github.com/cockroachdb/pebble@v1.1.2/internal/keyspan/interleaving_iter.go (about)

     1  // Copyright 2021 The LevelDB-Go and Pebble Authors. All rights reserved. Use
     2  // of this source code is governed by a BSD-style license that can be found in
     3  // the LICENSE file.
     4  
     5  package keyspan
     6  
     7  import (
     8  	"fmt"
     9  
    10  	"github.com/cockroachdb/errors"
    11  	"github.com/cockroachdb/pebble/internal/base"
    12  	"github.com/cockroachdb/pebble/internal/invariants"
    13  )
    14  
    15  // A SpanMask may be used to configure an interleaving iterator to skip point
    16  // keys that fall within the bounds of some spans.
    17  type SpanMask interface {
    18  	// SpanChanged is invoked by an interleaving iterator whenever the current
    19  	// span changes. As the iterator passes into or out of a Span, it invokes
    20  	// SpanChanged, passing the new Span. When the iterator passes out of a
    21  	// span's boundaries and is no longer covered by any span, SpanChanged is
    22  	// invoked with a nil span.
    23  	//
    24  	// SpanChanged is invoked before SkipPoint, and callers may use SpanChanged
    25  	// to recalculate state used by SkipPoint for masking.
    26  	//
    27  	// SpanChanged may be invoked consecutively with identical spans under some
    28  	// circumstances, such as repeatedly absolutely positioning an iterator to
    29  	// positions covered by the same span, or while changing directions.
    30  	SpanChanged(*Span)
    31  	// SkipPoint is invoked by the interleaving iterator whenever the iterator
    32  	// encounters a point key covered by a Span. If SkipPoint returns true, the
    33  	// interleaving iterator skips the point key and all larger keys with the
    34  	// same prefix. This is used during range key iteration to skip over point
    35  	// keys 'masked' by range keys.
    36  	SkipPoint(userKey []byte) bool
    37  }
    38  
    39  // InterleavingIter combines an iterator over point keys with an iterator over
    40  // key spans.
    41  //
    42  // Throughout Pebble, some keys apply at single discrete points within the user
    43  // keyspace. Other keys apply over continuous spans of the user key space.
    44  // Internally, iterators over point keys adhere to the base.InternalIterator
    45  // interface, and iterators over spans adhere to the keyspan.FragmentIterator
    46  // interface. The InterleavingIterator wraps a point iterator and span iterator,
    47  // providing access to all the elements of both iterators.
    48  //
    49  // The InterleavingIterator implements the point base.InternalIterator
    50  // interface. After any of the iterator's methods return a key, a caller may
    51  // call Span to retrieve the span covering the returned key, if any.  A span is
    52  // considered to 'cover' a returned key if the span's [start, end) bounds
    53  // include the key's user key.
    54  //
    55  // In addition to tracking the current covering span, InterleavingIter returns a
    56  // special InternalKey at span start boundaries. Start boundaries are surfaced
    57  // as a synthetic span marker: an InternalKey with the boundary as the user key,
    58  // the infinite sequence number and a key kind selected from an arbitrary key
    59  // the infinite sequence number and an arbitrary contained key's kind. Since
    60  // which of the Span's key's kind is surfaced is undefined, the caller should
    61  // not use the InternalKey's kind. The caller should only rely on the `Span`
    62  // method for retrieving information about spanning keys. The interleaved
    63  // synthetic keys have the infinite sequence number so that they're interleaved
    64  // before any point keys with the same user key when iterating forward and after
    65  // when iterating backward.
    66  //
    67  // Interleaving the synthetic start key boundaries at the maximum sequence
    68  // number provides an opportunity for the higher-level, public Iterator to
    69  // observe the Span, even if no live points keys exist within the boudns of the
    70  // Span.
    71  //
    72  // When returning a synthetic marker key for a start boundary, InterleavingIter
    73  // will truncate the span's start bound to the SeekGE or SeekPrefixGE search
    74  // key. For example, a SeekGE("d") that finds a span [a, z) may return a
    75  // synthetic span marker key `d#72057594037927935,21`.
    76  //
    77  // If bounds have been applied to the iterator through SetBounds,
    78  // InterleavingIter will truncate the bounds of spans returned through Span to
    79  // the set bounds. The bounds returned through Span are not truncated by a
    80  // SeekGE or SeekPrefixGE search key. Consider, for example SetBounds('c', 'e'),
    81  // with an iterator containing the Span [a,z):
    82  //
    83  //	First()     = `c#72057594037927935,21`        Span() = [c,e)
    84  //	SeekGE('d') = `d#72057594037927935,21`        Span() = [c,e)
    85  //
    86  // InterleavedIter does not interleave synthetic markers for spans that do not
    87  // contain any keys.
    88  //
    89  // # SpanMask
    90  //
    91  // InterelavingIter takes a SpanMask parameter that may be used to configure the
    92  // behavior of the iterator. See the documentation on the SpanMask type.
    93  //
    94  // All spans containing keys are exposed during iteration.
    95  type InterleavingIter struct {
    96  	cmp         base.Compare
    97  	comparer    *base.Comparer
    98  	pointIter   base.InternalIterator
    99  	keyspanIter FragmentIterator
   100  	mask        SpanMask
   101  
   102  	// lower and upper hold the iteration bounds set through SetBounds.
   103  	lower, upper []byte
   104  	// keyBuf is used to copy SeekGE or SeekPrefixGE arguments when they're used
   105  	// to truncate a span. The byte slices backing a SeekGE/SeekPrefixGE search
   106  	// keys can come directly from the end user, so they're copied into keyBuf
   107  	// to ensure key stability.
   108  	keyBuf []byte
   109  	// nextPrefixBuf is used during SeekPrefixGE calls to store the truncated
   110  	// upper bound of the returned spans. SeekPrefixGE truncates the returned
   111  	// spans to an upper bound of the seeked prefix's immediate successor.
   112  	nextPrefixBuf []byte
   113  	pointKey      *base.InternalKey
   114  	pointVal      base.LazyValue
   115  	// err holds an iterator error from either pointIter or keyspanIter. It's
   116  	// reset to nil on seeks. An overview of error-handling mechanics:
   117  	//
   118  	// Whenever either pointIter or keyspanIter is respositioned and a nil
   119  	// key/span is returned, the code performing the positioning is responsible
   120  	// for checking the iterator's Error() value. This happens in savePoint and
   121  	// saveSpan[Forward,Backward].
