github.com/cockroachdb/pebble@v1.1.2/iterator.go (about)

     1  // Copyright 2011 The LevelDB-Go and Pebble Authors. All rights reserved. Use
     2  // of this source code is governed by a BSD-style license that can be found in
     3  // the LICENSE file.
     4  
     5  package pebble
     6  
     7  import (
     8  	"bytes"
     9  	"context"
    10  	"io"
    11  	"sync"
    12  	"unsafe"
    13  
    14  	"github.com/cockroachdb/errors"
    15  	"github.com/cockroachdb/pebble/internal/base"
    16  	"github.com/cockroachdb/pebble/internal/bytealloc"
    17  	"github.com/cockroachdb/pebble/internal/fastrand"
    18  	"github.com/cockroachdb/pebble/internal/humanize"
    19  	"github.com/cockroachdb/pebble/internal/invariants"
    20  	"github.com/cockroachdb/pebble/internal/keyspan"
    21  	"github.com/cockroachdb/pebble/internal/manifest"
    22  	"github.com/cockroachdb/pebble/internal/rangekey"
    23  	"github.com/cockroachdb/pebble/sstable"
    24  	"github.com/cockroachdb/redact"
    25  )
    26  
    27  // iterPos describes the state of the internal iterator, in terms of whether it
    28  // is at the position returned to the user (cur), one ahead of the position
    29  // returned (next for forward iteration and prev for reverse iteration). The cur
    30  // position is split into two states, for forward and reverse iteration, since
    31  // we need to differentiate for switching directions.
    32  //
    33  // There is subtlety in what is considered the current position of the Iterator.
    34  // The internal iterator exposes a sequence of internal keys. There is not
    35  // always a single internalIterator position corresponding to the position
    36  // returned to the user. Consider the example:
    37  //
    38  //	a.MERGE.9 a.MERGE.8 a.MERGE.7 a.SET.6 b.DELETE.9 b.DELETE.5 b.SET.4
    39  //	\                                   /
    40  //	  \       Iterator.Key() = 'a'    /
    41  //
    42  // The Iterator exposes one valid position at user key 'a' and the two exhausted
    43  // positions at the beginning and end of iteration. The underlying
    44  // internalIterator contains 7 valid positions and 2 exhausted positions.
    45  //
    46  // Iterator positioning methods must set iterPos to iterPosCur{Foward,Backward}
    47  // iff the user key at the current internalIterator position equals the
    48  // Iterator.Key returned to the user. This guarantees that a call to nextUserKey
    49  // or prevUserKey will advance to the next or previous iterator position.
    50  // iterPosCur{Forward,Backward} does not make any guarantee about the internal
    51  // iterator position among internal keys with matching user keys, and it will
    52  // vary subtly depending on the particular key kinds encountered. In the above
    53  // example, the iterator returning 'a' may set iterPosCurForward if the internal
    54  // iterator is positioned at any of a.MERGE.9, a.MERGE.8, a.MERGE.7 or a.SET.6.
    55  //
    56  // When setting iterPos to iterPosNext or iterPosPrev, the internal iterator
    57  // must be advanced to the first internalIterator position at a user key greater
    58  // (iterPosNext) or less (iterPosPrev) than the key returned to the user. An
    59  // internalIterator position that's !Valid() must also be considered greater or
    60  // less—depending on the direction of iteration—than the last valid Iterator
    61  // position.
    62  type iterPos int8
    63  
    64  const (
    65  	iterPosCurForward iterPos = 0
    66  	iterPosNext       iterPos = 1
    67  	iterPosPrev       iterPos = -1
    68  	iterPosCurReverse iterPos = -2
    69  
    70  	// For limited iteration. When the iterator is at iterPosCurForwardPaused
    71  	// - Next*() call should behave as if the internal iterator is already
    72  	//   at next (akin to iterPosNext).
    73  	// - Prev*() call should behave as if the internal iterator is at the
    74  	//   current key (akin to iterPosCurForward).
    75  	//
    76  	// Similar semantics apply to CurReversePaused.
    77  	iterPosCurForwardPaused iterPos = 2
    78  	iterPosCurReversePaused iterPos = -3
    79  )
    80  
    81  // Approximate gap in bytes between samples of data read during iteration.
    82  // This is multiplied with a default ReadSamplingMultiplier of 1 << 4 to yield
    83  // 1 << 20 (1MB). The 1MB factor comes from:
    84  // https://github.com/cockroachdb/pebble/issues/29#issuecomment-494477985
    85  const readBytesPeriod uint64 = 1 << 16
    86  
    87  var errReversePrefixIteration = errors.New("pebble: unsupported reverse prefix iteration")
    88  
    89  // IteratorMetrics holds per-iterator metrics. These do not change over the
    90  // lifetime of the iterator.
    91  type IteratorMetrics struct {
    92  	// The read amplification experienced by this iterator. This is the sum of
    93  	// the memtables, the L0 sublevels and the non-empty Ln levels. Higher read
    94  	// amplification generally results in slower reads, though allowing higher
    95  	// read amplification can also result in faster writes.
    96  	ReadAmp int
    97  }
    98  
    99  // IteratorStatsKind describes the two kind of iterator stats.
   100  type IteratorStatsKind int8
   101  
   102  const (
   103  	// InterfaceCall represents calls to Iterator.
   104  	InterfaceCall IteratorStatsKind = iota
   105  	// InternalIterCall represents calls by Iterator to its internalIterator.
   106  	InternalIterCall
   107  	// NumStatsKind is the number of kinds, and is used for array sizing.
   108  	NumStatsKind
   109  )
   110  
   111  // IteratorStats contains iteration stats.
   112  type IteratorStats struct {
   113  	// ForwardSeekCount includes SeekGE, SeekPrefixGE, First.
   114  	ForwardSeekCount [NumStatsKind]int
   115  	// ReverseSeek includes SeekLT, Last.
   116  	ReverseSeekCount [NumStatsKind]int
   117  	// ForwardStepCount includes Next.
   118  	ForwardStepCount [NumStatsKind]int
   119  	// ReverseStepCount includes Prev.
   120  	ReverseStepCount [NumStatsKind]int
   121  	InternalStats    InternalIteratorStats
   122  	RangeKeyStats    RangeKeyIteratorStats
   123  }
   124  
   125  var _ redact.SafeFormatter = &IteratorStats{}
   126  
   127  // InternalIteratorStats contains miscellaneous stats produced by internal
   128  // iterators.
   129  type InternalIteratorStats = base.InternalIteratorStats
   130  
   131  // RangeKeyIteratorStats contains miscellaneous stats about range keys
   132  // encountered by the iterator.
   133  type RangeKeyIteratorStats struct {
   134  	// Count records the number of range keys encountered during
   135  	// iteration. Range keys may be counted multiple times if the iterator
   136  	// leaves a range key's bounds and then returns.
   137  	Count int
   138  	// ContainedPoints records the number of point keys encountered within the
   139  	// bounds of a range key. Note that this includes point keys with suffixes
   140  	// that sort both above and below the covering range key's suffix.
   141  	ContainedPoints int
   142  	// SkippedPoints records the count of the subset of ContainedPoints point
   143  	// keys that were skipped during iteration due to range-key masking. It does
   144  	// not include point keys that were never loaded because a
   145  	// RangeKeyMasking.Filter excluded the entire containing block.
   146  	SkippedPoints int
   147  }
   148  
   149  // Merge adds all of the argument's statistics to the receiver. It may be used
   150  // to accumulate stats across multiple iterators.
   151  func (s *RangeKeyIteratorStats) Merge(o RangeKeyIteratorStats) {
   152  	s.Count += o.Count
   153  	s.ContainedPoints += o.ContainedPoints
   154  	s.SkippedPoints += o.SkippedPoints
   155  }
   156  
   157  func (s *RangeKeyIteratorStats) String() string {
   158  	return redact.StringWithoutMarkers(s)
   159  }
   160  
   161  // SafeFormat implements the redact.SafeFormatter interface.
   162  func (s *RangeKeyIteratorStats) SafeFormat(p redact.SafePrinter, verb rune) {
   163  	p.Printf("range keys: %s, contained points: %s (%s skipped)",
   164  		humanize.Count.Uint64(uint64(s.Count)),
   165  		humanize.Count.Uint64(uint64(s.ContainedPoints)),
   166  		humanize.Count.Uint64(uint64(s.SkippedPoints)))
   167  }
   168  
   169  // LazyValue is a lazy value. See the long comment in base.LazyValue.
   170  type LazyValue = base.LazyValue
   171  
   172  // Iterator iterates over a DB's key/value pairs in key order.
   173  //
   174  // An iterator must be closed after use, but it is not necessary to read an
   175  // iterator until exhaustion.
   176  //
   177  // An iterator is not goroutine-safe, but it is safe to use multiple iterators
   178  // concurrently, with each in a dedicated goroutine.
   179  //
   180  // It is also safe to use an iterator concurrently with modifying its
   181  // underlying DB, if that DB permits modification. However, the resultant
   182  // key/value pairs are not guaranteed to be a consistent snapshot of that DB
   183  // at a particular point in time.
   184  //
   185  // If an iterator encounters an error during any operation, it is stored by
   186  // the Iterator and surfaced through the Error method. All absolute
   187  // positioning methods (eg, SeekLT, SeekGT, First, Last, etc) reset any
   188  // accumulated error before positioning. All relative positioning methods (eg,
   189  // Next, Prev) return without advancing if the iterator has an accumulated
   190  // error.
   191  type Iterator struct {
   192  	// The context is stored here since (a) Iterators are expected to be
   193  	// short-lived (since they pin memtables and sstables), (b) plumbing a
   194  	// context into every method is very painful, (c) they do not (yet) respect
   195  	// context cancellation and are only used for tracing.
   196  	ctx       context.Context
   197  	opts      IterOptions
   198  	merge     Merge
   199  	comparer  base.Comparer
   200  	iter      internalIterator
   201  	pointIter internalIterator
   202  	// Either readState or version is set, but not both.
   203  	readState *readState
   204  	version   *version
   205  	// rangeKey holds iteration state specific to iteration over range keys.
   206  	// The range key field may be nil if the Iterator has never been configured
   207  	// to iterate over range keys. Its non-nilness cannot be used to determine
   208  	// if the Iterator is currently iterating over range keys: For that, consult
   209  	// the IterOptions using opts.rangeKeys(). If non-nil, its rangeKeyIter
   210  	// field is guaranteed to be non-nil too.
   211  	rangeKey *iteratorRangeKeyState
   212  	// rangeKeyMasking holds state for range-key masking of point keys.
   213  	rangeKeyMasking rangeKeyMasking
   214  	err             error
   215  	// When iterValidityState=IterValid, key represents the current key, which
   216  	// is backed by keyBuf.
   217  	key    []byte
   218  	keyBuf []byte
   219  	value  LazyValue
   220  	// For use in LazyValue.Clone.
   221  	valueBuf []byte
   222  	fetcher  base.LazyFetcher
   223  	// For use in LazyValue.Value.
   224  	lazyValueBuf []byte
   225  	valueCloser  io.Closer
   226  	// boundsBuf holds two buffers used to store the lower and upper bounds.
   227  	// Whenever the Iterator's bounds change, the new bounds are copied into
   228  	// boundsBuf[boundsBufIdx]. The two bounds share a slice to reduce
   229  	// allocations. opts.LowerBound and opts.UpperBound point into this slice.
   230  	boundsBuf    [2][]byte
   231  	boundsBufIdx int
   232  	// iterKey, iterValue reflect the latest position of iter, except when
   233  	// SetBounds is called. In that case, these are explicitly set to nil.
   234  	iterKey             *InternalKey
   235  	iterValue           LazyValue
   236  	alloc               *iterAlloc
   237  	getIterAlloc        *getIterAlloc
   238  	prefixOrFullSeekKey []byte
   239  	readSampling        readSampling
   240  	stats               IteratorStats
   241  	externalReaders     [][]*sstable.Reader
   242  
   243  	// Following fields used when constructing an iterator stack, eg, in Clone
   244  	// and SetOptions or when re-fragmenting a batch's range keys/range dels.
   245  	// Non-nil if this Iterator includes a Batch.
   246  	batch            *Batch
   247  	newIters         tableNewIters
   248  	newIterRangeKey  keyspan.TableNewSpanIter
   249  	lazyCombinedIter lazyCombinedIter
   250  	seqNum           uint64
   251  	// batchSeqNum is used by Iterators over indexed batches to detect when the
   252  	// underlying batch has been mutated. The batch beneath an indexed batch may
   253  	// be mutated while the Iterator is open, but new keys are not surfaced
   254  	// until the next call to SetOptions.
   255  	batchSeqNum uint64
   256  	// batch{PointIter,RangeDelIter,RangeKeyIter} are used when the Iterator is
   257  	// configured to read through an indexed batch. If a batch is set, these
   258  	// iterators will be included within the iterator stack regardless of
   259  	// whether the batch currently contains any keys of their kind. These
   260  	// pointers are used during a call to SetOptions to refresh the Iterator's
   261  	// view of its indexed batch.
   262  	batchPointIter    batchIter
   263  	batchRangeDelIter keyspan.Iter
   264  	batchRangeKeyIter keyspan.Iter
   265  	// merging is a pointer to this iterator's point merging iterator. It
   266  	// appears here because key visibility is handled by the merging iterator.
   267  	// During SetOptions on an iterator over an indexed batch, this field is
   268  	// used to update the merging iterator's batch snapshot.
   269  	merging *mergingIter
   270  
   271  	// Keeping the bools here after all the 8 byte aligned fields shrinks the
   272  	// sizeof this struct by 24 bytes.
   273  
   274  	// INVARIANT:
   275  	// iterValidityState==IterAtLimit <=>
   276  	//  pos==iterPosCurForwardPaused || pos==iterPosCurReversePaused
   277  	iterValidityState IterValidityState
   278  	// Set to true by SetBounds, SetOptions. Causes the Iterator to appear
   279  	// exhausted externally, while preserving the correct iterValidityState for
   280  	// the iterator's internal state. Preserving the correct internal validity
   281  	// is used for SeekPrefixGE(..., trySeekUsingNext), and SeekGE/SeekLT
   282  	// optimizations after "no-op" calls to SetBounds and SetOptions.
   283  	requiresReposition bool
   284  	// The position of iter. When this is iterPos{Prev,Next} the iter has been
   285  	// moved past the current key-value, which can only happen if
   286  	// iterValidityState=IterValid, i.e., there is something to return to the
   287  	// client for the current position.
   288  	pos iterPos
   289  	// Relates to the prefixOrFullSeekKey field above.
   290  	hasPrefix bool
   291  	// Used for deriving the value of SeekPrefixGE(..., trySeekUsingNext),
   292  	// and SeekGE/SeekLT optimizations
   293  	lastPositioningOp lastPositioningOpKind
   294  	// Used for determining when it's safe to perform SeekGE optimizations that
   295  	// reuse the iterator state to avoid the cost of a full seek if the iterator
   296  	// is already positioned in the correct place. If the iterator's view of its
   297  	// indexed batch was just refreshed, some optimizations cannot be applied on
   298  	// the first seek after the refresh:
   299  	// - SeekGE has a no-op optimization that does not seek on the internal
   300  	//   iterator at all if the iterator is already in the correct place.
   301  	//   This optimization cannot be performed if the internal iterator was
   302  	//   last positioned when the iterator had a different view of an
   303  	//   underlying batch.
