller is responsible for checking iter.Error().
  2916  	internalNextError internalNextValidity = iota
  2917  	// internalNextExhausted is returned by internalNext when the next internal
  2918  	// key is an internal key with a different user key than Iterator.Key().
  2919  	internalNextExhausted
  2920  	// internalNextValid is returned by internalNext when the internal next
  2921  	// found a shadowed internal key with a user key equal to Iterator.Key().
  2922  	internalNextValid
  2923  )
  2924  
  2925  // internalNext advances internal Iterator state forward to expose the
  2926  // InternalKeyKind of the next internal key with a user key equal to Key().
  2927  //
  2928  // internalNext is a highly specialized operation and is unlikely to be
  2929  // generally useful. See Iterator.Next for how to reposition the iterator to the
  2930  // next key. internalNext requires the Iterator to be at a valid position in the
  2931  // forward direction (the last positioning operation must've been a First, a
  2932  // Seek[Prefix]GE, or a Next[Prefix][WithLimit] and Valid() must return true).
  2933  //
  2934  // internalNext, unlike all other Iterator methods, exposes internal LSM state.
  2935  // internalNext advances the Iterator's internal iterator to the next shadowed
  2936  // key with a user key equal to Key(). When a key is overwritten or deleted, its
  2937  // removal from the LSM occurs lazily as a part of compactions. internalNext
  2938  // allows the caller to see whether an obsolete internal key exists with the
  2939  // current Key(), and what it's key kind is. Note that the existence of an
  2940  // internal key is nondeterministic and dependent on internal LSM state. These
  2941  // semantics are unlikely to be applicable to almost all use cases.
  2942  //
  2943  // If internalNext finds a key that shares the same user key as Key(), it
  2944  // returns internalNextValid and the internal key's kind. If internalNext
  2945  // encounters an error, it returns internalNextError and the caller is expected
  2946  // to call Iterator.Error() to retrieve it. In all other circumstances,
  2947  // internalNext returns internalNextExhausted, indicating that there are no more
  2948  // additional internal keys with the user key Key().
  2949  //
  2950  // internalNext does not change the external position of the iterator, and a
  2951  // Next operation should behave the same as if internalNext was never called.
  2952  // internalNext does invalidate the iterator Value's memory, and the caller must
  2953  // not rely on the memory safety of the previous Iterator position.
  2954  func (i *Iterator) internalNext() (internalNextValidity, base.InternalKeyKind) {
  2955  	i.stats.ForwardStepCount[InterfaceCall]++
  2956  	if i.err != nil {
  2957  		return internalNextError, base.InternalKeyKindInvalid
  2958  	} else if i.iterValidityState != IterValid {
  2959  		return internalNextExhausted, base.InternalKeyKindInvalid
  2960  	}
  2961  	i.lastPositioningOp = internalNextOp
  2962  
  2963  	switch i.pos {
  2964  	case iterPosCurForward:
  2965  		i.iterKey, i.iterValue = i.iter.Next()
  2966  		if i.iterKey == nil {
  2967  			// We check i.iter.Error() here and return an internalNextError enum
  2968  			// variant so that the caller does not need to check i.iter.Error()
  2969  			// in the common case that the next internal key has a new user key.
  2970  			if i.err = i.iter.Error(); i.err != nil {
  2971  				return internalNextError, base.InternalKeyKindInvalid
  2972  			}
  2973  			i.pos = iterPosNext
  2974  			return internalNextExhausted, base.InternalKeyKindInvalid
  2975  		} else if i.comparer.Equal(i.iterKey.UserKey, i.key) {
  2976  			return internalNextValid, i.iterKey.Kind()
  2977  		}
  2978  		i.pos = iterPosNext
  2979  		return internalNextExhausted, base.InternalKeyKindInvalid
  2980  	case iterPosCurReverse, iterPosCurReversePaused, iterPosPrev:
  2981  		i.err = errors.New("switching from reverse to forward via internalNext is prohibited")
  2982  		i.iterValidityState = IterExhausted
  2983  		return internalNextError, base.InternalKeyKindInvalid
  2984  	case iterPosNext, iterPosCurForwardPaused:
  2985  		// The previous method already moved onto the next user key. This is
  2986  		// only possible if
  2987  		//   - the last positioning method was a call to internalNext, and we
  2988  		//     advanced to a new user key.
  2989  		//   - the previous non-internalNext iterator operation encountered a
  2990  		//     range key or merge, forcing an internal Next that found a new
  2991  		//     user key that's not equal to i.Iterator.Key().
  2992  		return internalNextExhausted, base.InternalKeyKindInvalid
  2993  	default:
  2994  		panic("unreachable")
  2995  	}
  2996  }