   122  	//
   123  	// Once i.err is non-nil, the computation of i.pos must set i.pos =
   124  	// posExhausted. This happens in compute[Smallest|Largest]Pos and
   125  	// [next|prev]Pos. Setting i.pos to posExhausted ensures we'll yield nil to
   126  	// the caller, which they'll interpret as a signal they must check Error().
   127  	//
   128  	// INVARIANTS:
   129  	// i.err != nil => i.pos = posExhausted
   130  	err error
   131  	// prefix records the iterator's current prefix if the iterator is in prefix
   132  	// mode. During prefix mode, Pebble will truncate spans to the next prefix.
   133  	// If the iterator subsequently leaves prefix mode, the existing span cached
   134  	// in i.span must be invalidated because its bounds do not reflect the
   135  	// original span's true bounds.
   136  	prefix []byte
   137  	// span holds the span at the keyspanIter's current position. If the span is
   138  	// wholly contained within the iterator bounds, this span is directly
   139  	// returned to the iterator consumer through Span(). If either bound needed
   140  	// to be truncated to the iterator bounds, then truncated is set to true and
   141  	// Span() must return a pointer to truncatedSpan.
   142  	span *Span
   143  	// spanMarker holds the synthetic key that is returned when the iterator
   144  	// passes over a key span's start bound.
   145  	spanMarker base.InternalKey
   146  	// truncated indicates whether or not the span at the current position
   147  	// needed to be truncated. If it did, truncatedSpan holds the truncated
   148  	// span that should be returned.
   149  	truncatedSpan Span
   150  	truncated     bool
   151  
   152  	// Keeping all of the bools/uint8s together reduces the sizeof the struct.
   153  
   154  	// pos encodes the current position of the iterator: exhausted, on the point
   155  	// key, on a keyspan start, or on a keyspan end.
   156  	pos interleavePos
   157  	// withinSpan indicates whether the iterator is currently positioned within
   158  	// the bounds of the current span (i.span). withinSpan must be updated
   159  	// whenever the interleaving iterator's position enters or exits the bounds
   160  	// of a span.
   161  	withinSpan bool
   162  	// spanMarkerTruncated is set by SeekGE/SeekPrefixGE calls that truncate a
   163  	// span's start bound marker to the search key. It's returned to false on
   164  	// the next repositioning of the keyspan iterator.
   165  	spanMarkerTruncated bool
   166  	// maskSpanChangedCalled records whether or not the last call to
   167  	// SpanMask.SpanChanged provided the current span (i.span) or not.
   168  	maskSpanChangedCalled bool
   169  	// dir indicates the direction of iteration: forward (+1) or backward (-1)
   170  	dir int8
   171  }
   172  
   173  // interleavePos indicates the iterator's current position. Note that both
   174  // keyspanStart and keyspanEnd positions correspond to their user key boundaries
   175  // with maximal sequence numbers. This means in the forward direction
   176  // posKeyspanStart and posKeyspanEnd are always interleaved before a posPointKey
   177  // with the same user key.
   178  type interleavePos int8
   179  
   180  const (
   181  	posUninitialized interleavePos = iota
   182  	posExhausted
   183  	posPointKey
   184  	posKeyspanStart
   185  	posKeyspanEnd
   186  )
   187  
   188  // Assert that *InterleavingIter implements the InternalIterator interface.
   189  var _ base.InternalIterator = &InterleavingIter{}
   190  
   191  // InterleavingIterOpts holds options configuring the behavior of a
   192  // InterleavingIter.
   193  type InterleavingIterOpts struct {
   194  	Mask                   SpanMask
   195  	LowerBound, UpperBound []byte
   196  }
   197  
   198  // Init initializes the InterleavingIter to interleave point keys from pointIter
   199  // with key spans from keyspanIter.
   200  //
   201  // The point iterator must already have the bounds provided on opts. Init does
   202  // not propagate the bounds down the iterator stack.
   203  func (i *InterleavingIter) Init(
   204  	comparer *base.Comparer,
   205  	pointIter base.InternalIterator,
   206  	keyspanIter FragmentIterator,
   207  	opts InterleavingIterOpts,
   208  ) {
   209  	*i = InterleavingIter{
   210  		cmp:         comparer.Compare,
   211  		comparer:    comparer,
   212  		pointIter:   pointIter,
   213  		keyspanIter: keyspanIter,
   214  		mask:        opts.Mask,
   215  		lower:       opts.LowerBound,
   216  		upper:       opts.UpperBound,
   217  	}
   218  }
   219  
   220  // InitSeekGE may be called after Init but before any positioning method.
   221  // InitSeekGE initializes the current position of the point iterator and then
   222  // performs a SeekGE on the keyspan iterator using the provided key. InitSeekGE
   223  // returns whichever point or keyspan key is smaller. After InitSeekGE, the
   224  // iterator is positioned and may be repositioned using relative positioning
   225  // methods.
   226  //
   227  // This method is used specifically for lazily constructing combined iterators.
   228  // It allows for seeding the iterator with the current position of the point
   229  // iterator.
   230  func (i *InterleavingIter) InitSeekGE(
   231  	prefix, key []byte, pointKey *base.InternalKey, pointValue base.LazyValue,
   232  ) (*base.InternalKey, base.LazyValue) {
   233  	i.dir = +1
   234  	i.clearMask()
   235  	i.prefix = prefix
   236  	i.savePoint(pointKey, pointValue)
   237  	// NB: This keyspanSeekGE call will truncate the span to the seek key if
   238  	// necessary. This truncation is important for cases where a switch to
   239  	// combined iteration is made during a user-initiated SeekGE.
   240  	i.keyspanSeekGE(key, prefix)
   241  	i.computeSmallestPos()
   242  	return i.yieldPosition(key, i.nextPos)
   243  }
   244  
   245  // InitSeekLT may be called after Init but before any positioning method.
   246  // InitSeekLT initializes the current position of the point iterator and then
   247  // performs a SeekLT on the keyspan iterator using the provided key. InitSeekLT
   248  // returns whichever point or keyspan key is larger. After InitSeekLT, the
   249  // iterator is positioned and may be repositioned using relative positioning
   250  // methods.
   251  //
   252  // This method is used specifically for lazily constructing combined iterators.
   253  // It allows for seeding the iterator with the current position of the point
   254  // iterator.
   255  func (i *InterleavingIter) InitSeekLT(
   256  	key []byte, pointKey *base.InternalKey, pointValue base.LazyValue,
   257  ) (*base.InternalKey, base.LazyValue) {
   258  	i.dir = -1
   259  	i.clearMask()
   260  	i.savePoint(pointKey, pointValue)
   261  	i.keyspanSeekLT(key)
   262  	i.computeLargestPos()
   263  	return i.yieldPosition(i.lower, i.prevPos)
   264  }
   265  
   266  // SeekGE implements (base.InternalIterator).SeekGE.