   304  	// - Seek[Prefix]GE set flags.TrySeekUsingNext()=true when the seek key is
   305  	//   greater than the previous operation's seek key, under the expectation
   306  	//   that the various internal iterators can use their current position to
   307  	//   avoid a full expensive re-seek. This applies to the batchIter as well.
   308  	//   However, if the view of the batch was just refreshed, the batchIter's
   309  	//   position is not useful because it may already be beyond new keys less
   310  	//   than the seek key. To prevent the use of this optimization in
   311  	//   batchIter, Seek[Prefix]GE set flags.BatchJustRefreshed()=true if this
   312  	//   bit is enabled.
   313  	batchJustRefreshed bool
   314  	// Used for an optimization in external iterators to reduce the number of
   315  	// merging levels.
   316  	forwardOnly bool
   317  	// closePointIterOnce is set to true if this point iter can only be Close()d
   318  	// once, _and_ closing i.iter and then i.pointIter would close i.pointIter
   319  	// twice. This is necessary to track if the point iter is an internal iterator
   320  	// that could release its resources to a pool on Close(), making it harder for
   321  	// that iterator to make its own closes idempotent.
   322  	//
   323  	// TODO(bilal): Update SetOptions to always close out point key iterators when
   324  	// they won't be used, so that Close() doesn't need to default to closing
   325  	// point iterators twice.
   326  	closePointIterOnce bool
   327  	// Used in some tests to disable the random disabling of seek optimizations.
   328  	forceEnableSeekOpt bool
   329  	// Set to true if NextPrefix is not currently permitted. Defaults to false
   330  	// in case an iterator never had any bounds.
   331  	nextPrefixNotPermittedByUpperBound bool
   332  }
   333  
   334  // cmp is a convenience shorthand for the i.comparer.Compare function.
   335  func (i *Iterator) cmp(a, b []byte) int {
   336  	return i.comparer.Compare(a, b)
   337  }
   338  
   339  // split is a convenience shorthand for the i.comparer.Split function.
   340  func (i *Iterator) split(a []byte) int {
   341  	return i.comparer.Split(a)
   342  }
   343  
   344  // equal is a convenience shorthand for the i.comparer.Equal function.
   345  func (i *Iterator) equal(a, b []byte) bool {
   346  	return i.comparer.Equal(a, b)
   347  }
   348  
   349  // iteratorRangeKeyState holds an iterator's range key iteration state.
   350  type iteratorRangeKeyState struct {
   351  	opts  *IterOptions
   352  	cmp   base.Compare
   353  	split base.Split
   354  	// rangeKeyIter holds the range key iterator stack that iterates over the
   355  	// merged spans across the entirety of the LSM.
   356  	rangeKeyIter keyspan.FragmentIterator
   357  	iiter        keyspan.InterleavingIter
   358  	// stale is set to true when the range key state recorded here (in start,
   359  	// end and keys) may not be in sync with the current range key at the
   360  	// interleaving iterator's current position.
   361  	//
   362  	// When the interelaving iterator passes over a new span, it invokes the
   363  	// SpanChanged hook defined on the `rangeKeyMasking` type,  which sets stale
   364  	// to true if the span is non-nil.
   365  	//
   366  	// The parent iterator may not be positioned over the interleaving
   367  	// iterator's current position (eg, i.iterPos = iterPos{Next,Prev}), so
   368  	// {keys,start,end} are only updated to the new range key during a call to
   369  	// Iterator.saveRangeKey.
   370  	stale bool
   371  	// updated is used to signal to the Iterator client whether the state of
   372  	// range keys has changed since the previous iterator position through the
   373  	// `RangeKeyChanged` method. It's set to true during an Iterator positioning
   374  	// operation that changes the state of the current range key. Each Iterator
   375  	// positioning operation sets it back to false before executing.
   376  	//
   377  	// TODO(jackson): The lifecycle of {stale,updated,prevPosHadRangeKey} is
   378  	// intricate and confusing. Try to refactor to reduce complexity.
   379  	updated bool
   380  	// prevPosHadRangeKey records whether the previous Iterator position had a
   381  	// range key (HasPointAndRage() = (_, true)). It's updated at the beginning
   382  	// of each new Iterator positioning operation. It's required by saveRangeKey to
   383  	// to set `updated` appropriately: Without this record of the previous iterator
   384  	// state, it's ambiguous whether an iterator only temporarily stepped onto a
   385  	// position without a range key.
   386  	prevPosHadRangeKey bool
   387  	// rangeKeyOnly is set to true if at the current iterator position there is
   388  	// no point key, only a range key start boundary.
   389  	rangeKeyOnly bool
   390  	// hasRangeKey is true when the current iterator position has a covering
   391  	// range key (eg, a range key with bounds [<lower>,<upper>) such that
   392  	// <lower> ≤ Key() < <upper>).
   393  	hasRangeKey bool
   394  	// start and end are the [start, end) boundaries of the current range keys.
   395  	start []byte
   396  	end   []byte
   397  
   398  	rangeKeyBuffers
   399  
   400  	// iterConfig holds fields that are used for the construction of the
   401  	// iterator stack, but do not need to be directly accessed during iteration.
   402  	// This struct is bundled within the iteratorRangeKeyState struct to reduce
   403  	// allocations.
   404  	iterConfig rangekey.UserIteratorConfig
   405  }
   406  
   407  type rangeKeyBuffers struct {
   408  	// keys is sorted by Suffix ascending.
   409  	keys []RangeKeyData
   410  	// buf is used to save range-key data before moving the range-key iterator.
   411  	// Start and end boundaries, suffixes and values are all copied into buf.
   412  	buf bytealloc.A
   413  	// internal holds buffers used by the range key internal iterators.
   414  	internal rangekey.Buffers
   415  }
   416  
   417  func (b *rangeKeyBuffers) PrepareForReuse() {
   418  	const maxKeysReuse = 100
   419  	if len(b.keys) > maxKeysReuse {
   420  		b.keys = nil
   421  	}
   422  	// Avoid caching the key buf if it is overly large. The constant is
   423  	// fairly arbitrary.
   424  	if cap(b.buf) >= maxKeyBufCacheSize {
   425  		b.buf = nil
   426  	} else {
   427  		b.buf = b.buf[:0]
   428  	}
   429  	b.internal.PrepareForReuse()
   430  }
   431  
   432  func (i *iteratorRangeKeyState) init(cmp base.Compare, split base.Split, opts *IterOptions) {
   433  	i.cmp = cmp
   434  	i.split = split
   435  	i.opts = opts
   436  }
   437  
   438  var iterRangeKeyStateAllocPool = sync.Pool{
   439  	New: func() interface{} {
   440  		return &iteratorRangeKeyState{}
   441  	},
   442  }
   443  
   444  // isEphemeralPosition returns true iff the current iterator position is
   445  // ephemeral, and won't be visited during subsequent relative positioning
   446  // operations.
   447  //
   448  // The iterator position resulting from a SeekGE or SeekPrefixGE that lands on a
   449  // straddling range key without a coincident point key is such a position.
   450  func (i *Iterator) isEphemeralPosition() bool {
   451  	return i.opts.rangeKeys() && i.rangeKey != nil && i.rangeKey.rangeKeyOnly &&
   452  		!i.equal(i.rangeKey.start, i.key)
   453  }
   454  
   455  type lastPositioningOpKind int8
   456  
   457  const (
   458  	unknownLastPositionOp lastPositioningOpKind = iota
   459  	seekPrefixGELastPositioningOp
   460  	seekGELastPositioningOp
   461  	seekLTLastPositioningOp
   462  	// internalNextOp is a special internal iterator positioning operation used
   463  	// by CanDeterministicallySingleDelete. It exists for enforcing requirements
   464  	// around calling CanDeterministicallySingleDelete at most once per external
   465  	// iterator position.
   466  	internalNextOp
   467  	// invalidatedLastPositionOp is similar to unknownLastPositionOp and the
   468  	// only reason to distinguish this is for the wider set of SeekGE
   469  	// optimizations we permit for the external iterator Iterator.forwardOnly
   470  	// case. Most code predicates should be doing equality comparisons with one
   471  	// of the seek* enum values, so this duplication should not result in code
   472  	// of the form:
   473  	//  if unknownLastPositionOp || invalidLastPositionOp
   474  	invalidatedLastPositionOp
   475  )
   476  
   477  // Limited iteration mode. Not for use with prefix iteration.
   478  //
   479  // SeekGE, SeekLT, Prev, Next have WithLimit variants, that pause the iterator
   480  // at the limit in a best-effort manner. The client should behave correctly
   481  // even if the limits are ignored. These limits are not "deep", in that they
   482  // are not passed down to the underlying collection of internalIterators. This
   483  // is because the limits are transient, and apply only until the next
   484  // iteration call. They serve mainly as a way to bound the amount of work when
   485  // two (or more) Iterators are being coordinated at a higher level.
   486  //
   487  // In limited iteration mode:
   488  // - Avoid using Iterator.Valid if the last call was to a *WithLimit() method.
   489  //   The return value from the *WithLimit() method provides a more precise
   490  //   disposition.
   491  // - The limit is exclusive for forward and inclusive for reverse.
   492  //
   493  //
   494  // Limited iteration mode & range keys
   495  //
   496  // Limited iteration interacts with range-key iteration. When range key
   497  // iteration is enabled, range keys are interleaved at their start boundaries.
   498  // Limited iteration must ensure that if a range key exists within the limit,
   499  // the iterator visits the range key.
   500  //
   501  // During forward limited iteration, this is trivial: An overlapping range key
   502  // must have a start boundary less than the limit, and the range key's start
   503  // boundary will be interleaved and found to be within the limit.
   504  //
   505  // During reverse limited iteration, the tail of the range key may fall within
   506  // the limit. The range key must be surfaced even if the range key's start
   507  // boundary is less than the limit, and if there are no point keys between the
   508  // current iterator position and the limit. To provide this guarantee, reverse
   509  // limited iteration ignores the limit as long as there is a range key
   510  // overlapping the iteration position.
   511  
   512  // IterValidityState captures the state of the Iterator.
   513  type IterValidityState int8
   514  
   515  const (
   516  	// IterExhausted represents an Iterator that is exhausted.
   517  	IterExhausted IterValidityState = iota
   518  	// IterValid represents an Iterator that is valid.
   519  	IterValid
   520  	// IterAtLimit represents an Iterator that has a non-exhausted
   521  	// internalIterator, but has reached a limit without any key for the
   522  	// caller.
   523  	IterAtLimit
   524  )
   525  
   526  // readSampling stores variables used to sample a read to trigger a read
   527  // compaction
   528  type readSampling struct {
   529  	bytesUntilReadSampling uint64
   530  	initialSamplePassed    bool
   531  	pendingCompactions     readCompactionQueue
   532  	// forceReadSampling is used for testing purposes to force a read sample on every
   533  	// call to Iterator.maybeSampleRead()
   534  	forceReadSampling bool
   535  }
   536  
   537  func (i *Iterator) findNextEntry(limit []byte) {
   538  	i.iterValidityState = IterExhausted
   539  	i.pos = iterPosCurForward
   540  	if i.opts.rangeKeys() && i.rangeKey != nil {
   541  		i.rangeKey.rangeKeyOnly = false
   542  	}
   543  
   544  	// Close the closer for the current value if one was open.
   545  	if i.closeValueCloser() != nil {
   546  		return
   547  	}
   548  
   549  	for i.iterKey != nil {
   550  		key := *i.iterKey
   551  
   552  		if i.hasPrefix {
   553  			if n := i.split(key.UserKey); !i.equal(i.prefixOrFullSeekKey, key.UserKey[:n]) {
   554  				return
   555  			}
   556  		}
   557  		// Compare with limit every time we start at a different user key.
   558  		// Note that given the best-effort contract of limit, we could avoid a
   559  		// comparison in the common case by doing this only after
   560  		// i.nextUserKey is called for the deletes below. However that makes
   561  		// the behavior non-deterministic (since the behavior will vary based
   562  		// on what has been compacted), which makes it hard to test with the
   563  		// metamorphic test. So we forego that performance optimization.
   564  		if limit != nil && i.cmp(limit, i.iterKey.UserKey) <= 0 {
   565  			i.iterValidityState = IterAtLimit
   566  			i.pos = iterPosCurForwardPaused
   567  			return
   568  		}
   569  
   570  		// If the user has configured a SkipPoint function, invoke it to see
   571  		// whether we should skip over the current user key.
   572  		if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(i.iterKey.UserKey) {
   573  			// NB: We could call nextUserKey, but in some cases the SkipPoint
   574  			// predicate function might be cheaper than nextUserKey's key copy
   575  			// and key comparison. This should be the case for MVCC suffix
   576  			// comparisons, for example. In the future, we could expand the
   577  			// SkipPoint interface to give the implementor more control over
   578  			// whether we skip over just the internal key, the user key, or even
   579  			// the key prefix.
   580  			i.stats.ForwardStepCount[InternalIterCall]++
   581  			i.iterKey, i.iterValue = i.iter.Next()
   582  			continue
   583  		}
   584  
   585  		switch key.Kind() {
   586  		case InternalKeyKindRangeKeySet:
   587  			// Save the current key.
   588  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
   589  			i.key = i.keyBuf
   590  			i.value = LazyValue{}
   591  			// There may also be a live point key at this userkey that we have
   592  			// not yet read. We need to find the next entry with this user key
   593  			// to find it. Save the range key so we don't lose it when we Next
   594  			// the underlying iterator.
   595  			i.saveRangeKey()
   596  			pointKeyExists := i.nextPointCurrentUserKey()
   597  			if i.err != nil {
   598  				i.iterValidityState = IterExhausted
   599  				return
   600  			}
   601  			i.rangeKey.rangeKeyOnly = !pointKeyExists
   602  			i.iterValidityState = IterValid
   603  			return
   604  
   605  		case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
   606  			// NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
   607  			// only simpler, but is also necessary for correctness due to
   608  			// InternalKeyKindSSTableInternalObsoleteBit.
   609  			i.nextUserKey()
   610  			continue
   611  
   612  		case InternalKeyKindSet, InternalKeyKindSetWithDelete:
   613  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
   614  			i.key = i.keyBuf
   615  			i.value = i.iterValue
   616  			i.iterValidityState = IterValid
   617  			i.saveRangeKey()
   618  			return
   619  
   620  		case InternalKeyKindMerge:
   621  			// Resolving the merge may advance us to the next point key, which
   622  			// may be covered by a different set of range keys. Save the range
   623  			// key state so we don't lose it.
   624  			i.saveRangeKey()
   625  			if i.mergeForward(key) {
   626  				i.iterValidityState = IterValid
   627  				return
   628  			}
   629  
   630  			// The merge didn't yield a valid key, either because the value
   631  			// merger indicated it should be deleted, or because an error was
   632  			// encountered.
   633  			i.iterValidityState = IterExhausted
   634  			if i.err != nil {
   635  				return
   636  			}
   637  			if i.pos != iterPosNext {
   638  				i.nextUserKey()
   639  			}
   640  			if i.closeValueCloser() != nil {
   641  				return
   642  			}
   643  			i.pos = iterPosCurForward
   644  
   645  		default:
   646  			i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
   647  			i.iterValidityState = IterExhausted
   648  			return
   649  		}
   650  	}
   651  }
   652  
   653  func (i *Iterator) nextPointCurrentUserKey() bool {
   654  	// If the user has configured a SkipPoint function and the current user key
   655  	// would be skipped by it, there's no need to step forward looking for a
   656  	// point key. If we were to find one, it should be skipped anyways.