   267  //
   268  // If there exists a span with a start key ≤ the first matching point key,
   269  // SeekGE will return a synthetic span marker key for the span. If this span's
   270  // start key is less than key, the returned marker will be truncated to key.
   271  // Note that this search-key truncation of the marker's key is not applied to
   272  // the span returned by Span.
   273  //
   274  // NB: In accordance with the base.InternalIterator contract:
   275  //
   276  //	i.lower ≤ key
   277  func (i *InterleavingIter) SeekGE(
   278  	key []byte, flags base.SeekGEFlags,
   279  ) (*base.InternalKey, base.LazyValue) {
   280  	i.err = nil
   281  	i.clearMask()
   282  	i.disablePrefixMode()
   283  	i.savePoint(i.pointIter.SeekGE(key, flags))
   284  
   285  	// We need to seek the keyspan iterator too. If the keyspan iterator was
   286  	// already positioned at a span, we might be able to avoid the seek if the
   287  	// seek key falls within the existing span's bounds.
   288  	if i.span != nil && i.cmp(key, i.span.End) < 0 && i.cmp(key, i.span.Start) >= 0 {
   289  		// We're seeking within the existing span's bounds. We still might need
   290  		// truncate the span to the iterator's bounds.
   291  		i.saveSpanForward(i.span)
   292  		i.savedKeyspan()
   293  	} else {
   294  		i.keyspanSeekGE(key, nil /* prefix */)
   295  	}
   296  
   297  	i.dir = +1
   298  	i.computeSmallestPos()
   299  	return i.yieldPosition(key, i.nextPos)
   300  }
   301  
   302  // SeekPrefixGE implements (base.InternalIterator).SeekPrefixGE.
   303  //
   304  // If there exists a span with a start key ≤ the first matching point key,
   305  // SeekPrefixGE will return a synthetic span marker key for the span. If this
   306  // span's start key is less than key, the returned marker will be truncated to
   307  // key. Note that this search-key truncation of the marker's key is not applied
   308  // to the span returned by Span.
   309  //
   310  // NB: In accordance with the base.InternalIterator contract:
   311  //
   312  //	i.lower ≤ key
   313  func (i *InterleavingIter) SeekPrefixGE(
   314  	prefix, key []byte, flags base.SeekGEFlags,
   315  ) (*base.InternalKey, base.LazyValue) {
   316  	i.err = nil
   317  	i.clearMask()
   318  	i.prefix = prefix
   319  	i.savePoint(i.pointIter.SeekPrefixGE(prefix, key, flags))
   320  
   321  	// We need to seek the keyspan iterator too. If the keyspan iterator was
   322  	// already positioned at a span, we might be able to avoid the seek if the
   323  	// entire seek prefix key falls within the existing span's bounds.
   324  	//
   325  	// During a SeekPrefixGE, Pebble defragments range keys within the bounds of
   326  	// the prefix. For example, a SeekPrefixGE('c', 'c@8') must defragment the
   327  	// any overlapping range keys within the bounds of [c,c\00).
   328  	//
   329  	// If range keys are fragmented within a prefix (eg, because a version
   330  	// within a prefix was chosen as an sstable boundary), then it's possible
   331  	// the seek key falls into the current i.span, but the current i.span does
   332  	// not wholly cover the seek prefix.
   333  	//
   334  	// For example, a SeekPrefixGE('d@5') may only defragment a range key to
   335  	// the bounds of [c@2,e). A subsequent SeekPrefixGE('c@0') must re-seek the
   336  	// keyspan iterator, because although 'c@0' is contained within [c@2,e), the
   337  	// full span of the prefix is not.
   338  	//
   339  	// Similarly, a SeekPrefixGE('a@3') may only defragment a range key to the
   340  	// bounds [a,c@8). A subsequent SeekPrefixGE('c@10') must re-seek the
   341  	// keyspan iterator, because although 'c@10' is contained within [a,c@8),
   342  	// the full span of the prefix is not.
   343  	seekKeyspanIter := true
   344  	if i.span != nil && i.cmp(prefix, i.span.Start) >= 0 {
   345  		if ei := i.comparer.Split(i.span.End); i.cmp(prefix, i.span.End[:ei]) < 0 {
   346  			// We're seeking within the existing span's bounds. We still might need
   347  			// truncate the span to the iterator's bounds.
   348  			i.saveSpanForward(i.span)
   349  			i.savedKeyspan()
   350  			seekKeyspanIter = false
   351  		}
   352  	}
   353  	if seekKeyspanIter {
   354  		i.keyspanSeekGE(key, prefix)
   355  	}
   356  
   357  	i.dir = +1
   358  	i.computeSmallestPos()
   359  	return i.yieldPosition(key, i.nextPos)
   360  }
   361  
   362  // SeekLT implements (base.InternalIterator).SeekLT.
   363  func (i *InterleavingIter) SeekLT(
   364  	key []byte, flags base.SeekLTFlags,
   365  ) (*base.InternalKey, base.LazyValue) {
   366  	i.err = nil
   367  	i.clearMask()
   368  	i.disablePrefixMode()
   369  	i.savePoint(i.pointIter.SeekLT(key, flags))
   370  
   371  	// We need to seek the keyspan iterator too. If the keyspan iterator was
   372  	// already positioned at a span, we might be able to avoid the seek if the
   373  	// seek key falls within the existing span's bounds.
   374  	if i.span != nil && i.cmp(key, i.span.Start) > 0 && i.cmp(key, i.span.End) < 0 {
   375  		// We're seeking within the existing span's bounds. We still might need
   376  		// truncate the span to the iterator's bounds.
   377  		i.saveSpanBackward(i.span)
   378  		// The span's start key is still not guaranteed to be less than key,
   379  		// because of the bounds enforcement. Consider the following example:
   380  		//
   381  		// Bounds are set to [d,e). The user performs a SeekLT(d). The
   382  		// FragmentIterator.SeekLT lands on a span [b,f). This span has a start
   383  		// key less than d, as expected. Above, saveSpanBackward truncates the
   384  		// span to match the iterator's current bounds, modifying the span to
   385  		// [d,e), which does not overlap the search space of [-∞, d).
   386  		//
   387  		// This problem is a consequence of the SeekLT's exclusive search key
   388  		// and the fact that we don't perform bounds truncation at every leaf
   389  		// iterator.
   390  		if i.span != nil && i.truncated && i.cmp(i.truncatedSpan.Start, key) >= 0 {
   391  			i.span = nil
   392  		}
   393  		i.savedKeyspan()
   394  	} else {
   395  		i.keyspanSeekLT(key)
   396  	}
   397  
   398  	i.dir = -1
   399  	i.computeLargestPos()
   400  	return i.yieldPosition(i.lower, i.prevPos)
   401  }
   402  
   403  // First implements (base.InternalIterator).First.
   404  func (i *InterleavingIter) First() (*base.InternalKey, base.LazyValue) {
   405  	i.err = nil
   406  	i.clearMask()
   407  	i.disablePrefixMode()
   408  	i.savePoint(i.pointIter.First())
   409  	i.saveSpanForward(i.keyspanIter.First())
   410  	i.savedKeyspan()
   411  	i.dir = +1
   412  	i.computeSmallestPos()
   413  	return i.yieldPosition(i.lower, i.nextPos)
   414  }
   415  
   416  // Last implements (base.InternalIterator).Last.
   417  func (i *InterleavingIter) Last() (*base.InternalKey, base.LazyValue) {
   418  	i.err = nil
   419  	i.clearMask()
   420  	i.disablePrefixMode()
   421  	i.savePoint(i.pointIter.Last())
   422  	i.saveSpanBackward(i.keyspanIter.Last())
   423  	i.savedKeyspan()
   424  	i.dir = -1
   425  	i.computeLargestPos()
   426  	return i.yieldPosition(i.lower, i.prevPos)
   427  }
   428  
   429  // Next implements (base.InternalIterator).Next.
   430  func (i *InterleavingIter) Next() (*base.InternalKey, base.LazyValue) {
   431  	if i.dir == -1 {
   432  		// Switching directions.
   433  		i.dir = +1
   434  
   435  		if i.mask != nil {
   436  			// Clear the mask while we reposition the point iterator. While
   437  			// switching directions, we may move the point iterator outside of
   438  			// i.span's bounds.
   439  			i.clearMask()
   440  		}
   441  
   442  		// When switching directions, iterator state corresponding to the
   443  		// current iterator position (as indicated by i.pos) is already correct.
   444  		// However any state that has yet to be interleaved describes a position
   445  		// behind the current iterator position and needs to be updated to
   446  		// describe the position ahead of the current iterator position.
   447  		switch i.pos {
   448  		case posExhausted:
   449  			// Nothing to do. The below nextPos call will move both the point
   450  			// key and span to their next positions and return
   451  			// MIN(point,s.Start).
   452  		case posPointKey:
   453  			// If we're currently on a point key, the below nextPos will
   454  			// correctly Next the point key iterator to the next point key.
   455  			// Do we need to move the span forwards? If the current span lies
   456  			// entirely behind the current key (!i.withinSpan), then we
   457  			// need to move it to the first span in the forward direction.
   458  			if !i.withinSpan {
   459  				i.saveSpanForward(i.keyspanIter.Next())
   460  				i.savedKeyspan()
   461  			}
   462  		case posKeyspanStart:
   463  			i.withinSpan = true
   464  			// Since we're positioned on a Span, the pointIter is positioned
   465  			// entirely behind the current iterator position. Reposition it
   466  			// ahead of the current iterator position.
   467  			i.savePoint(i.pointIter.Next())
   468  		case posKeyspanEnd:
   469  			// Since we're positioned on a Span, the pointIter is positioned
   470  			// entirely behind of the current iterator position. Reposition it
   471  			// ahead the current iterator position.
   472  			i.savePoint(i.pointIter.Next())
   473  		}
   474  		// Fallthrough to calling i.nextPos.
   475  	}
   476  	i.nextPos()
   477  	return i.yieldPosition(i.lower, i.nextPos)
   478  }
   479  
   480  // NextPrefix implements (base.InternalIterator).NextPrefix.
   481  func (i *InterleavingIter) NextPrefix(succKey []byte) (*base.InternalKey, base.LazyValue) {
   482  	if i.dir == -1 {
   483  		panic("pebble: cannot switch directions with NextPrefix")
   484  	}
   485  
   486  	switch i.pos {
   487  	case posExhausted:
   488  		return nil, base.LazyValue{}
   489  	case posPointKey:
   490  		i.savePoint(i.pointIter.NextPrefix(succKey))
   491  		if i.withinSpan {
   492  			if i.pointKey == nil || i.cmp(i.span.End, i.pointKey.UserKey) <= 0 {
   493  				i.pos = posKeyspanEnd
   494  			} else {
   495  				i.pos = posPointKey
   496  			}
   497  		} else {
   498  			i.computeSmallestPos()
   499  		}
   500  	case posKeyspanStart, posKeyspanEnd:
   501  		i.nextPos()
   502  	}
   503  	return i.yieldPosition(i.lower, i.nextPos)
   504  }
   505  
   506  // Prev implements (base.InternalIterator).Prev.
   507  func (i *InterleavingIter) Prev() (*base.InternalKey, base.LazyValue) {
   508  	if i.dir == +1 {
   509  		// Switching directions.
   510  		i.dir = -1
   511  
   512  		if i.mask != nil {
   513  			// Clear the mask while we reposition the point iterator. While
   514  			// switching directions, we may move the point iterator outside of
   515  			// i.span's bounds.
   516  			i.clearMask()
   517  		}
   518  
   519  		// When switching directions, iterator state corresponding to the
   520  		// current iterator position (as indicated by i.pos) is already correct.
   521  		// However any state that has yet to be interleaved describes a position
   522  		// ahead of the current iterator position and needs to be updated to
   523  		// describe the position behind the current iterator position.
   524  		switch i.pos {
   525  		case posExhausted:
   526  			// Nothing to do. The below prevPos call will move both the point
   527  			// key and span to previous positions and return MAX(point, s.End).
   528  		case posPointKey:
   529  			// If we're currently on a point key, the point iterator is in the
   530  			// right place and the call to prevPos will correctly Prev the point
   531  			// key iterator to the previous point key. Do we need to move the
   532  			// span backwards? If the current span lies entirely ahead of the
   533  			// current key (!i.withinSpan), then we need to move it to the first
   534  			// span in the reverse direction.
   535  			if !i.withinSpan {
   536  				i.saveSpanBackward(i.keyspanIter.Prev())
   537  				i.savedKeyspan()
   538  			}
   539  		case posKeyspanStart:
   540  			// Since we're positioned on a Span, the pointIter is positioned
   541  			// entirely ahead of the current iterator position. Reposition it
   542  			// behind the current iterator position.