   657  	if i.opts.SkipPoint != nil && i.opts.SkipPoint(i.key) {
   658  		return false
   659  	}
   660  
   661  	i.pos = iterPosCurForward
   662  
   663  	i.iterKey, i.iterValue = i.iter.Next()
   664  	i.stats.ForwardStepCount[InternalIterCall]++
   665  	if i.iterKey == nil || !i.equal(i.key, i.iterKey.UserKey) {
   666  		i.pos = iterPosNext
   667  		return false
   668  	}
   669  
   670  	key := *i.iterKey
   671  	switch key.Kind() {
   672  	case InternalKeyKindRangeKeySet:
   673  		// RangeKeySets must always be interleaved as the first internal key
   674  		// for a user key.
   675  		i.err = base.CorruptionErrorf("pebble: unexpected range key set mid-user key")
   676  		return false
   677  
   678  	case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
   679  		// NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
   680  		// only simpler, but is also necessary for correctness due to
   681  		// InternalKeyKindSSTableInternalObsoleteBit.
   682  		return false
   683  
   684  	case InternalKeyKindSet, InternalKeyKindSetWithDelete:
   685  		i.value = i.iterValue
   686  		return true
   687  
   688  	case InternalKeyKindMerge:
   689  		return i.mergeForward(key)
   690  
   691  	default:
   692  		i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
   693  		return false
   694  	}
   695  }
   696  
   697  // mergeForward resolves a MERGE key, advancing the underlying iterator forward
   698  // to merge with subsequent keys with the same userkey. mergeForward returns a
   699  // boolean indicating whether or not the merge yielded a valid key. A merge may
   700  // not yield a valid key if an error occurred, in which case i.err is non-nil,
   701  // or the user's value merger specified the key to be deleted.
   702  //
   703  // mergeForward does not update iterValidityState.
   704  func (i *Iterator) mergeForward(key base.InternalKey) (valid bool) {
   705  	var iterValue []byte
   706  	iterValue, _, i.err = i.iterValue.Value(nil)
   707  	if i.err != nil {
   708  		return false
   709  	}
   710  	var valueMerger ValueMerger
   711  	valueMerger, i.err = i.merge(key.UserKey, iterValue)
   712  	if i.err != nil {
   713  		return false
   714  	}
   715  
   716  	i.mergeNext(key, valueMerger)
   717  	if i.err != nil {
   718  		return false
   719  	}
   720  
   721  	var needDelete bool
   722  	var value []byte
   723  	value, needDelete, i.valueCloser, i.err = finishValueMerger(
   724  		valueMerger, true /* includesBase */)
   725  	i.value = base.MakeInPlaceValue(value)
   726  	if i.err != nil {
   727  		return false
   728  	}
   729  	if needDelete {
   730  		_ = i.closeValueCloser()
   731  		return false
   732  	}
   733  	return true
   734  }
   735  
   736  func (i *Iterator) closeValueCloser() error {
   737  	if i.valueCloser != nil {
   738  		i.err = i.valueCloser.Close()
   739  		i.valueCloser = nil
   740  	}
   741  	return i.err
   742  }
   743  
   744  func (i *Iterator) nextUserKey() {
   745  	if i.iterKey == nil {
   746  		return
   747  	}
   748  	trailer := i.iterKey.Trailer
   749  	done := i.iterKey.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
   750  	if i.iterValidityState != IterValid {
   751  		i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
   752  		i.key = i.keyBuf
   753  	}
   754  	for {
   755  		i.iterKey, i.iterValue = i.iter.Next()
   756  		i.stats.ForwardStepCount[InternalIterCall]++
   757  		// NB: We're guaranteed to be on the next user key if the previous key
   758  		// had a zero sequence number (`done`), or the new key has a trailer
   759  		// greater or equal to the previous key's trailer. This is true because
   760  		// internal keys with the same user key are sorted by Trailer in
   761  		// strictly monotonically descending order. We expect the trailer
   762  		// optimization to trigger around 50% of the time with randomly
   763  		// distributed writes. We expect it to trigger very frequently when
   764  		// iterating through ingested sstables, which contain keys that all have
   765  		// the same sequence number.
   766  		if done || i.iterKey == nil || i.iterKey.Trailer >= trailer {
   767  			break
   768  		}
   769  		if !i.equal(i.key, i.iterKey.UserKey) {
   770  			break
   771  		}
   772  		done = i.iterKey.Trailer <= base.InternalKeyZeroSeqnumMaxTrailer
   773  		trailer = i.iterKey.Trailer
   774  	}
   775  }
   776  
   777  func (i *Iterator) maybeSampleRead() {
   778  	// This method is only called when a public method of Iterator is
   779  	// returning, and below we exclude the case were the iterator is paused at
   780  	// a limit. The effect of these choices is that keys that are deleted, but
   781  	// are encountered during iteration, are not accounted for in the read
   782  	// sampling and will not cause read driven compactions, even though we are
   783  	// incurring cost in iterating over them. And this issue is not limited to
   784  	// Iterator, which does not see the effect of range deletes, which may be
   785  	// causing iteration work in mergingIter. It is not clear at this time
   786  	// whether this is a deficiency worth addressing.
   787  	if i.iterValidityState != IterValid {
   788  		return
   789  	}
   790  	if i.readState == nil {
   791  		return
   792  	}
   793  	if i.readSampling.forceReadSampling {
   794  		i.sampleRead()
   795  		return
   796  	}
   797  	samplingPeriod := int32(int64(readBytesPeriod) * i.readState.db.opts.Experimental.ReadSamplingMultiplier)
   798  	if samplingPeriod <= 0 {
   799  		return
   800  	}
   801  	bytesRead := uint64(len(i.key) + i.value.Len())
   802  	for i.readSampling.bytesUntilReadSampling < bytesRead {
   803  		i.readSampling.bytesUntilReadSampling += uint64(fastrand.Uint32n(2 * uint32(samplingPeriod)))
   804  		// The block below tries to adjust for the case where this is the
   805  		// first read in a newly-opened iterator. As bytesUntilReadSampling
   806  		// starts off at zero, we don't want to sample the first read of
   807  		// every newly-opened iterator, but we do want to sample some of them.
   808  		if !i.readSampling.initialSamplePassed {
   809  			i.readSampling.initialSamplePassed = true
   810  			if fastrand.Uint32n(uint32(i.readSampling.bytesUntilReadSampling)) > uint32(bytesRead) {
   811  				continue
   812  			}
   813  		}
   814  		i.sampleRead()
   815  	}
   816  	i.readSampling.bytesUntilReadSampling -= bytesRead
   817  }
   818  
   819  func (i *Iterator) sampleRead() {
   820  	var topFile *manifest.FileMetadata
   821  	topLevel, numOverlappingLevels := numLevels, 0
   822  	mi := i.merging
   823  	if mi == nil {
   824  		return
   825  	}
   826  	if len(mi.levels) > 1 {
   827  		mi.ForEachLevelIter(func(li *levelIter) bool {
   828  			l := manifest.LevelToInt(li.level)
   829  			if f := li.iterFile; f != nil {
   830  				var containsKey bool
   831  				if i.pos == iterPosNext || i.pos == iterPosCurForward ||
   832  					i.pos == iterPosCurForwardPaused {
   833  					containsKey = i.cmp(f.SmallestPointKey.UserKey, i.key) <= 0
   834  				} else if i.pos == iterPosPrev || i.pos == iterPosCurReverse ||
   835  					i.pos == iterPosCurReversePaused {
   836  					containsKey = i.cmp(f.LargestPointKey.UserKey, i.key) >= 0
   837  				}
   838  				// Do nothing if the current key is not contained in f's
   839  				// bounds. We could seek the LevelIterator at this level
   840  				// to find the right file, but the performance impacts of
   841  				// doing that are significant enough to negate the benefits
   842  				// of read sampling in the first place. See the discussion
   843  				// at:
   844  				// https://github.com/cockroachdb/pebble/pull/1041#issuecomment-763226492
   845  				if containsKey {
   846  					numOverlappingLevels++
   847  					if numOverlappingLevels >= 2 {
   848  						// Terminate the loop early if at least 2 overlapping levels are found.
   849  						return true
   850  					}
   851  					topLevel = l
   852  					topFile = f
   853  				}
   854  			}
   855  			return false
   856  		})
   857  	}
   858  	if topFile == nil || topLevel >= numLevels {
   859  		return
   860  	}
   861  	if numOverlappingLevels >= 2 {
   862  		allowedSeeks := topFile.AllowedSeeks.Add(-1)
   863  		if allowedSeeks == 0 {
   864  
   865  			// Since the compaction queue can handle duplicates, we can keep
   866  			// adding to the queue even once allowedSeeks hits 0.
   867  			// In fact, we NEED to keep adding to the queue, because the queue
   868  			// is small and evicts older and possibly useful compactions.
   869  			topFile.AllowedSeeks.Add(topFile.InitAllowedSeeks)
   870  
   871  			read := readCompaction{
   872  				start:   topFile.SmallestPointKey.UserKey,
   873  				end:     topFile.LargestPointKey.UserKey,
   874  				level:   topLevel,
   875  				fileNum: topFile.FileNum,
   876  			}
   877  			i.readSampling.pendingCompactions.add(&read, i.cmp)
   878  		}
   879  	}
   880  }
   881  
   882  func (i *Iterator) findPrevEntry(limit []byte) {
   883  	i.iterValidityState = IterExhausted
   884  	i.pos = iterPosCurReverse
   885  	if i.opts.rangeKeys() && i.rangeKey != nil {
   886  		i.rangeKey.rangeKeyOnly = false
   887  	}
   888  
   889  	// Close the closer for the current value if one was open.
   890  	if i.valueCloser != nil {
   891  		i.err = i.valueCloser.Close()
   892  		i.valueCloser = nil
   893  		if i.err != nil {
   894  			i.iterValidityState = IterExhausted
   895  			return
   896  		}
   897  	}
   898  
   899  	var valueMerger ValueMerger
   900  	firstLoopIter := true
   901  	rangeKeyBoundary := false
   902  	// The code below compares with limit in multiple places. As documented in
   903  	// findNextEntry, this is being done to make the behavior of limit
   904  	// deterministic to allow for metamorphic testing. It is not required by
   905  	// the best-effort contract of limit.
   906  	for i.iterKey != nil {
   907  		key := *i.iterKey
   908  
   909  		// NB: We cannot pause if the current key is covered by a range key.
   910  		// Otherwise, the user might not ever learn of a range key that covers
   911  		// the key space being iterated over in which there are no point keys.
   912  		// Since limits are best effort, ignoring the limit in this case is
   913  		// allowed by the contract of limit.
   914  		if firstLoopIter && limit != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
   915  			i.iterValidityState = IterAtLimit
   916  			i.pos = iterPosCurReversePaused
   917  			return
   918  		}
   919  		firstLoopIter = false
   920  
   921  		if i.iterValidityState == IterValid {
   922  			if !i.equal(key.UserKey, i.key) {
   923  				// We've iterated to the previous user key.
   924  				i.pos = iterPosPrev
   925  				if valueMerger != nil {
   926  					var needDelete bool
   927  					var value []byte
   928  					value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
   929  					i.value = base.MakeInPlaceValue(value)
   930  					if i.err == nil && needDelete {
   931  						// The point key at this key is deleted. If we also have
   932  						// a range key boundary at this key, we still want to
   933  						// return. Otherwise, we need to continue looking for
   934  						// a live key.
   935  						i.value = LazyValue{}
   936  						if rangeKeyBoundary {
   937  							i.rangeKey.rangeKeyOnly = true
   938  						} else {
   939  							i.iterValidityState = IterExhausted
   940  							if i.closeValueCloser() == nil {
   941  								continue
   942  							}
   943  						}
   944  					}
   945  				}
   946  				if i.err != nil {
   947  					i.iterValidityState = IterExhausted
   948  				}
   949  				return
   950  			}
   951  		}
   952  
   953  		// If the user has configured a SkipPoint function, invoke it to see
   954  		// whether we should skip over the current user key.
   955  		if i.opts.SkipPoint != nil && key.Kind() != InternalKeyKindRangeKeySet && i.opts.SkipPoint(key.UserKey) {
   956  			// NB: We could call prevUserKey, but in some cases the SkipPoint
   957  			// predicate function might be cheaper than prevUserKey's key copy
   958  			// and key comparison. This should be the case for MVCC suffix
   959  			// comparisons, for example. In the future, we could expand the
   960  			// SkipPoint interface to give the implementor more control over
   961  			// whether we skip over just the internal key, the user key, or even
   962  			// the key prefix.
   963  			i.stats.ReverseStepCount[InternalIterCall]++
   964  			i.iterKey, i.iterValue = i.iter.Prev()
   965  			if limit != nil && i.iterKey != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
   966  				i.iterValidityState = IterAtLimit
   967  				i.pos = iterPosCurReversePaused
   968  				return
   969  			}
   970  			continue
   971  		}
   972  
   973  		switch key.Kind() {
   974  		case InternalKeyKindRangeKeySet:
   975  			// Range key start boundary markers are interleaved with the maximum
   976  			// sequence number, so if there's a point key also at this key, we
   977  			// must've already iterated over it.
   978  			// This is the final entry at this user key, so we may return
   979  			i.rangeKey.rangeKeyOnly = i.iterValidityState != IterValid
   980  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
   981  			i.key = i.keyBuf
   982  			i.iterValidityState = IterValid
   983  			i.saveRangeKey()
   984  			// In all other cases, previous iteration requires advancing to
   985  			// iterPosPrev in order to determine if the key is live and
   986  			// unshadowed by another key at the same user key. In this case,
   987  			// because range key start boundary markers are always interleaved
   988  			// at the maximum sequence number, we know that there aren't any
   989  			// additional keys with the same user key in the backward direction.
   990  			//
   991  			// We Prev the underlying iterator once anyways for consistency, so
   992  			// that we can maintain the invariant during backward iteration that
   993  			// i.iterPos = iterPosPrev.
   994  			i.stats.ReverseStepCount[InternalIterCall]++
   995  			i.iterKey, i.iterValue = i.iter.Prev()
   996  
   997  			// Set rangeKeyBoundary so that on the next iteration, we know to
   998  			// return the key even if the MERGE point key is deleted.
   999  			rangeKeyBoundary = true
  1000  
  1001  		case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
  1002  			i.value = LazyValue{}
  1003  			i.iterValidityState = IterExhausted
  1004  			valueMerger = nil
  1005  			i.iterKey, i.iterValue = i.iter.Prev()
  1006  			i.stats.ReverseStepCount[InternalIterCall]++
  1007  			// Compare with the limit. We could optimize by only checking when
  1008  			// we step to the previous user key, but detecting that requires a
  1009  			// comparison too. Note that this position may already passed a
  1010  			// number of versions of this user key, but they are all deleted, so
  1011  			// the fact that a subsequent Prev*() call will not see them is
  1012  			// harmless. Also note that this is the only place in the loop,
  1013  			// other than the firstLoopIter and SkipPoint cases above, where we
  1014  			// could step to a different user key and start processing it for
  1015  			// returning to the caller.
  1016  			if limit != nil && i.iterKey != nil && i.cmp(limit, i.iterKey.UserKey) > 0 && !i.rangeKeyWithinLimit(limit) {
  1017  				i.iterValidityState = IterAtLimit
  1018  				i.pos = iterPosCurReversePaused
  1019  				return
  1020  			}
  1021  			continue
  1022  
  1023  		case InternalKeyKindSet, InternalKeyKindSetWithDelete:
  1024  			i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
  1025  			i.key = i.keyBuf
  1026  			// iterValue is owned by i.iter and could change after the Prev()
  1027  			// call, so use valueBuf instead. Note that valueBuf is only used
  1028  			// in this one instance; everywhere else (eg. in findNextEntry),
  1029  			// we just point i.value to the unsafe i.iter-owned value buffer.