   543  			i.savePoint(i.pointIter.Prev())
   544  			// Without considering truncation of spans to seek keys, the keyspan
   545  			// iterator is already in the right place. But consider span [a, z)
   546  			// and this sequence of iterator calls:
   547  			//
   548  			//   SeekGE('c') = c.RANGEKEYSET#72057594037927935
   549  			//   Prev()      = a.RANGEKEYSET#72057594037927935
   550  			//
   551  			// If the current span's start key was last surfaced truncated due
   552  			// to a SeekGE or SeekPrefixGE call, then it's still relevant in the
   553  			// reverse direction with an untruncated start key.
   554  			if i.spanMarkerTruncated {
   555  				// When we fallthrough to calling prevPos, we want to move to
   556  				// MAX(point, span.Start). We cheat here by claiming we're
   557  				// currently on the end boundary, so that we'll move on to the
   558  				// untruncated start key if necessary.
   559  				i.pos = posKeyspanEnd
   560  			}
   561  		case posKeyspanEnd:
   562  			// Since we're positioned on a Span, the pointIter is positioned
   563  			// entirely ahead of the current iterator position. Reposition it
   564  			// behind the current iterator position.
   565  			i.savePoint(i.pointIter.Prev())
   566  		}
   567  
   568  		if i.spanMarkerTruncated {
   569  			// Save the keyspan again to clear truncation.
   570  			i.savedKeyspan()
   571  		}
   572  		// Fallthrough to calling i.prevPos.
   573  	}
   574  	i.prevPos()
   575  	return i.yieldPosition(i.lower, i.prevPos)
   576  }
   577  
   578  // computeSmallestPos sets i.{pos,withinSpan} to:
   579  //
   580  //	MIN(i.pointKey, i.span.Start)
   581  func (i *InterleavingIter) computeSmallestPos() {
   582  	if i.err == nil {
   583  		if i.span != nil && (i.pointKey == nil || i.cmp(i.startKey(), i.pointKey.UserKey) <= 0) {
   584  			i.withinSpan = true
   585  			i.pos = posKeyspanStart
   586  			return
   587  		}
   588  		i.withinSpan = false
   589  		if i.pointKey != nil {
   590  			i.pos = posPointKey
   591  			return
   592  		}
   593  	}
   594  	i.pos = posExhausted
   595  }
   596  
   597  // computeLargestPos sets i.{pos,withinSpan} to:
   598  //
   599  //	MAX(i.pointKey, i.span.End)
   600  func (i *InterleavingIter) computeLargestPos() {
   601  	if i.err == nil {
   602  		if i.span != nil && (i.pointKey == nil || i.cmp(i.span.End, i.pointKey.UserKey) > 0) {
   603  			i.withinSpan = true
   604  			i.pos = posKeyspanEnd
   605  			return
   606  		}
   607  		i.withinSpan = false
   608  		if i.pointKey != nil {
   609  			i.pos = posPointKey
   610  			return
   611  		}
   612  	}
   613  	i.pos = posExhausted
   614  }
   615  
   616  // nextPos advances the iterator one position in the forward direction.
   617  func (i *InterleavingIter) nextPos() {
   618  	if invariants.Enabled {
   619  		defer func() {
   620  			if i.err != nil && i.pos != posExhausted {
   621  				panic(errors.AssertionFailedf("iterator has accumulated error but i.pos = %d", i.pos))
   622  			}
   623  		}()
   624  	}
   625  	// NB: If i.err != nil or any of the positioning methods performed in this
   626  	// function result in i.err != nil, we must set i.pos = posExhausted. We
   627  	// perform this check explicitly here, but if any of the branches below
   628  	// advance either iterator, they must also check i.err and set posExhausted
   629  	// if necessary.
   630  	if i.err != nil {
   631  		i.pos = posExhausted
   632  		return
   633  	}
   634  
   635  	switch i.pos {
   636  	case posExhausted:
   637  		i.savePoint(i.pointIter.Next())
   638  		i.saveSpanForward(i.keyspanIter.Next())
   639  		i.savedKeyspan()
   640  		i.computeSmallestPos()
   641  	case posPointKey:
   642  		i.savePoint(i.pointIter.Next())
   643  		if i.err != nil {
   644  			i.pos = posExhausted
   645  			return
   646  		}
   647  		// If we're not currently within the span, we want to chose the
   648  		// MIN(pointKey,span.Start), which is exactly the calculation performed
   649  		// by computeSmallestPos.
   650  		if !i.withinSpan {
   651  			i.computeSmallestPos()
   652  			return
   653  		}
   654  		// i.withinSpan=true
   655  		// Since we previously were within the span, we want to choose the
   656  		// MIN(pointKey,span.End).
   657  		switch {
   658  		case i.span == nil:
   659  			panic("i.withinSpan=true and i.span=nil")
   660  		case i.pointKey == nil:
   661  			// Since i.withinSpan=true, we step onto the end boundary of the
   662  			// keyspan.
   663  			i.pos = posKeyspanEnd
   664  		default:
   665  			// i.withinSpan && i.pointKey != nil && i.span != nil
   666  			if i.cmp(i.span.End, i.pointKey.UserKey) <= 0 {
   667  				i.pos = posKeyspanEnd
   668  			} else {
   669  				i.pos = posPointKey
   670  			}
   671  		}
   672  	case posKeyspanStart:
   673  		// Either a point key or the span's end key comes next.
   674  		if i.pointKey != nil && i.cmp(i.pointKey.UserKey, i.span.End) < 0 {
   675  			i.pos = posPointKey
   676  		} else {
   677  			i.pos = posKeyspanEnd
   678  		}
   679  	case posKeyspanEnd:
   680  		i.saveSpanForward(i.keyspanIter.Next())
   681  		i.savedKeyspan()
   682  		i.computeSmallestPos()
   683  	default:
   684  		panic(fmt.Sprintf("unexpected pos=%d", i.pos))
   685  	}
   686  }
   687  
   688  // prevPos advances the iterator one position in the reverse direction.
   689  func (i *InterleavingIter) prevPos() {
   690  	if invariants.Enabled {
   691  		defer func() {
   692  			if i.err != nil && i.pos != posExhausted {
   693  				panic(errors.AssertionFailedf("iterator has accumulated error but i.pos = %d", i.pos))
   694  			}
   695  		}()
   696  	}
   697  	// NB: If i.err != nil or any of the positioning methods performed in this
   698  	// function result in i.err != nil, we must set i.pos = posExhausted. We
   699  	// perform this check explicitly here, but if any of the branches below
   700  	// advance either iterator, they must also check i.err and set posExhausted
   701  	// if necessary.
   702  	if i.err != nil {
   703  		i.pos = posExhausted
   704  		return
   705  	}
   706  
   707  	switch i.pos {
   708  	case posExhausted:
   709  		i.savePoint(i.pointIter.Prev())
   710  		i.saveSpanBackward(i.keyspanIter.Prev())
   711  		i.savedKeyspan()
   712  		i.computeLargestPos()
   713  	case posPointKey:
   714  		i.savePoint(i.pointIter.Prev())
   715  		if i.err != nil {
   716  			i.pos = posExhausted
   717  			return
   718  		}
   719  		// If we're not currently covered by the span, we want to chose the
   720  		// MAX(pointKey,span.End), which is exactly the calculation performed
   721  		// by computeLargestPos.
   722  		if !i.withinSpan {
   723  			i.computeLargestPos()
   724  			return
   725  		}
   726  		switch {
   727  		case i.span == nil:
   728  			panic("withinSpan=true, but i.span == nil")
   729  		case i.pointKey == nil:
   730  			i.pos = posKeyspanEnd
   731  		default:
   732  			// i.withinSpan && i.pointKey != nil && i.span != nil
   733  			if i.cmp(i.span.Start, i.pointKey.UserKey) > 0 {
   734  				i.pos = posKeyspanStart
   735  			} else {
   736  				i.pos = posPointKey
   737  			}
   738  		}
   739  	case posKeyspanStart:
   740  		i.saveSpanBackward(i.keyspanIter.Prev())
   741  		i.savedKeyspan()
   742  		i.computeLargestPos()
   743  	case posKeyspanEnd:
   744  		// Either a point key or the span's start key is previous.
   745  		if i.pointKey != nil && i.cmp(i.pointKey.UserKey, i.span.Start) >= 0 {
   746  			i.pos = posPointKey
   747  		} else {
   748  			i.pos = posKeyspanStart
   749  		}
   750  	default:
   751  		panic(fmt.Sprintf("unexpected pos=%d", i.pos))
   752  	}
   753  }
   754  
   755  func (i *InterleavingIter) yieldPosition(
   756  	lowerBound []byte, advance func(),
   757  ) (*base.InternalKey, base.LazyValue) {
   758  	// This loop returns the first visible position in the current iteration
   759  	// direction. Some positions are not visible and skipped. For example, if
   760  	// masking is enabled and the iterator is positioned over a masked point
   761  	// key, this loop skips the position. If a span's start key should be
   762  	// interleaved next, but the span is empty, the loop continues to the next
   763  	// key. Currently, span end keys are also always skipped, and are used only
   764  	// for maintaining internal state.
   765  	for {
   766  		switch i.pos {
   767  		case posExhausted:
   768  			return i.yieldNil()
   769  		case posPointKey:
   770  			if i.pointKey == nil {
   771  				panic("i.pointKey is nil")
   772  			}
   773  
   774  			if i.mask != nil {
   775  				i.maybeUpdateMask()
   776  				if i.withinSpan && i.mask.SkipPoint(i.pointKey.UserKey) {
   777  					// The span covers the point key. If a SkipPoint hook is
   778  					// configured, ask it if we should skip this point key.
   779  					if i.prefix != nil {
   780  						// During prefix-iteration node, once a point is masked,
   781  						// all subsequent keys with the same prefix must also be
   782  						// masked according to the key ordering. We can stop and
   783  						// return nil.
   784  						//
   785  						// NB: The above is not just an optimization. During
   786  						// prefix-iteration mode, the internal iterator contract
   787  						// prohibits us from Next-ing beyond the first key
   788  						// beyond the iteration prefix. If we didn't already
   789  						// stop early, we would need to check if this masked
   790  						// point is already beyond the prefix.
   791  						return i.yieldNil()
   792  					}
   793  					// TODO(jackson): If we thread a base.Comparer through to
   794  					// InterleavingIter so that we have access to
   795  					// ImmediateSuccessor, we could use NextPrefix. We'd need to
   796  					// tweak the SpanMask interface slightly.
   797  
   798  					// Advance beyond the masked point key.
   799  					advance()
   800  					continue
   801  				}
   802  			}
   803  			return i.yieldPointKey()
   804  		case posKeyspanEnd:
   805  			// Don't interleave end keys; just advance.
   806  			advance()
   807  			continue
   808  		case posKeyspanStart:
   809  			// Don't interleave an empty span.
   810  			if i.span.Empty() {
   811  				advance()
   812  				continue
   813  			}
   814  			return i.yieldSyntheticSpanMarker(lowerBound)
   815  		default:
   816  			panic(fmt.Sprintf("unexpected interleavePos=%d", i.pos))
   817  		}
   818  	}
   819  }
   820  
   821  // keyspanSeekGE seeks the keyspan iterator to the first span covering a key ≥ k.
   822  func (i *InterleavingIter) keyspanSeekGE(k []byte, prefix []byte) {
   823  	i.saveSpanForward(i.keyspanIter.SeekGE(k))
   824  	i.savedKeyspan()
   825  }
   826  
   827  // keyspanSeekLT seeks the keyspan iterator to the last span covering a key < k.
   828  func (i *InterleavingIter) keyspanSeekLT(k []byte) {
   829  	i.saveSpanBackward(i.keyspanIter.SeekLT(k))
   830  	// The current span's start key is not guaranteed to be less than key,
   831  	// because of the bounds enforcement. Consider the following example:
   832  	//
   833  	// Bounds are set to [d,e). The user performs a SeekLT(d). The
   834  	// FragmentIterator.SeekLT lands on a span [b,f). This span has a start key
   835  	// less than d, as expected. Above, saveSpanBackward truncates the span to
   836  	// match the iterator's current bounds, modifying the span to [d,e), which
   837  	// does not overlap the search space of [-∞, d).
   838  	//
   839  	// This problem is a consequence of the SeekLT's exclusive search key and
   840  	// the fact that we don't perform bounds truncation at every leaf iterator.
   841  	if i.span != nil && i.truncated && i.cmp(i.truncatedSpan.Start, k) >= 0 {
   842  		i.span = nil
   843  	}
   844  	i.savedKeyspan()
   845  }
   846  
   847  func (i *InterleavingIter) saveSpanForward(span *Span) {
   848  	i.span = span
   849  	i.truncated = false
   850  	i.truncatedSpan = Span{}
   851  	if i.span == nil {
   852  		i.err = firstError(i.err, i.keyspanIter.Error())
   853  		return
   854  	}
   855  	if invariants.Enabled {
   856  		if err := i.keyspanIter.Error(); err != nil {
   857  			panic(errors.WithSecondaryError(
   858  				errors.AssertionFailedf("pebble: %T keyspan iterator returned non-nil span %s while iter has error", i.keyspanIter, i.span),
   859  				err))
   860  		}
   861  	}
   862  	// Check the upper bound if we have one.