  1030  			i.value, i.valueBuf = i.iterValue.Clone(i.valueBuf[:0], &i.fetcher)
  1031  			i.saveRangeKey()
  1032  			i.iterValidityState = IterValid
  1033  			i.iterKey, i.iterValue = i.iter.Prev()
  1034  			i.stats.ReverseStepCount[InternalIterCall]++
  1035  			valueMerger = nil
  1036  			continue
  1037  
  1038  		case InternalKeyKindMerge:
  1039  			if i.iterValidityState == IterExhausted {
  1040  				i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
  1041  				i.key = i.keyBuf
  1042  				i.saveRangeKey()
  1043  				var iterValue []byte
  1044  				iterValue, _, i.err = i.iterValue.Value(nil)
  1045  				if i.err != nil {
  1046  					return
  1047  				}
  1048  				valueMerger, i.err = i.merge(i.key, iterValue)
  1049  				if i.err != nil {
  1050  					return
  1051  				}
  1052  				i.iterValidityState = IterValid
  1053  			} else if valueMerger == nil {
  1054  				// Extract value before iterValue since we use value before iterValue
  1055  				// and the underlying iterator is not required to provide backing
  1056  				// memory for both simultaneously.
  1057  				var value []byte
  1058  				var callerOwned bool
  1059  				value, callerOwned, i.err = i.value.Value(i.lazyValueBuf)
  1060  				if callerOwned {
  1061  					i.lazyValueBuf = value[:0]
  1062  				}
  1063  				if i.err != nil {
  1064  					return
  1065  				}
  1066  				valueMerger, i.err = i.merge(i.key, value)
  1067  				var iterValue []byte
  1068  				iterValue, _, i.err = i.iterValue.Value(nil)
  1069  				if i.err != nil {
  1070  					return
  1071  				}
  1072  				if i.err == nil {
  1073  					i.err = valueMerger.MergeNewer(iterValue)
  1074  				}
  1075  				if i.err != nil {
  1076  					i.iterValidityState = IterExhausted
  1077  					return
  1078  				}
  1079  			} else {
  1080  				var iterValue []byte
  1081  				iterValue, _, i.err = i.iterValue.Value(nil)
  1082  				if i.err != nil {
  1083  					return
  1084  				}
  1085  				i.err = valueMerger.MergeNewer(iterValue)
  1086  				if i.err != nil {
  1087  					i.iterValidityState = IterExhausted
  1088  					return
  1089  				}
  1090  			}
  1091  			i.iterKey, i.iterValue = i.iter.Prev()
  1092  			i.stats.ReverseStepCount[InternalIterCall]++
  1093  			continue
  1094  
  1095  		default:
  1096  			i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
  1097  			i.iterValidityState = IterExhausted
  1098  			return
  1099  		}
  1100  	}
  1101  
  1102  	// i.iterKey == nil, so broke out of the preceding loop.
  1103  	if i.iterValidityState == IterValid {
  1104  		i.pos = iterPosPrev
  1105  		if valueMerger != nil {
  1106  			var needDelete bool
  1107  			var value []byte
  1108  			value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, true /* includesBase */)
  1109  			i.value = base.MakeInPlaceValue(value)
  1110  			if i.err == nil && needDelete {
  1111  				i.key = nil
  1112  				i.value = LazyValue{}
  1113  				i.iterValidityState = IterExhausted
  1114  			}
  1115  		}
  1116  		if i.err != nil {
  1117  			i.iterValidityState = IterExhausted
  1118  		}
  1119  	}
  1120  }
  1121  
  1122  func (i *Iterator) prevUserKey() {
  1123  	if i.iterKey == nil {
  1124  		return
  1125  	}
  1126  	if i.iterValidityState != IterValid {
  1127  		// If we're going to compare against the prev key, we need to save the
  1128  		// current key.
  1129  		i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
  1130  		i.key = i.keyBuf
  1131  	}
  1132  	for {
  1133  		i.iterKey, i.iterValue = i.iter.Prev()
  1134  		i.stats.ReverseStepCount[InternalIterCall]++
  1135  		if i.iterKey == nil {
  1136  			break
  1137  		}
  1138  		if !i.equal(i.key, i.iterKey.UserKey) {
  1139  			break
  1140  		}
  1141  	}
  1142  }
  1143  
  1144  func (i *Iterator) mergeNext(key InternalKey, valueMerger ValueMerger) {
  1145  	// Save the current key.
  1146  	i.keyBuf = append(i.keyBuf[:0], key.UserKey...)
  1147  	i.key = i.keyBuf
  1148  
  1149  	// Loop looking for older values for this key and merging them.
  1150  	for {
  1151  		i.iterKey, i.iterValue = i.iter.Next()
  1152  		i.stats.ForwardStepCount[InternalIterCall]++
  1153  		if i.iterKey == nil {
  1154  			i.pos = iterPosNext
  1155  			return
  1156  		}
  1157  		key = *i.iterKey
  1158  		if !i.equal(i.key, key.UserKey) {
  1159  			// We've advanced to the next key.
  1160  			i.pos = iterPosNext
  1161  			return
  1162  		}
  1163  		switch key.Kind() {
  1164  		case InternalKeyKindDelete, InternalKeyKindSingleDelete, InternalKeyKindDeleteSized:
  1165  			// We've hit a deletion tombstone. Return everything up to this
  1166  			// point.
  1167  			//
  1168  			// NB: treating InternalKeyKindSingleDelete as equivalent to DEL is not
  1169  			// only simpler, but is also necessary for correctness due to
  1170  			// InternalKeyKindSSTableInternalObsoleteBit.
  1171  			return
  1172  
  1173  		case InternalKeyKindSet, InternalKeyKindSetWithDelete:
  1174  			// We've hit a Set value. Merge with the existing value and return.
  1175  			var iterValue []byte
  1176  			iterValue, _, i.err = i.iterValue.Value(nil)
  1177  			if i.err != nil {
  1178  				return
  1179  			}
  1180  			i.err = valueMerger.MergeOlder(iterValue)
  1181  			return
  1182  
  1183  		case InternalKeyKindMerge:
  1184  			// We've hit another Merge value. Merge with the existing value and
  1185  			// continue looping.
  1186  			var iterValue []byte
  1187  			iterValue, _, i.err = i.iterValue.Value(nil)
  1188  			if i.err != nil {
  1189  				return
  1190  			}
  1191  			i.err = valueMerger.MergeOlder(iterValue)
  1192  			if i.err != nil {
  1193  				return
  1194  			}
  1195  			continue
  1196  
  1197  		case InternalKeyKindRangeKeySet:
  1198  			// The RANGEKEYSET marker must sort before a MERGE at the same user key.
  1199  			i.err = base.CorruptionErrorf("pebble: out of order range key marker")
  1200  			return
  1201  
  1202  		default:
  1203  			i.err = base.CorruptionErrorf("pebble: invalid internal key kind: %d", errors.Safe(key.Kind()))
  1204  			return
  1205  		}
  1206  	}
  1207  }
  1208  
  1209  // SeekGE moves the iterator to the first key/value pair whose key is greater
  1210  // than or equal to the given key. Returns true if the iterator is pointing at
  1211  // a valid entry and false otherwise.
  1212  func (i *Iterator) SeekGE(key []byte) bool {
  1213  	return i.SeekGEWithLimit(key, nil) == IterValid
  1214  }
  1215  
  1216  // SeekGEWithLimit moves the iterator to the first key/value pair whose key is
  1217  // greater than or equal to the given key.
  1218  //
  1219  // If limit is provided, it serves as a best-effort exclusive limit. If the
  1220  // first key greater than or equal to the given search key is also greater than
  1221  // or equal to limit, the Iterator may pause and return IterAtLimit. Because
  1222  // limits are best-effort, SeekGEWithLimit may return a key beyond limit.
  1223  //
  1224  // If the Iterator is configured to iterate over range keys, SeekGEWithLimit
  1225  // guarantees it will surface any range keys with bounds overlapping the
  1226  // keyspace [key, limit).
  1227  func (i *Iterator) SeekGEWithLimit(key []byte, limit []byte) IterValidityState {
  1228  	if i.rangeKey != nil {
  1229  		// NB: Check Valid() before clearing requiresReposition.
  1230  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1231  		// If we have a range key but did not expose it at the previous iterator
  1232  		// position (because the iterator was not at a valid position), updated
  1233  		// must be true. This ensures that after an iterator op sequence like:
  1234  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1235  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1236  		//   - SeekGE(...)        → (IterValid, RangeBounds() = [a,b))
  1237  		// the iterator returns RangeKeyChanged()=true.
  1238  		//
  1239  		// The remainder of this function will only update i.rangeKey.updated if
  1240  		// the iterator moves into a new range key, or out of the current range
  1241  		// key.
  1242  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1243  	}
  1244  	lastPositioningOp := i.lastPositioningOp
  1245  	hasPrefix := i.hasPrefix
  1246  	// Set it to unknown, since this operation may not succeed, in which case
  1247  	// the SeekGE following this should not make any assumption about iterator
  1248  	// position.
  1249  	i.lastPositioningOp = unknownLastPositionOp
  1250  	i.requiresReposition = false
  1251  	i.err = nil // clear cached iteration error
  1252  	i.hasPrefix = false
  1253  	i.stats.ForwardSeekCount[InterfaceCall]++
  1254  	if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
  1255  		key = lowerBound
  1256  	} else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
  1257  		key = upperBound
  1258  	}
  1259  	seekInternalIter := true
  1260  
  1261  	var flags base.SeekGEFlags
  1262  	if i.batchJustRefreshed {
  1263  		i.batchJustRefreshed = false
  1264  		flags = flags.EnableBatchJustRefreshed()
  1265  	}
  1266  	if lastPositioningOp == seekGELastPositioningOp {
  1267  		cmp := i.cmp(i.prefixOrFullSeekKey, key)
  1268  		// If this seek is to the same or later key, and the iterator is
  1269  		// already positioned there, this is a noop. This can be helpful for
  1270  		// sparse key spaces that have many deleted keys, where one can avoid
  1271  		// the overhead of iterating past them again and again.
  1272  		if cmp <= 0 {
  1273  			if !flags.BatchJustRefreshed() &&
  1274  				(i.iterValidityState == IterExhausted ||
  1275  					(i.iterValidityState == IterValid && i.cmp(key, i.key) <= 0 &&
  1276  						(limit == nil || i.cmp(i.key, limit) < 0))) {
  1277  				// Noop
  1278  				if !invariants.Enabled || !disableSeekOpt(key, uintptr(unsafe.Pointer(i))) || i.forceEnableSeekOpt {
  1279  					i.lastPositioningOp = seekGELastPositioningOp
  1280  					return i.iterValidityState
  1281  				}
  1282  			}
  1283  			// cmp == 0 is not safe to optimize since
  1284  			// - i.pos could be at iterPosNext, due to a merge.
  1285  			// - Even if i.pos were at iterPosCurForward, we could have a DELETE,
  1286  			//   SET pair for a key, and the iterator would have moved past DELETE
  1287  			//   but stayed at iterPosCurForward. A similar situation occurs for a
  1288  			//   MERGE, SET pair where the MERGE is consumed and the iterator is
  1289  			//   at the SET.
  1290  			// We also leverage the IterAtLimit <=> i.pos invariant defined in the
  1291  			// comment on iterValidityState, to exclude any cases where i.pos
  1292  			// is iterPosCur{Forward,Reverse}Paused. This avoids the need to
  1293  			// special-case those iterator positions and their interactions with
  1294  			// TrySeekUsingNext, as the main uses for TrySeekUsingNext in CockroachDB
  1295  			// do not use limited Seeks in the first place.
  1296  			if cmp < 0 && i.iterValidityState != IterAtLimit && limit == nil {
  1297  				flags = flags.EnableTrySeekUsingNext()
  1298  			}
  1299  			if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1300  				flags = flags.DisableTrySeekUsingNext()
  1301  			}
  1302  			if !flags.BatchJustRefreshed() && i.pos == iterPosCurForwardPaused && i.cmp(key, i.iterKey.UserKey) <= 0 {
  1303  				// Have some work to do, but don't need to seek, and we can
  1304  				// start doing findNextEntry from i.iterKey.
  1305  				seekInternalIter = false
  1306  			}
  1307  		}
  1308  	}
  1309  	// Check for another TrySeekUsingNext optimization opportunity, currently
  1310  	// specifically tailored to external iterators. This case is intended to
  1311  	// trigger in instances of Seek-ing with monotonically increasing keys with
  1312  	// Nexts interspersed. At the time of writing, this is the case for
  1313  	// CockroachDB scans. This optimization is important for external iterators
  1314  	// to avoid re-seeking within an already-exhausted sstable. It is not always
  1315  	// a performance win more generally, so we restrict it to external iterators
  1316  	// that are configured to only use forward positioning operations.
  1317  	//
  1318  	// TODO(jackson): This optimization should be obsolete once we introduce and
  1319  	// use the NextPrefix iterator positioning operation.
  1320  	if seekInternalIter && i.forwardOnly && lastPositioningOp != invalidatedLastPositionOp &&
  1321  		i.pos == iterPosCurForward && !hasPrefix && i.iterValidityState == IterValid &&
  1322  		i.cmp(key, i.iterKey.UserKey) > 0 {
  1323  		flags = flags.EnableTrySeekUsingNext()
  1324  		if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1325  			flags = flags.DisableTrySeekUsingNext()
  1326  		}
  1327  	}
  1328  	if seekInternalIter {
  1329  		i.iterKey, i.iterValue = i.iter.SeekGE(key, flags)
  1330  		i.stats.ForwardSeekCount[InternalIterCall]++
  1331  	}
  1332  	i.findNextEntry(limit)
  1333  	i.maybeSampleRead()
  1334  	if i.Error() == nil {
  1335  		// Prepare state for a future noop optimization.
  1336  		i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
  1337  		i.lastPositioningOp = seekGELastPositioningOp
  1338  	}
  1339  	return i.iterValidityState
  1340  }
  1341  
  1342  // SeekPrefixGE moves the iterator to the first key/value pair whose key is
  1343  // greater than or equal to the given key and which has the same "prefix" as
  1344  // the given key. The prefix for a key is determined by the user-defined
  1345  // Comparer.Split function. The iterator will not observe keys not matching the
  1346  // "prefix" of the search key. Calling SeekPrefixGE puts the iterator in prefix
  1347  // iteration mode. The iterator remains in prefix iteration until a subsequent
  1348  // call to another absolute positioning method (SeekGE, SeekLT, First,
  1349  // Last). Reverse iteration (Prev) is not supported when an iterator is in
  1350  // prefix iteration mode. Returns true if the iterator is pointing at a valid
  1351  // entry and false otherwise.
  1352  //
  1353  // The semantics of SeekPrefixGE are slightly unusual and designed for
  1354  // iteration to be able to take advantage of bloom filters that have been
  1355  // created on the "prefix". If you're not using bloom filters, there is no
  1356  // reason to use SeekPrefixGE.
  1357  //
  1358  // An example Split function may separate a timestamp suffix from the prefix of
  1359  // the key.
  1360  //
  1361  //	Split(<key>@<timestamp>) -> <key>
  1362  //
  1363  // Consider the keys "a@1", "a@2", "aa@3", "aa@4". The prefixes for these keys
  1364  // are "a", and "aa". Note that despite "a" and "aa" sharing a prefix by the
  1365  // usual definition, those prefixes differ by the definition of the Split
  1366  // function. To see how this works, consider the following set of calls on this
  1367  // data set:
  1368  //
  1369  //	SeekPrefixGE("a@0") -> "a@1"
  1370  //	Next()              -> "a@2"
  1371  //	Next()              -> EOF
  1372  //
  1373  // If you're just looking to iterate over keys with a shared prefix, as
  1374  // defined by the configured comparer, set iterator bounds instead:
  1375  //
  1376  //	iter := db.NewIter(&pebble.IterOptions{
  1377  //	  LowerBound: []byte("prefix"),
  1378  //	  UpperBound: []byte("prefiy"),
  1379  //	})
  1380  //	for iter.First(); iter.Valid(); iter.Next() {
  1381  //	  // Only keys beginning with "prefix" will be visited.
  1382  //	}
  1383  //
  1384  // See ExampleIterator_SeekPrefixGE for a working example.
  1385  //
  1386  // When iterating with range keys enabled, all range keys encountered are
  1387  // truncated to the seek key's prefix's bounds. The truncation of the upper
  1388  // bound requires that the database's Comparer is configured with a
  1389  // ImmediateSuccessor method. For example, a SeekPrefixGE("a@9") call with the
  1390  // prefix "a" will truncate range key bounds to [a,ImmediateSuccessor(a)].
  1391  func (i *Iterator) SeekPrefixGE(key []byte) bool {
  1392  	if i.rangeKey != nil {
  1393  		// NB: Check Valid() before clearing requiresReposition.
  1394  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1395  		// If we have a range key but did not expose it at the previous iterator
  1396  		// position (because the iterator was not at a valid position), updated
  1397  		// must be true. This ensures that after an iterator op sequence like:
  1398  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1399  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1400  		//   - SeekPrefixGE(...)  → (IterValid, RangeBounds() = [a,b))
  1401  		// the iterator returns RangeKeyChanged()=true.
  1402  		//
  1403  		// The remainder of this function will only update i.rangeKey.updated if
  1404  		// the iterator moves into a new range key, or out of the current range
  1405  		// key.
  1406  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1407  	}
  1408  	lastPositioningOp := i.lastPositioningOp
  1409  	// Set it to unknown, since this operation may not succeed, in which case
  1410  	// the SeekPrefixGE following this should not make any assumption about
  1411  	// iterator position.
  1412  	i.lastPositioningOp = unknownLastPositionOp
  1413  	i.requiresReposition = false
  1414  	i.err = nil // clear cached iteration error
  1415  	i.stats.ForwardSeekCount[InterfaceCall]++
  1416  	if i.comparer.Split == nil {
  1417  		panic("pebble: split must be provided for SeekPrefixGE")
  1418  	}
  1419  	if i.comparer.ImmediateSuccessor == nil && i.opts.KeyTypes != IterKeyTypePointsOnly {
  1420  		panic("pebble: ImmediateSuccessor must be provided for SeekPrefixGE with range keys")
  1421  	}
  1422  	prefixLen := i.split(key)
  1423  	keyPrefix := key[:prefixLen]
  1424  	var flags base.SeekGEFlags
  1425  	if i.batchJustRefreshed {
  1426  		flags = flags.EnableBatchJustRefreshed()
  1427  		i.batchJustRefreshed = false
  1428  	}
  1429  	if lastPositioningOp == seekPrefixGELastPositioningOp {
  1430  		if !i.hasPrefix {
  1431  			panic("lastPositioningOpsIsSeekPrefixGE is true, but hasPrefix is false")
  1432  		}
  1433  		// The iterator has not been repositioned after the last SeekPrefixGE.
  1434  		// See if we are seeking to a larger key, since then we can optimize
  1435  		// the seek by using next. Note that we could also optimize if Next
  1436  		// has been called, if the iterator is not exhausted and the current
  1437  		// position is <= the seek key. We are keeping this limited for now
  1438  		// since such optimizations require care for correctness, and to not
  1439  		// become de-optimizations (if one usually has to do all the next
  1440  		// calls and then the seek). This SeekPrefixGE optimization
  1441  		// specifically benefits CockroachDB.
  1442  		cmp := i.cmp(i.prefixOrFullSeekKey, keyPrefix)
  1443  		// cmp == 0 is not safe to optimize since
  1444  		// - i.pos could be at iterPosNext, due to a merge.
  1445  		// - Even if i.pos were at iterPosCurForward, we could have a DELETE,
  1446  		//   SET pair for a key, and the iterator would have moved past DELETE
  1447  		//   but stayed at iterPosCurForward. A similar situation occurs for a
  1448  		//   MERGE, SET pair where the MERGE is consumed and the iterator is
  1449  		//   at the SET.
  1450  		// In general some versions of i.prefix could have been consumed by
  1451  		// the iterator, so we only optimize for cmp < 0.
  1452  		if cmp < 0 {
  1453  			flags = flags.EnableTrySeekUsingNext()
  1454  		}
  1455  		if invariants.Enabled && flags.TrySeekUsingNext() && !i.forceEnableSeekOpt && disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1456  			flags = flags.DisableTrySeekUsingNext()
  1457  		}
  1458  	}
  1459  	// Make a copy of the prefix so that modifications to the key after
  1460  	// SeekPrefixGE returns does not affect the stored prefix.
  1461  	if cap(i.prefixOrFullSeekKey) < prefixLen {
  1462  		i.prefixOrFullSeekKey = make([]byte, prefixLen)
  1463  	} else {
  1464  		i.prefixOrFullSeekKey = i.prefixOrFullSeekKey[:prefixLen]
  1465  	}
  1466  	i.hasPrefix = true
  1467  	copy(i.prefixOrFullSeekKey, keyPrefix)
  1468  
  1469  	if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
  1470  		if n := i.split(lowerBound); !bytes.Equal(i.prefixOrFullSeekKey, lowerBound[:n]) {
  1471  			i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of lower bound")
  1472  			i.iterValidityState = IterExhausted
  1473  			return false
  1474  		}
  1475  		key = lowerBound
  1476  	} else if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
  1477  		if n := i.split(upperBound); !bytes.Equal(i.prefixOrFullSeekKey, upperBound[:n]) {
  1478  			i.err = errors.New("pebble: SeekPrefixGE supplied with key outside of upper bound")
  1479  			i.iterValidityState = IterExhausted
  1480  			return false
  1481  		}
  1482  		key = upperBound
  1483  	}
  1484  	i.iterKey, i.iterValue = i.iter.SeekPrefixGE(i.prefixOrFullSeekKey, key, flags)
  1485  	i.stats.ForwardSeekCount[InternalIterCall]++
  1486  	i.findNextEntry(nil)
  1487  	i.maybeSampleRead()
  1488  	if i.Error() == nil {
  1489  		i.lastPositioningOp = seekPrefixGELastPositioningOp
  1490  	}
  1491  	return i.iterValidityState == IterValid
  1492  }
  1493  
  1494  // Deterministic disabling of the seek optimizations. It uses the iterator
  1495  // pointer, since we want diversity in iterator behavior for the same key.  Used
  1496  // for tests.
  1497  func disableSeekOpt(key []byte, ptr uintptr) bool {
  1498  	// Fibonacci hash https://probablydance.com/2018/06/16/fibonacci-hashing-the-optimization-that-the-world-forgot-or-a-better-alternative-to-integer-modulo/
  1499  	simpleHash := (11400714819323198485 * uint64(ptr)) >> 63
  1500  	return key != nil && key[0]&byte(1) == 0 && simpleHash == 0
  1501  }
  1502  
  1503  // SeekLT moves the iterator to the last key/value pair whose key is less than
  1504  // the given key. Returns true if the iterator is pointing at a valid entry and
  1505  // false otherwise.
  1506  func (i *Iterator) SeekLT(key []byte) bool {
  1507  	return i.SeekLTWithLimit(key, nil) == IterValid
  1508  }
  1509  
  1510  // SeekLTWithLimit moves the iterator to the last key/value pair whose key is
  1511  // less than the given key.
  1512  //
  1513  // If limit is provided, it serves as a best-effort inclusive limit. If the last
  1514  // key less than the given search key is also less than limit, the Iterator may
  1515  // pause and return IterAtLimit. Because limits are best-effort, SeekLTWithLimit
  1516  // may return a key beyond limit.
  1517  //
  1518  // If the Iterator is configured to iterate over range keys, SeekLTWithLimit
  1519  // guarantees it will surface any range keys with bounds overlapping the
  1520  // keyspace up to limit.
  1521  func (i *Iterator) SeekLTWithLimit(key []byte, limit []byte) IterValidityState {
  1522  	if i.rangeKey != nil {
  1523  		// NB: Check Valid() before clearing requiresReposition.
  1524  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1525  		// If we have a range key but did not expose it at the previous iterator
  1526  		// position (because the iterator was not at a valid position), updated
  1527  		// must be true. This ensures that after an iterator op sequence like:
  1528  		//   - Next()               → (IterValid, RangeBounds() = [a,b))
  1529  		//   - NextWithLimit(...)   → (IterAtLimit, RangeBounds() = -)
  1530  		//   - SeekLTWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1531  		// the iterator returns RangeKeyChanged()=true.
  1532  		//
  1533  		// The remainder of this function will only update i.rangeKey.updated if
  1534  		// the iterator moves into a new range key, or out of the current range
  1535  		// key.
  1536  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1537  	}
  1538  	lastPositioningOp := i.lastPositioningOp
  1539  	// Set it to unknown, since this operation may not succeed, in which case
  1540  	// the SeekLT following this should not make any assumption about iterator
  1541  	// position.
  1542  	i.lastPositioningOp = unknownLastPositionOp
  1543  	i.batchJustRefreshed = false
  1544  	i.requiresReposition = false
  1545  	i.err = nil // clear cached iteration error
  1546  	i.stats.ReverseSeekCount[InterfaceCall]++
  1547  	if upperBound := i.opts.GetUpperBound(); upperBound != nil && i.cmp(key, upperBound) > 0 {
  1548  		key = upperBound
  1549  	} else if lowerBound := i.opts.GetLowerBound(); lowerBound != nil && i.cmp(key, lowerBound) < 0 {
  1550  		key = lowerBound
  1551  	}
  1552  	i.hasPrefix = false
  1553  	seekInternalIter := true
  1554  	// The following noop optimization only applies when i.batch == nil, since
  1555  	// an iterator over a batch is iterating over mutable data, that may have
  1556  	// changed since the last seek.
  1557  	if lastPositioningOp == seekLTLastPositioningOp && i.batch == nil {
  1558  		cmp := i.cmp(key, i.prefixOrFullSeekKey)
  1559  		// If this seek is to the same or earlier key, and the iterator is
  1560  		// already positioned there, this is a noop. This can be helpful for
  1561  		// sparse key spaces that have many deleted keys, where one can avoid
  1562  		// the overhead of iterating past them again and again.
  1563  		if cmp <= 0 {
  1564  			// NB: when pos != iterPosCurReversePaused, the invariant
  1565  			// documented earlier implies that iterValidityState !=
  1566  			// IterAtLimit.
  1567  			if i.iterValidityState == IterExhausted ||
  1568  				(i.iterValidityState == IterValid && i.cmp(i.key, key) < 0 &&
  1569  					(limit == nil || i.cmp(limit, i.key) <= 0)) {
  1570  				if !invariants.Enabled || !disableSeekOpt(key, uintptr(unsafe.Pointer(i))) {
  1571  					i.lastPositioningOp = seekLTLastPositioningOp
  1572  					return i.iterValidityState
  1573  				}
  1574  			}
  1575  			if i.pos == iterPosCurReversePaused && i.cmp(i.iterKey.UserKey, key) < 0 {
  1576  				// Have some work to do, but don't need to seek, and we can
  1577  				// start doing findPrevEntry from i.iterKey.
  1578  				seekInternalIter = false
  1579  			}
  1580  		}
  1581  	}
  1582  	if seekInternalIter {
  1583  		i.iterKey, i.iterValue = i.iter.SeekLT(key, base.SeekLTFlagsNone)
  1584  		i.stats.ReverseSeekCount[InternalIterCall]++
  1585  	}
  1586  	i.findPrevEntry(limit)
  1587  	i.maybeSampleRead()
  1588  	if i.Error() == nil && i.batch == nil {
  1589  		// Prepare state for a future noop optimization.
  1590  		i.prefixOrFullSeekKey = append(i.prefixOrFullSeekKey[:0], key...)
  1591  		i.lastPositioningOp = seekLTLastPositioningOp
  1592  	}
  1593  	return i.iterValidityState
  1594  }
  1595  
  1596  // First moves the iterator the the first key/value pair. Returns true if the
  1597  // iterator is pointing at a valid entry and false otherwise.
  1598  func (i *Iterator) First() bool {
  1599  	if i.rangeKey != nil {
  1600  		// NB: Check Valid() before clearing requiresReposition.
  1601  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1602  		// If we have a range key but did not expose it at the previous iterator
  1603  		// position (because the iterator was not at a valid position), updated
  1604  		// must be true. This ensures that after an iterator op sequence like:
  1605  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1606  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1607  		//   - First(...)         → (IterValid, RangeBounds() = [a,b))
  1608  		// the iterator returns RangeKeyChanged()=true.
  1609  		//
  1610  		// The remainder of this function will only update i.rangeKey.updated if
  1611  		// the iterator moves into a new range key, or out of the current range
  1612  		// key.
  1613  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1614  	}
  1615  	i.err = nil // clear cached iteration error
  1616  	i.hasPrefix = false
  1617  	i.batchJustRefreshed = false
  1618  	i.lastPositioningOp = unknownLastPositionOp
  1619  	i.requiresReposition = false
  1620  	i.stats.ForwardSeekCount[InterfaceCall]++
  1621  
  1622  	i.iterFirstWithinBounds()
  1623  	i.findNextEntry(nil)
  1624  	i.maybeSampleRead()
  1625  	return i.iterValidityState == IterValid
  1626  }
  1627  
  1628  // Last moves the iterator the the last key/value pair. Returns true if the
  1629  // iterator is pointing at a valid entry and false otherwise.
  1630  func (i *Iterator) Last() bool {
  1631  	if i.rangeKey != nil {
  1632  		// NB: Check Valid() before clearing requiresReposition.
  1633  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1634  		// If we have a range key but did not expose it at the previous iterator
  1635  		// position (because the iterator was not at a valid position), updated
  1636  		// must be true. This ensures that after an iterator op sequence like:
  1637  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1638  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1639  		//   - Last(...)          → (IterValid, RangeBounds() = [a,b))
  1640  		// the iterator returns RangeKeyChanged()=true.
  1641  		//
  1642  		// The remainder of this function will only update i.rangeKey.updated if
  1643  		// the iterator moves into a new range key, or out of the current range
  1644  		// key.
  1645  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1646  	}
  1647  	i.err = nil // clear cached iteration error
  1648  	i.hasPrefix = false
  1649  	i.batchJustRefreshed = false
  1650  	i.lastPositioningOp = unknownLastPositionOp
  1651  	i.requiresReposition = false
  1652  	i.stats.ReverseSeekCount[InterfaceCall]++
  1653  
  1654  	i.iterLastWithinBounds()
  1655  	i.findPrevEntry(nil)
  1656  	i.maybeSampleRead()
  1657  	return i.iterValidityState == IterValid
  1658  }
  1659  
  1660  // Next moves the iterator to the next key/value pair. Returns true if the
  1661  // iterator is pointing at a valid entry and false otherwise.