   863  	if i.upper != nil && i.cmp(i.span.Start, i.upper) >= 0 {
   864  		i.span = nil
   865  		return
   866  	}
   867  
   868  	// TODO(jackson): The key comparisons below truncate bounds whenever the
   869  	// keyspan iterator is repositioned. We could perform this lazily, and do it
   870  	// the first time the user actually asks for this span's bounds in
   871  	// SpanBounds. This would reduce work in the case where there's no span
   872  	// covering the point and the keyspan iterator is non-empty.
   873  
   874  	// NB: These truncations don't require setting `keyspanMarkerTruncated`:
   875  	// That flag only applies to truncated span marker keys.
   876  	if i.lower != nil && i.cmp(i.span.Start, i.lower) < 0 {
   877  		i.truncated = true
   878  		i.truncatedSpan = *i.span
   879  		i.truncatedSpan.Start = i.lower
   880  	}
   881  	if i.upper != nil && i.cmp(i.upper, i.span.End) < 0 {
   882  		if !i.truncated {
   883  			i.truncated = true
   884  			i.truncatedSpan = *i.span
   885  		}
   886  		i.truncatedSpan.End = i.upper
   887  	}
   888  	// If this is a part of a SeekPrefixGE call, we may also need to truncate to
   889  	// the prefix's bounds.
   890  	if i.prefix != nil {
   891  		if !i.truncated {
   892  			i.truncated = true
   893  			i.truncatedSpan = *i.span
   894  		}
   895  		if i.cmp(i.prefix, i.truncatedSpan.Start) > 0 {
   896  			i.truncatedSpan.Start = i.prefix
   897  		}
   898  		i.nextPrefixBuf = i.comparer.ImmediateSuccessor(i.nextPrefixBuf[:0], i.prefix)
   899  		if i.truncated && i.cmp(i.nextPrefixBuf, i.truncatedSpan.End) < 0 {
   900  			i.truncatedSpan.End = i.nextPrefixBuf
   901  		}
   902  	}
   903  
   904  	if i.truncated && i.comparer.Equal(i.truncatedSpan.Start, i.truncatedSpan.End) {
   905  		i.span = nil
   906  	}
   907  }
   908  
   909  func (i *InterleavingIter) saveSpanBackward(span *Span) {
   910  	i.span = span
   911  	i.truncated = false
   912  	i.truncatedSpan = Span{}
   913  	if i.span == nil {
   914  		i.err = firstError(i.err, i.keyspanIter.Error())
   915  		return
   916  	}
   917  	if invariants.Enabled {
   918  		if err := i.keyspanIter.Error(); err != nil {
   919  			panic(errors.WithSecondaryError(
   920  				errors.AssertionFailedf("pebble: %T keyspan iterator returned non-nil span %s while iter has error", i.keyspanIter, i.span),
   921  				err))
   922  		}
   923  	}
   924  
   925  	// Check the lower bound if we have one.
   926  	if i.lower != nil && i.cmp(i.span.End, i.lower) <= 0 {
   927  		i.span = nil
   928  		return
   929  	}
   930  
   931  	// TODO(jackson): The key comparisons below truncate bounds whenever the
   932  	// keyspan iterator is repositioned. We could perform this lazily, and do it
   933  	// the first time the user actually asks for this span's bounds in
   934  	// SpanBounds. This would reduce work in the case where there's no span
   935  	// covering the point and the keyspan iterator is non-empty.
   936  
   937  	// NB: These truncations don't require setting `keyspanMarkerTruncated`:
   938  	// That flag only applies to truncated span marker keys.
   939  	if i.lower != nil && i.cmp(i.span.Start, i.lower) < 0 {
   940  		i.truncated = true
   941  		i.truncatedSpan = *i.span
   942  		i.truncatedSpan.Start = i.lower
   943  	}
   944  	if i.upper != nil && i.cmp(i.upper, i.span.End) < 0 {
   945  		if !i.truncated {
   946  			i.truncated = true
   947  			i.truncatedSpan = *i.span
   948  		}
   949  		i.truncatedSpan.End = i.upper
   950  	}
   951  	if i.truncated && i.comparer.Equal(i.truncatedSpan.Start, i.truncatedSpan.End) {
   952  		i.span = nil
   953  	}
   954  }
   955  
   956  func (i *InterleavingIter) yieldNil() (*base.InternalKey, base.LazyValue) {
   957  	i.withinSpan = false
   958  	i.clearMask()
   959  	return i.verify(nil, base.LazyValue{})
   960  }
   961  
   962  func (i *InterleavingIter) yieldPointKey() (*base.InternalKey, base.LazyValue) {
   963  	return i.verify(i.pointKey, i.pointVal)
   964  }
   965  
   966  func (i *InterleavingIter) yieldSyntheticSpanMarker(
   967  	lowerBound []byte,
   968  ) (*base.InternalKey, base.LazyValue) {
   969  	i.spanMarker.UserKey = i.startKey()
   970  	i.spanMarker.Trailer = base.MakeTrailer(base.InternalKeySeqNumMax, i.span.Keys[0].Kind())
   971  
   972  	// Truncate the key we return to our lower bound if we have one. Note that
   973  	// we use the lowerBound function parameter, not i.lower. The lowerBound
   974  	// argument is guaranteed to be ≥ i.lower. It may be equal to the SetBounds
   975  	// lower bound, or it could come from a SeekGE or SeekPrefixGE search key.
   976  	if lowerBound != nil && i.cmp(lowerBound, i.startKey()) > 0 {
   977  		// Truncating to the lower bound may violate the upper bound if
   978  		// lowerBound == i.upper. For example, a SeekGE(k) uses k as a lower
   979  		// bound for truncating a span. The span a-z will be truncated to [k,
   980  		// z). If i.upper == k, we'd mistakenly try to return a span [k, k), an
   981  		// invariant violation.
   982  		if i.comparer.Equal(lowerBound, i.upper) {
   983  			return i.yieldNil()
   984  		}
   985  
   986  		// If the lowerBound argument came from a SeekGE or SeekPrefixGE
   987  		// call, and it may be backed by a user-provided byte slice that is not
   988  		// guaranteed to be stable.
   989  		//
   990  		// If the lowerBound argument is the lower bound set by SetBounds,
   991  		// Pebble owns the slice's memory. However, consider two successive
   992  		// calls to SetBounds(). The second may overwrite the lower bound.