  1662  func (i *Iterator) Next() bool {
  1663  	return i.nextWithLimit(nil) == IterValid
  1664  }
  1665  
  1666  // NextWithLimit moves the iterator to the next key/value pair.
  1667  //
  1668  // If limit is provided, it serves as a best-effort exclusive limit. If the next
  1669  // key  is greater than or equal to limit, the Iterator may pause and return
  1670  // IterAtLimit. Because limits are best-effort, NextWithLimit may return a key
  1671  // beyond limit.
  1672  //
  1673  // If the Iterator is configured to iterate over range keys, NextWithLimit
  1674  // guarantees it will surface any range keys with bounds overlapping the
  1675  // keyspace up to limit.
  1676  func (i *Iterator) NextWithLimit(limit []byte) IterValidityState {
  1677  	return i.nextWithLimit(limit)
  1678  }
  1679  
  1680  // NextPrefix moves the iterator to the next key/value pair with a key
  1681  // containing a different prefix than the current key. Prefixes are determined
  1682  // by Comparer.Split. Exhausts the iterator if invoked while in prefix-iteration
  1683  // mode.
  1684  //
  1685  // It is not permitted to invoke NextPrefix while at a IterAtLimit position.
  1686  // When called in this condition, NextPrefix has non-deterministic behavior.
  1687  //
  1688  // It is not permitted to invoke NextPrefix when the Iterator has an
  1689  // upper-bound that is a versioned MVCC key (see the comment for
  1690  // Comparer.Split). It returns an error in this case.
  1691  func (i *Iterator) NextPrefix() bool {
  1692  	if i.nextPrefixNotPermittedByUpperBound {
  1693  		i.lastPositioningOp = unknownLastPositionOp
  1694  		i.requiresReposition = false
  1695  		i.err = errors.Errorf("NextPrefix not permitted with upper bound %s",
  1696  			i.comparer.FormatKey(i.opts.UpperBound))
  1697  		i.iterValidityState = IterExhausted
  1698  		return false
  1699  	}
  1700  	if i.hasPrefix {
  1701  		i.iterValidityState = IterExhausted
  1702  		return false
  1703  	}
  1704  	return i.nextPrefix() == IterValid
  1705  }
  1706  
  1707  func (i *Iterator) nextPrefix() IterValidityState {
  1708  	if i.rangeKey != nil {
  1709  		// NB: Check Valid() before clearing requiresReposition.
  1710  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1711  		// If we have a range key but did not expose it at the previous iterator
  1712  		// position (because the iterator was not at a valid position), updated
  1713  		// must be true. This ensures that after an iterator op sequence like:
  1714  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1715  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1716  		//   - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1717  		// the iterator returns RangeKeyChanged()=true.
  1718  		//
  1719  		// The remainder of this function will only update i.rangeKey.updated if
  1720  		// the iterator moves into a new range key, or out of the current range
  1721  		// key.
  1722  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1723  	}
  1724  
  1725  	// Although NextPrefix documents that behavior at IterAtLimit is undefined,
  1726  	// this function handles these cases as a simple prefix-agnostic Next. This
  1727  	// is done for deterministic behavior in the metamorphic tests.
  1728  	//
  1729  	// TODO(jackson): If the metamorphic test operation generator is adjusted to
  1730  	// make generation of some operations conditional on the previous
  1731  	// operations, then we can remove this behavior and explicitly error.
  1732  
  1733  	i.lastPositioningOp = unknownLastPositionOp
  1734  	i.requiresReposition = false
  1735  	switch i.pos {
  1736  	case iterPosCurForward:
  1737  		// Positioned on the current key. Advance to the next prefix.
  1738  		i.internalNextPrefix(i.split(i.key))
  1739  	case iterPosCurForwardPaused:
  1740  		// Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
  1741  		// up above. The iterator is already positioned at the next key.
  1742  	case iterPosCurReverse:
  1743  		// Switching directions.
  1744  		// Unless the iterator was exhausted, reverse iteration needs to
  1745  		// position the iterator at iterPosPrev.
  1746  		if i.iterKey != nil {
  1747  			i.err = errors.New("switching from reverse to forward but iter is not at prev")
  1748  			i.iterValidityState = IterExhausted
  1749  			return i.iterValidityState
  1750  		}
  1751  		// The Iterator is exhausted and i.iter is positioned before the first
  1752  		// key. Reposition to point to the first internal key.
  1753  		i.iterFirstWithinBounds()
  1754  	case iterPosCurReversePaused:
  1755  		// Positioned at a limit. Implement as a prefix-agnostic Next. See TODO
  1756  		// up above.
  1757  		//
  1758  		// Switching directions; The iterator must not be exhausted since it
  1759  		// paused.
  1760  		if i.iterKey == nil {
  1761  			i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
  1762  			i.iterValidityState = IterExhausted
  1763  			return i.iterValidityState
  1764  		}
  1765  		i.nextUserKey()
  1766  	case iterPosPrev:
  1767  		// The underlying iterator is pointed to the previous key (this can
  1768  		// only happen when switching iteration directions).
  1769  		if i.iterKey == nil {
  1770  			// We're positioned before the first key. Need to reposition to point to
  1771  			// the first key.
  1772  			i.iterFirstWithinBounds()
  1773  		} else {
  1774  			// Move the internal iterator back onto the user key stored in
  1775  			// i.key. iterPosPrev guarantees that it's positioned at the last
  1776  			// key with the user key less than i.key, so we're guaranteed to
  1777  			// land on the correct key with a single Next.
  1778  			i.iterKey, i.iterValue = i.iter.Next()
  1779  			if invariants.Enabled && !i.equal(i.iterKey.UserKey, i.key) {
  1780  				i.opts.logger.Fatalf("pebble: invariant violation: Nexting internal iterator from iterPosPrev landed on %q, not %q",
  1781  					i.iterKey.UserKey, i.key)
  1782  			}
  1783  		}
  1784  		// The internal iterator is now positioned at i.key. Advance to the next
  1785  		// prefix.
  1786  		i.internalNextPrefix(i.split(i.key))
  1787  	case iterPosNext:
  1788  		// Already positioned on the next key. Only call nextPrefixKey if the
  1789  		// next key shares the same prefix.
  1790  		if i.iterKey != nil {
  1791  			currKeyPrefixLen := i.split(i.key)
  1792  			iterKeyPrefixLen := i.split(i.iterKey.UserKey)
  1793  			if bytes.Equal(i.iterKey.UserKey[:iterKeyPrefixLen], i.key[:currKeyPrefixLen]) {
  1794  				i.internalNextPrefix(currKeyPrefixLen)
  1795  			}
  1796  		}
  1797  	}
  1798  
  1799  	i.stats.ForwardStepCount[InterfaceCall]++
  1800  	i.findNextEntry(nil /* limit */)
  1801  	i.maybeSampleRead()
  1802  	return i.iterValidityState
  1803  }
  1804  
  1805  func (i *Iterator) internalNextPrefix(currKeyPrefixLen int) {
  1806  	if i.iterKey == nil {
  1807  		return
  1808  	}
  1809  	// The Next "fast-path" is not really a fast-path when there is more than
  1810  	// one version. However, even with TableFormatPebblev3, there is a small
  1811  	// slowdown (~10%) for one version if we remove it and only call NextPrefix.
  1812  	// When there are two versions, only calling NextPrefix is ~30% faster.
  1813  	i.stats.ForwardStepCount[InternalIterCall]++
  1814  	if i.iterKey, i.iterValue = i.iter.Next(); i.iterKey == nil {
  1815  		return
  1816  	}
  1817  	iterKeyPrefixLen := i.split(i.iterKey.UserKey)
  1818  	if !bytes.Equal(i.iterKey.UserKey[:iterKeyPrefixLen], i.key[:currKeyPrefixLen]) {
  1819  		return
  1820  	}
  1821  	i.stats.ForwardStepCount[InternalIterCall]++
  1822  	i.prefixOrFullSeekKey = i.comparer.ImmediateSuccessor(i.prefixOrFullSeekKey[:0], i.key[:currKeyPrefixLen])
  1823  	i.iterKey, i.iterValue = i.iter.NextPrefix(i.prefixOrFullSeekKey)
  1824  	if invariants.Enabled && i.iterKey != nil {
  1825  		if iterKeyPrefixLen := i.split(i.iterKey.UserKey); i.cmp(i.iterKey.UserKey[:iterKeyPrefixLen], i.prefixOrFullSeekKey) < 0 {
  1826  			panic(errors.AssertionFailedf("pebble: iter.NextPrefix did not advance beyond the current prefix: now at %q; expected to be geq %q",
  1827  				i.iterKey, i.prefixOrFullSeekKey))
  1828  		}
  1829  	}
  1830  }
  1831  
  1832  func (i *Iterator) nextWithLimit(limit []byte) IterValidityState {
  1833  	i.stats.ForwardStepCount[InterfaceCall]++
  1834  	if i.hasPrefix {
  1835  		if limit != nil {
  1836  			i.err = errors.New("cannot use limit with prefix iteration")
  1837  			i.iterValidityState = IterExhausted
  1838  			return i.iterValidityState
  1839  		} else if i.iterValidityState == IterExhausted {
  1840  			// No-op, already exhasuted. We avoid executing the Next because it
  1841  			// can break invariants: Specifically, a file that fails the bloom
  1842  			// filter test may result in its level being removed from the
  1843  			// merging iterator. The level's removal can cause a lazy combined
  1844  			// iterator to miss range keys and trigger a switch to combined
  1845  			// iteration at a larger key, breaking keyspan invariants.
  1846  			return i.iterValidityState
  1847  		}
  1848  	}
  1849  	if i.err != nil {
  1850  		return i.iterValidityState
  1851  	}
  1852  	if i.rangeKey != nil {
  1853  		// NB: Check Valid() before clearing requiresReposition.
  1854  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1855  		// If we have a range key but did not expose it at the previous iterator
  1856  		// position (because the iterator was not at a valid position), updated
  1857  		// must be true. This ensures that after an iterator op sequence like:
  1858  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1859  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1860  		//   - NextWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1861  		// the iterator returns RangeKeyChanged()=true.
  1862  		//
  1863  		// The remainder of this function will only update i.rangeKey.updated if
  1864  		// the iterator moves into a new range key, or out of the current range
  1865  		// key.
  1866  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1867  	}
  1868  	i.lastPositioningOp = unknownLastPositionOp
  1869  	i.requiresReposition = false
  1870  	switch i.pos {
  1871  	case iterPosCurForward:
  1872  		i.nextUserKey()
  1873  	case iterPosCurForwardPaused:
  1874  		// Already at the right place.
  1875  	case iterPosCurReverse:
  1876  		// Switching directions.
  1877  		// Unless the iterator was exhausted, reverse iteration needs to
  1878  		// position the iterator at iterPosPrev.
  1879  		if i.iterKey != nil {
  1880  			i.err = errors.New("switching from reverse to forward but iter is not at prev")
  1881  			i.iterValidityState = IterExhausted
  1882  			return i.iterValidityState
  1883  		}
  1884  		// We're positioned before the first key. Need to reposition to point to
  1885  		// the first key.
  1886  		i.iterFirstWithinBounds()
  1887  	case iterPosCurReversePaused:
  1888  		// Switching directions.
  1889  		// The iterator must not be exhausted since it paused.
  1890  		if i.iterKey == nil {
  1891  			i.err = errors.New("switching paused from reverse to forward but iter is exhausted")
  1892  			i.iterValidityState = IterExhausted
  1893  			return i.iterValidityState
  1894  		}
  1895  		i.nextUserKey()
  1896  	case iterPosPrev:
  1897  		// The underlying iterator is pointed to the previous key (this can
  1898  		// only happen when switching iteration directions). We set
  1899  		// i.iterValidityState to IterExhausted here to force the calls to
  1900  		// nextUserKey to save the current key i.iter is pointing at in order
  1901  		// to determine when the next user-key is reached.
  1902  		i.iterValidityState = IterExhausted
  1903  		if i.iterKey == nil {
  1904  			// We're positioned before the first key. Need to reposition to point to
  1905  			// the first key.
  1906  			i.iterFirstWithinBounds()
  1907  		} else {
  1908  			i.nextUserKey()
  1909  		}
  1910  		i.nextUserKey()
  1911  	case iterPosNext:
  1912  		// Already at the right place.
  1913  	}
  1914  	i.findNextEntry(limit)
  1915  	i.maybeSampleRead()
  1916  	return i.iterValidityState
  1917  }
  1918  
  1919  // Prev moves the iterator to the previous key/value pair. Returns true if the
  1920  // iterator is pointing at a valid entry and false otherwise.
  1921  func (i *Iterator) Prev() bool {
  1922  	return i.PrevWithLimit(nil) == IterValid
  1923  }
  1924  
  1925  // PrevWithLimit moves the iterator to the previous key/value pair.
  1926  //
  1927  // If limit is provided, it serves as a best-effort inclusive limit. If the
  1928  // previous key is less than limit, the Iterator may pause and return
  1929  // IterAtLimit. Because limits are best-effort, PrevWithLimit may return a key
  1930  // beyond limit.
  1931  //
  1932  // If the Iterator is configured to iterate over range keys, PrevWithLimit
  1933  // guarantees it will surface any range keys with bounds overlapping the
  1934  // keyspace up to limit.
  1935  func (i *Iterator) PrevWithLimit(limit []byte) IterValidityState {
  1936  	i.stats.ReverseStepCount[InterfaceCall]++
  1937  	if i.err != nil {
  1938  		return i.iterValidityState
  1939  	}
  1940  	if i.rangeKey != nil {
  1941  		// NB: Check Valid() before clearing requiresReposition.
  1942  		i.rangeKey.prevPosHadRangeKey = i.rangeKey.hasRangeKey && i.Valid()
  1943  		// If we have a range key but did not expose it at the previous iterator
  1944  		// position (because the iterator was not at a valid position), updated
  1945  		// must be true. This ensures that after an iterator op sequence like:
  1946  		//   - Next()             → (IterValid, RangeBounds() = [a,b))
  1947  		//   - NextWithLimit(...) → (IterAtLimit, RangeBounds() = -)
  1948  		//   - PrevWithLimit(...) → (IterValid, RangeBounds() = [a,b))
  1949  		// the iterator returns RangeKeyChanged()=true.
  1950  		//
  1951  		// The remainder of this function will only update i.rangeKey.updated if
  1952  		// the iterator moves into a new range key, or out of the current range
  1953  		// key.
  1954  		i.rangeKey.updated = i.rangeKey.hasRangeKey && !i.Valid() && i.opts.rangeKeys()
  1955  	}
  1956  	i.lastPositioningOp = unknownLastPositionOp
  1957  	i.requiresReposition = false
  1958  	if i.hasPrefix {
  1959  		i.err = errReversePrefixIteration
  1960  		i.iterValidityState = IterExhausted
  1961  		return i.iterValidityState
  1962  	}
  1963  	switch i.pos {
  1964  	case iterPosCurForward:
  1965  		// Switching directions, and will handle this below.
  1966  	case iterPosCurForwardPaused:
  1967  		// Switching directions, and will handle this below.
  1968  	case iterPosCurReverse:
  1969  		i.prevUserKey()
  1970  	case iterPosCurReversePaused:
  1971  		// Already at the right place.
  1972  	case iterPosNext:
  1973  		// The underlying iterator is pointed to the next key (this can only happen
  1974  		// when switching iteration directions). We will handle this below.
  1975  	case iterPosPrev:
  1976  		// Already at the right place.
  1977  	}
  1978  	if i.pos == iterPosCurForward || i.pos == iterPosNext || i.pos == iterPosCurForwardPaused {
  1979  		// Switching direction.
  1980  		stepAgain := i.pos == iterPosNext
  1981  
  1982  		// Synthetic range key markers are a special case. Consider SeekGE(b)
  1983  		// which finds a range key [a, c). To ensure the user observes the range
  1984  		// key, the Iterator pauses at Key() = b. The iterator must advance the
  1985  		// internal iterator to see if there's also a coincident point key at
  1986  		// 'b', leaving the iterator at iterPosNext if there's not.
  1987  		//
  1988  		// This is a problem: Synthetic range key markers are only interleaved
  1989  		// during the original seek. A subsequent Prev() of i.iter will not move
  1990  		// back onto the synthetic range key marker. In this case where the
  1991  		// previous iterator position was a synthetic range key start boundary,
  1992  		// we must not step a second time.
  1993  		if i.isEphemeralPosition() {
  1994  			stepAgain = false
  1995  		}
  1996  
  1997  		// We set i.iterValidityState to IterExhausted here to force the calls
  1998  		// to prevUserKey to save the current key i.iter is pointing at in
  1999  		// order to determine when the prev user-key is reached.
  2000  		i.iterValidityState = IterExhausted
  2001  		if i.iterKey == nil {
  2002  			// We're positioned after the last key. Need to reposition to point to
  2003  			// the last key.
  2004  			i.iterLastWithinBounds()
  2005  		} else {
  2006  			i.prevUserKey()
  2007  		}
  2008  		if stepAgain {
  2009  			i.prevUserKey()
  2010  		}
  2011  	}
  2012  	i.findPrevEntry(limit)
  2013  	i.maybeSampleRead()
  2014  	return i.iterValidityState
  2015  }
  2016  
  2017  // iterFirstWithinBounds moves the internal iterator to the first key,
  2018  // respecting bounds.
  2019  func (i *Iterator) iterFirstWithinBounds() {
  2020  	i.stats.ForwardSeekCount[InternalIterCall]++
  2021  	if lowerBound := i.opts.GetLowerBound(); lowerBound != nil {
  2022  		i.iterKey, i.iterValue = i.iter.SeekGE(lowerBound, base.SeekGEFlagsNone)
  2023  	} else {
  2024  		i.iterKey, i.iterValue = i.iter.First()
  2025  	}
  2026  }
  2027  
  2028  // iterLastWithinBounds moves the internal iterator to the last key, respecting
  2029  // bounds.
  2030  func (i *Iterator) iterLastWithinBounds() {
  2031  	i.stats.ReverseSeekCount[InternalIterCall]++
  2032  	if upperBound := i.opts.GetUpperBound(); upperBound != nil {
  2033  		i.iterKey, i.iterValue = i.iter.SeekLT(upperBound, base.SeekLTFlagsNone)
  2034  	} else {
  2035  		i.iterKey, i.iterValue = i.iter.Last()
  2036  	}
  2037  }
  2038  
  2039  // RangeKeyData describes a range key's data, set through RangeKeySet. The key
  2040  // boundaries of the range key is provided by Iterator.RangeBounds.
  2041  type RangeKeyData struct {
  2042  	Suffix []byte
  2043  	Value  []byte
  2044  }
  2045  
  2046  // rangeKeyWithinLimit is called during limited reverse iteration when
  2047  // positioned over a key beyond the limit. If there exists a range key that lies
  2048  // within the limit, the iterator must not pause in order to ensure the user has
  2049  // an opportunity to observe the range key within limit.
  2050  //
  2051  // It would be valid to ignore the limit whenever there's a range key covering
  2052  // the key, but that would introduce nondeterminism. To preserve determinism for
  2053  // testing, the iterator ignores the limit only if the covering range key does
  2054  // cover the keyspace within the limit.
  2055  //
  2056  // This awkwardness exists because range keys are interleaved at their inclusive
  2057  // start positions. Note that limit is inclusive.
  2058  func (i *Iterator) rangeKeyWithinLimit(limit []byte) bool {
  2059  	if i.rangeKey == nil || !i.opts.rangeKeys() {
  2060  		return false
  2061  	}
  2062  	s := i.rangeKey.iiter.Span()
  2063  	// If the range key ends beyond the limit, then the range key does not cover
  2064  	// any portion of the keyspace within the limit and it is safe to pause.
  2065  	return s != nil && i.cmp(s.End, limit) > 0
  2066  }
  2067  
  2068  // saveRangeKey saves the current range key to the underlying iterator's current
  2069  // range key state. If the range key has not changed, saveRangeKey is a no-op.
  2070  // If there is a new range key, saveRangeKey copies all of the key, value and
  2071  // suffixes into Iterator-managed buffers.
  2072  func (i *Iterator) saveRangeKey() {
  2073  	if i.rangeKey == nil || i.opts.KeyTypes == IterKeyTypePointsOnly {
  2074  		return
  2075  	}
  2076  
  2077  	s := i.rangeKey.iiter.Span()
  2078  	if s == nil {
  2079  		i.rangeKey.hasRangeKey = false
  2080  		i.rangeKey.updated = i.rangeKey.prevPosHadRangeKey
  2081  		return
  2082  	} else if !i.rangeKey.stale {
  2083  		// The range key `s` is identical to the one currently saved. No-op.
  2084  		return
  2085  	}
  2086  
  2087  	if s.KeysOrder != keyspan.BySuffixAsc {
  2088  		panic("pebble: range key span's keys unexpectedly not in ascending suffix order")
  2089  	}
  2090  
  2091  	// Although `i.rangeKey.stale` is true, the span s may still be identical
  2092  	// to the currently saved span. This is possible when seeking the iterator,
  2093  	// which may land back on the same range key. If we previously had a range
  2094  	// key and the new one has an identical start key, then it must be the same
  2095  	// range key and we can avoid copying and keep `i.rangeKey.updated=false`.
  2096  	//
  2097  	// TODO(jackson): These key comparisons could be avoidable during relative
  2098  	// positioning operations continuing in the same direction, because these
  2099  	// ops will never encounter the previous position's range key while
  2100  	// stale=true. However, threading whether the current op is a seek or step
  2101  	// maybe isn't worth it. This key comparison is only necessary once when we
  2102  	// step onto a new range key, which should be relatively rare.
  2103  	if i.rangeKey.prevPosHadRangeKey && i.equal(i.rangeKey.start, s.Start) &&
  2104  		i.equal(i.rangeKey.end, s.End) {
  2105  		i.rangeKey.updated = false
  2106  		i.rangeKey.stale = false
  2107  		i.rangeKey.hasRangeKey = true
  2108  		return
  2109  	}
  2110  	i.stats.RangeKeyStats.Count += len(s.Keys)
  2111  	i.rangeKey.buf.Reset()
  2112  	i.rangeKey.hasRangeKey = true
  2113  	i.rangeKey.updated = true
  2114  	i.rangeKey.stale = false
  2115  	i.rangeKey.buf, i.rangeKey.start = i.rangeKey.buf.Copy(s.Start)
  2116  	i.rangeKey.buf, i.rangeKey.end = i.rangeKey.buf.Copy(s.End)
  2117  	i.rangeKey.keys = i.rangeKey.keys[:0]
  2118  	for j := 0; j < len(s.Keys); j++ {
  2119  		if invariants.Enabled {
  2120  			if s.Keys[j].Kind() != base.InternalKeyKindRangeKeySet {
  2121  				panic("pebble: user iteration encountered non-RangeKeySet key kind")
  2122  			} else if j > 0 && i.cmp(s.Keys[j].Suffix, s.Keys[j-1].Suffix) < 0 {
  2123  				panic("pebble: user iteration encountered range keys not in suffix order")
  2124  			}
  2125  		}
  2126  		var rkd RangeKeyData
  2127  		i.rangeKey.buf, rkd.Suffix = i.rangeKey.buf.Copy(s.Keys[j].Suffix)
  2128  		i.rangeKey.buf, rkd.Value = i.rangeKey.buf.Copy(s.Keys[j].Value)
  2129  		i.rangeKey.keys = append(i.rangeKey.keys, rkd)
  2130  	}
  2131  }
  2132  
  2133  // RangeKeyChanged indicates whether the most recent iterator positioning
  2134  // operation resulted in the iterator stepping into or out of a new range key.
  2135  // If true, previously returned range key bounds and data has been invalidated.
  2136  // If false, previously obtained range key bounds, suffix and value slices are
  2137  // still valid and may continue to be read.
  2138  //
  2139  // Invalid iterator positions are considered to not hold range keys, meaning
  2140  // that if an iterator steps from an IterExhausted or IterAtLimit position onto
  2141  // a position with a range key, RangeKeyChanged will yield true.
  2142  func (i *Iterator) RangeKeyChanged() bool {
  2143  	return i.iterValidityState == IterValid && i.rangeKey != nil && i.rangeKey.updated
  2144  }
  2145  
  2146  // HasPointAndRange indicates whether there exists a point key, a range key or
  2147  // both at the current iterator position.
  2148  func (i *Iterator) HasPointAndRange() (hasPoint, hasRange bool) {
  2149  	if i.iterValidityState != IterValid || i.requiresReposition {
  2150  		return false, false
  2151  	}
  2152  	if i.opts.KeyTypes == IterKeyTypePointsOnly {
  2153  		return true, false
  2154  	}
  2155  	return i.rangeKey == nil || !i.rangeKey.rangeKeyOnly, i.rangeKey != nil && i.rangeKey.hasRangeKey
  2156  }
  2157  
  2158  // RangeBounds returns the start (inclusive) and end (exclusive) bounds of the
  2159  // range key covering the current iterator position. RangeBounds returns nil
  2160  // bounds if there is no range key covering the current iterator position, or
  2161  // the iterator is not configured to surface range keys.
  2162  //
  2163  // If valid, the returned start bound is less than or equal to Key() and the
  2164  // returned end bound is greater than Key().
  2165  func (i *Iterator) RangeBounds() (start, end []byte) {
  2166  	if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
  2167  		return nil, nil
  2168  	}
  2169  	return i.rangeKey.start, i.rangeKey.end
  2170  }
  2171  
  2172  // Key returns the key of the current key/value pair, or nil if done. The
  2173  // caller should not modify the contents of the returned slice, and its
  2174  // contents may change on the next call to Next.
  2175  //
  2176  // If positioned at an iterator position that only holds a range key, Key()
  2177  // always returns the start bound of the range key. Otherwise, it returns the
  2178  // point key's key.
  2179  func (i *Iterator) Key() []byte {
  2180  	return i.key
  2181  }
  2182  
  2183  // Value returns the value of the current key/value pair, or nil if done. The
  2184  // caller should not modify the contents of the returned slice, and its
  2185  // contents may change on the next call to Next.
  2186  //
  2187  // Only valid if HasPointAndRange() returns true for hasPoint.
  2188  // Deprecated: use ValueAndErr instead.
  2189  func (i *Iterator) Value() []byte {
  2190  	val, _ := i.ValueAndErr()
  2191  	return val
  2192  }
  2193  
  2194  // ValueAndErr returns the value, and any error encountered in extracting the value.
  2195  // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
  2196  //
  2197  // The caller should not modify the contents of the returned slice, and its
  2198  // contents may change on the next call to Next.
  2199  func (i *Iterator) ValueAndErr() ([]byte, error) {
  2200  	val, callerOwned, err := i.value.Value(i.lazyValueBuf)
  2201  	if err != nil {
  2202  		i.err = err
  2203  	}
  2204  	if callerOwned {
  2205  		i.lazyValueBuf = val[:0]
  2206  	}
  2207  	return val, err
  2208  }
  2209  
  2210  // LazyValue returns the LazyValue. Only for advanced use cases.
  2211  // REQUIRES: i.Error()==nil and HasPointAndRange() returns true for hasPoint.
  2212  func (i *Iterator) LazyValue() LazyValue {
  2213  	return i.value
  2214  }
  2215  
  2216  // RangeKeys returns the range key values and their suffixes covering the
  2217  // current iterator position. The range bounds may be retrieved separately
  2218  // through Iterator.RangeBounds().
  2219  func (i *Iterator) RangeKeys() []RangeKeyData {
  2220  	if i.rangeKey == nil || !i.opts.rangeKeys() || !i.rangeKey.hasRangeKey {
  2221  		return nil
  2222  	}
  2223  	return i.rangeKey.keys
  2224  }
  2225  
  2226  // Valid returns true if the iterator is positioned at a valid key/value pair
  2227  // and false otherwise.
  2228  func (i *Iterator) Valid() bool {
  2229  	valid := i.iterValidityState == IterValid && !i.requiresReposition
  2230  	if invariants.Enabled {
  2231  		if err := i.Error(); valid && err != nil {
  2232  			panic(errors.WithSecondaryError(errors.AssertionFailedf("pebble: iterator is valid with non-nil Error"), err))
  2233  		}
  2234  	}
  2235  	return valid
  2236  }
  2237  
  2238  // Error returns any accumulated error.
  2239  func (i *Iterator) Error() error {
  2240  	if i.iter != nil {
  2241  		return firstError(i.err, i.iter.Error())
  2242  	}
  2243  	return i.err
  2244  }
  2245  
  2246  const maxKeyBufCacheSize = 4 << 10 // 4 KB
  2247  
  2248  // Close closes the iterator and returns any accumulated error. Exhausting
  2249  // all the key/value pairs in a table is not considered to be an error.
  2250  // It is not valid to call any method, including Close, after the iterator
  2251  // has been closed.
  2252  func (i *Iterator) Close() error {
  2253  	// Close the child iterator before releasing the readState because when the
  2254  	// readState is released sstables referenced by the readState may be deleted
  2255  	// which will fail on Windows if the sstables are still open by the child
  2256  	// iterator.
  2257  	if i.iter != nil {
  2258  		i.err = firstError(i.err, i.iter.Close())
  2259  
  2260  		// Closing i.iter did not necessarily close the point and range key
  2261  		// iterators. Calls to SetOptions may have 'disconnected' either one
  2262  		// from i.iter if iteration key types were changed. Both point and range
  2263  		// key iterators are preserved in case the iterator needs to switch key
  2264  		// types again. We explicitly close both of these iterators here.
  2265  		//
  2266  		// NB: If the iterators were still connected to i.iter, they may be
  2267  		// closed, but calling Close on a closed internal iterator or fragment
  2268  		// iterator is allowed.
  2269  		if i.pointIter != nil && !i.closePointIterOnce {
  2270  			i.err = firstError(i.err, i.pointIter.Close())
  2271  		}
  2272  		if i.rangeKey != nil && i.rangeKey.rangeKeyIter != nil {
  2273  			i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
  2274  		}
  2275  	}
  2276  	err := i.err
  2277  
  2278  	if i.readState != nil {
  2279  		if i.readSampling.pendingCompactions.size > 0 {
  2280  			// Copy pending read compactions using db.mu.Lock()
  2281  			i.readState.db.mu.Lock()
  2282  			i.readState.db.mu.compact.readCompactions.combine(&i.readSampling.pendingCompactions, i.cmp)
  2283  			reschedule := i.readState.db.mu.compact.rescheduleReadCompaction
  2284  			i.readState.db.mu.compact.rescheduleReadCompaction = false
  2285  			concurrentCompactions := i.readState.db.mu.compact.compactingCount
  2286  			i.readState.db.mu.Unlock()
  2287  
  2288  			if reschedule && concurrentCompactions == 0 {
  2289  				// In a read heavy workload, flushes may not happen frequently enough to
  2290  				// schedule compactions.