   993  		// Although the external contract requires a seek after a SetBounds,
   994  		// Pebble's tests don't always. For this reason and to simplify
   995  		// reasoning around lifetimes, always copy the bound into keyBuf when
   996  		// truncating.
   997  		i.keyBuf = append(i.keyBuf[:0], lowerBound...)
   998  		i.spanMarker.UserKey = i.keyBuf
   999  		i.spanMarkerTruncated = true
  1000  	}
  1001  	i.maybeUpdateMask()
  1002  	return i.verify(&i.spanMarker, base.LazyValue{})
  1003  }
  1004  
  1005  func (i *InterleavingIter) disablePrefixMode() {
  1006  	if i.prefix != nil {
  1007  		i.prefix = nil
  1008  		// Clear the existing span. It may not hold the true end bound of the
  1009  		// underlying span.
  1010  		i.span = nil
  1011  	}
  1012  }
  1013  
  1014  func (i *InterleavingIter) verify(
  1015  	k *base.InternalKey, v base.LazyValue,
  1016  ) (*base.InternalKey, base.LazyValue) {
  1017  	// Wrap the entire function body in the invariants build tag, so that
  1018  	// production builds elide this entire function.
  1019  	if invariants.Enabled {
  1020  		switch {
  1021  		case i.dir == -1 && i.spanMarkerTruncated:
  1022  			panic("pebble: invariant violation: truncated span key in reverse iteration")
  1023  		case k != nil && i.lower != nil && i.cmp(k.UserKey, i.lower) < 0:
  1024  			panic("pebble: invariant violation: key < lower bound")
  1025  		case k != nil && i.upper != nil && i.cmp(k.UserKey, i.upper) >= 0:
  1026  			panic("pebble: invariant violation: key ≥ upper bound")
  1027  		case i.err != nil && k != nil:
  1028  			panic("pebble: invariant violation: accumulated error swallowed")
  1029  		case i.err == nil && i.pointIter.Error() != nil:
  1030  			panic("pebble: invariant violation: pointIter swallowed")
  1031  		case i.err == nil && i.keyspanIter.Error() != nil:
  1032  			panic("pebble: invariant violation: keyspanIter error swallowed")
  1033  		}
  1034  	}
  1035  	return k, v
  1036  }
  1037  
  1038  func (i *InterleavingIter) savedKeyspan() {
  1039  	i.spanMarkerTruncated = false
  1040  	i.maskSpanChangedCalled = false
  1041  }
  1042  
  1043  // updateMask updates the current mask, if a mask is configured and the mask
  1044  // hasn't been updated with the current keyspan yet.
  1045  func (i *InterleavingIter) maybeUpdateMask() {
  1046  	switch {
  1047  	case i.mask == nil, i.maskSpanChangedCalled:
  1048  		return
  1049  	case !i.withinSpan || i.span.Empty():
  1050  		i.clearMask()
  1051  	case i.truncated:
  1052  		i.mask.SpanChanged(&i.truncatedSpan)
  1053  		i.maskSpanChangedCalled = true
  1054  	default:
  1055  		i.mask.SpanChanged(i.span)
  1056  		i.maskSpanChangedCalled = true
  1057  	}
  1058  }
  1059  
  1060  // clearMask clears the current mask, if a mask is configured and no mask should
  1061  // be active.
  1062  func (i *InterleavingIter) clearMask() {
  1063  	if i.mask != nil {
  1064  		i.maskSpanChangedCalled = false
  1065  		i.mask.SpanChanged(nil)
  1066  	}
  1067  }
  1068  
  1069  func (i *InterleavingIter) startKey() []byte {
  1070  	if i.truncated {
  1071  		return i.truncatedSpan.Start
  1072  	}
  1073  	return i.span.Start
  1074  }
  1075  
  1076  func (i *InterleavingIter) savePoint(key *base.InternalKey, value base.LazyValue) {
  1077  	i.pointKey, i.pointVal = key, value
  1078  	if key == nil {
  1079  		i.err = firstError(i.err, i.pointIter.Error())
  1080  	}
  1081  	if invariants.Enabled {
  1082  		if err := i.pointIter.Error(); key != nil && err != nil {
  1083  			panic(errors.WithSecondaryError(
  1084  				errors.AssertionFailedf("pebble: %T point iterator returned non-nil key %q while iter has error", i.pointIter, key),
  1085  				err))
  1086  		}
  1087  	}
  1088  }
  1089  
  1090  // Span returns the span covering the last key returned, if any. A span key is
  1091  // considered to 'cover' a key if the key falls within the span's user key
  1092  // bounds. The returned span is owned by the InterleavingIter. The caller is
  1093  // responsible for copying if stability is required.
  1094  //
  1095  // Span will never return an invalid or empty span.
  1096  func (i *InterleavingIter) Span() *Span {
  1097  	if !i.withinSpan || len(i.span.Keys) == 0 {
  1098  		return nil
  1099  	} else if i.truncated {
  1100  		return &i.truncatedSpan
  1101  	}
  1102  	return i.span
  1103  }
  1104  
  1105  // SetBounds implements (base.InternalIterator).SetBounds.
  1106  func (i *InterleavingIter) SetBounds(lower, upper []byte) {
  1107  	i.lower, i.upper = lower, upper
  1108  	i.pointIter.SetBounds(lower, upper)
  1109  	i.Invalidate()
  1110  }
  1111  
  1112  // Invalidate invalidates the interleaving iterator's current position, clearing
  1113  // its state. This prevents optimizations such as reusing the current span on
  1114  // seek.
  1115  func (i *InterleavingIter) Invalidate() {
  1116  	i.span = nil
  1117  	i.pointKey = nil
  1118  	i.pointVal = base.LazyValue{}
  1119  }
  1120  
  1121  // Error implements (base.InternalIterator).Error.
  1122  func (i *InterleavingIter) Error() error {
  1123  	return i.err
  1124  }
  1125  
  1126  // Close implements (base.InternalIterator).Close.
  1127  func (i *InterleavingIter) Close() error {
  1128  	perr := i.pointIter.Close()
  1129  	rerr := i.keyspanIter.Close()
  1130  	return firstError(perr, rerr)
  1131  }
  1132  
  1133  // String implements (base.InternalIterator).String.
  1134  func (i *InterleavingIter) String() string {
  1135  	return fmt.Sprintf("keyspan-interleaving(%q)", i.pointIter.String())
  1136  }
  1137  
  1138  func firstError(err0, err1 error) error {
  1139  	if err0 != nil {
  1140  		return err0
  1141  	}
  1142  	return err1
  1143  }