  2291  				i.readState.db.compactionSchedulers.Add(1)
  2292  				go i.readState.db.maybeScheduleCompactionAsync()
  2293  			}
  2294  		}
  2295  
  2296  		i.readState.unref()
  2297  		i.readState = nil
  2298  	}
  2299  
  2300  	if i.version != nil {
  2301  		i.version.Unref()
  2302  	}
  2303  
  2304  	for _, readers := range i.externalReaders {
  2305  		for _, r := range readers {
  2306  			err = firstError(err, r.Close())
  2307  		}
  2308  	}
  2309  
  2310  	// Close the closer for the current value if one was open.
  2311  	if i.valueCloser != nil {
  2312  		err = firstError(err, i.valueCloser.Close())
  2313  		i.valueCloser = nil
  2314  	}
  2315  
  2316  	if i.rangeKey != nil {
  2317  
  2318  		i.rangeKey.rangeKeyBuffers.PrepareForReuse()
  2319  		*i.rangeKey = iteratorRangeKeyState{
  2320  			rangeKeyBuffers: i.rangeKey.rangeKeyBuffers,
  2321  		}
  2322  		iterRangeKeyStateAllocPool.Put(i.rangeKey)
  2323  		i.rangeKey = nil
  2324  	}
  2325  	if alloc := i.alloc; alloc != nil {
  2326  		// Avoid caching the key buf if it is overly large. The constant is fairly
  2327  		// arbitrary.
  2328  		if cap(i.keyBuf) >= maxKeyBufCacheSize {
  2329  			alloc.keyBuf = nil
  2330  		} else {
  2331  			alloc.keyBuf = i.keyBuf
  2332  		}
  2333  		if cap(i.prefixOrFullSeekKey) >= maxKeyBufCacheSize {
  2334  			alloc.prefixOrFullSeekKey = nil
  2335  		} else {
  2336  			alloc.prefixOrFullSeekKey = i.prefixOrFullSeekKey
  2337  		}
  2338  		for j := range i.boundsBuf {
  2339  			if cap(i.boundsBuf[j]) >= maxKeyBufCacheSize {
  2340  				alloc.boundsBuf[j] = nil
  2341  			} else {
  2342  				alloc.boundsBuf[j] = i.boundsBuf[j]
  2343  			}
  2344  		}
  2345  		*alloc = iterAlloc{
  2346  			keyBuf:              alloc.keyBuf,
  2347  			boundsBuf:           alloc.boundsBuf,
  2348  			prefixOrFullSeekKey: alloc.prefixOrFullSeekKey,
  2349  		}
  2350  		iterAllocPool.Put(alloc)
  2351  	} else if alloc := i.getIterAlloc; alloc != nil {
  2352  		if cap(i.keyBuf) >= maxKeyBufCacheSize {
  2353  			alloc.keyBuf = nil
  2354  		} else {
  2355  			alloc.keyBuf = i.keyBuf
  2356  		}
  2357  		*alloc = getIterAlloc{
  2358  			keyBuf: alloc.keyBuf,
  2359  		}
  2360  		getIterAllocPool.Put(alloc)
  2361  	}
  2362  	return err
  2363  }
  2364  
  2365  // SetBounds sets the lower and upper bounds for the iterator. Once SetBounds
  2366  // returns, the caller is free to mutate the provided slices.
  2367  //
  2368  // The iterator will always be invalidated and must be repositioned with a call
  2369  // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
  2370  func (i *Iterator) SetBounds(lower, upper []byte) {
  2371  	// Ensure that the Iterator appears exhausted, regardless of whether we
  2372  	// actually have to invalidate the internal iterator. Optimizations that
  2373  	// avoid exhaustion are an internal implementation detail that shouldn't
  2374  	// leak through the interface. The caller should still call an absolute
  2375  	// positioning method to reposition the iterator.
  2376  	i.requiresReposition = true
  2377  
  2378  	if ((i.opts.LowerBound == nil) == (lower == nil)) &&
  2379  		((i.opts.UpperBound == nil) == (upper == nil)) &&
  2380  		i.equal(i.opts.LowerBound, lower) &&
  2381  		i.equal(i.opts.UpperBound, upper) {
  2382  		// Unchanged, noop.
  2383  		return
  2384  	}
  2385  
  2386  	// Copy the user-provided bounds into an Iterator-owned buffer, and set them
  2387  	// on i.opts.{Lower,Upper}Bound.
  2388  	i.processBounds(lower, upper)
  2389  
  2390  	i.iter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2391  	// If the iterator has an open point iterator that's not currently being
  2392  	// used, propagate the new bounds to it.
  2393  	if i.pointIter != nil && !i.opts.pointKeys() {
  2394  		i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2395  	}
  2396  	// If the iterator has a range key iterator, propagate bounds to it. The
  2397  	// top-level SetBounds on the interleaving iterator (i.iter) won't propagate
  2398  	// bounds to the range key iterator stack, because the FragmentIterator
  2399  	// interface doesn't define a SetBounds method. We need to directly inform
  2400  	// the iterConfig stack.
  2401  	if i.rangeKey != nil {
  2402  		i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2403  	}
  2404  
  2405  	// Even though this is not a positioning operation, the alteration of the
  2406  	// bounds means we cannot optimize Seeks by using Next.
  2407  	i.invalidate()
  2408  }
  2409  
  2410  // Initialization and changing of the bounds must call processBounds.
  2411  // processBounds saves the bounds and computes derived state from those
  2412  // bounds.
  2413  func (i *Iterator) processBounds(lower, upper []byte) {
  2414  	// Copy the user-provided bounds into an Iterator-owned buffer. We can't
  2415  	// overwrite the current bounds, because some internal iterators compare old
  2416  	// and new bounds for optimizations.
  2417  
  2418  	buf := i.boundsBuf[i.boundsBufIdx][:0]
  2419  	if lower != nil {
  2420  		buf = append(buf, lower...)
  2421  		i.opts.LowerBound = buf
  2422  	} else {
  2423  		i.opts.LowerBound = nil
  2424  	}
  2425  	i.nextPrefixNotPermittedByUpperBound = false
  2426  	if upper != nil {
  2427  		buf = append(buf, upper...)
  2428  		i.opts.UpperBound = buf[len(buf)-len(upper):]
  2429  		if i.comparer.Split != nil {
  2430  			if i.comparer.Split(i.opts.UpperBound) != len(i.opts.UpperBound) {
  2431  				// Setting an upper bound that is a versioned MVCC key. This means
  2432  				// that a key can have some MVCC versions before the upper bound and
  2433  				// some after. This causes significant complications for NextPrefix,
  2434  				// so we bar the user of NextPrefix.
  2435  				i.nextPrefixNotPermittedByUpperBound = true
  2436  			}
  2437  		}
  2438  	} else {
  2439  		i.opts.UpperBound = nil
  2440  	}
  2441  	i.boundsBuf[i.boundsBufIdx] = buf
  2442  	i.boundsBufIdx = 1 - i.boundsBufIdx
  2443  }
  2444  
  2445  // SetOptions sets new iterator options for the iterator. Note that the lower
  2446  // and upper bounds applied here will supersede any bounds set by previous calls
  2447  // to SetBounds.
  2448  //
  2449  // Note that the slices provided in this SetOptions must not be changed by the
  2450  // caller until the iterator is closed, or a subsequent SetBounds or SetOptions
  2451  // has returned. This is because comparisons between the existing and new bounds
  2452  // are sometimes used to optimize seeking. See the extended commentary on
  2453  // SetBounds.
  2454  //
  2455  // If the iterator was created over an indexed mutable batch, the iterator's
  2456  // view of the mutable batch is refreshed.
  2457  //
  2458  // The iterator will always be invalidated and must be repositioned with a call
  2459  // to SeekGE, SeekPrefixGE, SeekLT, First, or Last.
  2460  //
  2461  // If only lower and upper bounds need to be modified, prefer SetBounds.
  2462  func (i *Iterator) SetOptions(o *IterOptions) {
  2463  	if i.externalReaders != nil {
  2464  		if err := validateExternalIterOpts(o); err != nil {
  2465  			panic(err)
  2466  		}
  2467  	}
  2468  
  2469  	// Ensure that the Iterator appears exhausted, regardless of whether we
  2470  	// actually have to invalidate the internal iterator. Optimizations that
  2471  	// avoid exhaustion are an internal implementation detail that shouldn't
  2472  	// leak through the interface. The caller should still call an absolute
  2473  	// positioning method to reposition the iterator.
  2474  	i.requiresReposition = true
  2475  
  2476  	// Check if global state requires we close all internal iterators.
  2477  	//
  2478  	// If the Iterator is in an error state, invalidate the existing iterators
  2479  	// so that we reconstruct an iterator state from scratch.
  2480  	//
  2481  	// If OnlyReadGuaranteedDurable changed, the iterator stacks are incorrect,
  2482  	// improperly including or excluding memtables. Invalidate them so that
  2483  	// finishInitializingIter will reconstruct them.
  2484  	//
  2485  	// If either the original options or the new options specify a table filter,
  2486  	// we need to reconstruct the iterator stacks. If they both supply a table
  2487  	// filter, we can't be certain that it's the same filter since we have no
  2488  	// mechanism to compare the filter closures.
  2489  	closeBoth := i.err != nil ||
  2490  		o.OnlyReadGuaranteedDurable != i.opts.OnlyReadGuaranteedDurable ||
  2491  		o.TableFilter != nil || i.opts.TableFilter != nil
  2492  
  2493  	// If either options specify block property filters for an iterator stack,
  2494  	// reconstruct it.
  2495  	if i.pointIter != nil && (closeBoth || len(o.PointKeyFilters) > 0 || len(i.opts.PointKeyFilters) > 0 ||
  2496  		o.RangeKeyMasking.Filter != nil || i.opts.RangeKeyMasking.Filter != nil || o.SkipPoint != nil ||
  2497  		i.opts.SkipPoint != nil) {
  2498  		i.err = firstError(i.err, i.pointIter.Close())
  2499  		i.pointIter = nil
  2500  	}
  2501  	if i.rangeKey != nil {
  2502  		if closeBoth || len(o.RangeKeyFilters) > 0 || len(i.opts.RangeKeyFilters) > 0 {
  2503  			i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
  2504  			i.rangeKey = nil
  2505  		} else {
  2506  			// If there's still a range key iterator stack, invalidate the
  2507  			// iterator. This ensures RangeKeyChanged() returns true if a
  2508  			// subsequent positioning operation discovers a range key. It also
  2509  			// prevents seek no-op optimizations.
  2510  			i.invalidate()
  2511  		}
  2512  	}
  2513  
  2514  	// If the iterator is backed by a batch that's been mutated, refresh its
  2515  	// existing point and range-key iterators, and invalidate the iterator to
  2516  	// prevent seek-using-next optimizations. If we don't yet have a point-key
  2517  	// iterator or range-key iterator but we require one, it'll be created in
  2518  	// the slow path that reconstructs the iterator in finishInitializingIter.
  2519  	if i.batch != nil {
  2520  		nextBatchSeqNum := (uint64(len(i.batch.data)) | base.InternalKeySeqNumBatch)
  2521  		if nextBatchSeqNum != i.batchSeqNum {
  2522  			i.batchSeqNum = nextBatchSeqNum
  2523  			if i.merging != nil {
  2524  				i.merging.batchSnapshot = nextBatchSeqNum
  2525  			}
  2526  			// Prevent a no-op seek optimization on the next seek. We won't be
  2527  			// able to reuse the top-level Iterator state, because it may be
  2528  			// incorrect after the inclusion of new batch mutations.
  2529  			i.batchJustRefreshed = true
  2530  			if i.pointIter != nil && i.batch.countRangeDels > 0 {
  2531  				if i.batchRangeDelIter.Count() == 0 {
  2532  					// When we constructed this iterator, there were no
  2533  					// rangedels in the batch. Iterator construction will
  2534  					// have excluded the batch rangedel iterator from the
  2535  					// point iterator stack. We need to reconstruct the
  2536  					// point iterator to add i.batchRangeDelIter into the
  2537  					// iterator stack.
  2538  					i.err = firstError(i.err, i.pointIter.Close())
  2539  					i.pointIter = nil
  2540  				} else {
  2541  					// There are range deletions in the batch and we already
  2542  					// have a batch rangedel iterator. We can update the
  2543  					// batch rangedel iterator in place.
  2544  					//
  2545  					// NB: There may or may not be new range deletions. We
  2546  					// can't tell based on i.batchRangeDelIter.Count(),
  2547  					// which is the count of fragmented range deletions, NOT
  2548  					// the number of range deletions written to the batch
  2549  					// [i.batch.countRangeDels].
  2550  					i.batch.initRangeDelIter(&i.opts, &i.batchRangeDelIter, nextBatchSeqNum)
  2551  				}
  2552  			}
  2553  			if i.rangeKey != nil && i.batch.countRangeKeys > 0 {
  2554  				if i.batchRangeKeyIter.Count() == 0 {
  2555  					// When we constructed this iterator, there were no range
  2556  					// keys in the batch. Iterator construction will have
  2557  					// excluded the batch rangekey iterator from the range key
  2558  					// iterator stack. We need to reconstruct the range key
  2559  					// iterator to add i.batchRangeKeyIter into the iterator
  2560  					// stack.
  2561  					i.err = firstError(i.err, i.rangeKey.rangeKeyIter.Close())
  2562  					i.rangeKey = nil
  2563  				} else {
  2564  					// There are range keys in the batch and we already
  2565  					// have a batch rangekey iterator. We can update the batch
  2566  					// rangekey iterator in place.
  2567  					//
  2568  					// NB: There may or may not be new range keys. We can't
  2569  					// tell based on i.batchRangeKeyIter.Count(), which is the
  2570  					// count of fragmented range keys, NOT the number of
  2571  					// range keys written to the batch [i.batch.countRangeKeys].
  2572  					i.batch.initRangeKeyIter(&i.opts, &i.batchRangeKeyIter, nextBatchSeqNum)
  2573  					i.invalidate()
  2574  				}
  2575  			}
  2576  		}
  2577  	}
  2578  
  2579  	// Reset combinedIterState.initialized in case the iterator key types
  2580  	// changed. If there's already a range key iterator stack, the combined
  2581  	// iterator is already initialized.  Additionally, if the iterator is not
  2582  	// configured to include range keys, mark it as initialized to signal that
  2583  	// lower level iterators should not trigger a switch to combined iteration.
  2584  	i.lazyCombinedIter.combinedIterState = combinedIterState{
  2585  		initialized: i.rangeKey != nil || !i.opts.rangeKeys(),
  2586  	}
  2587  
  2588  	boundsEqual := ((i.opts.LowerBound == nil) == (o.LowerBound == nil)) &&
  2589  		((i.opts.UpperBound == nil) == (o.UpperBound == nil)) &&
  2590  		i.equal(i.opts.LowerBound, o.LowerBound) &&
  2591  		i.equal(i.opts.UpperBound, o.UpperBound)
  2592  
  2593  	if boundsEqual && o.KeyTypes == i.opts.KeyTypes &&
  2594  		(i.pointIter != nil || !i.opts.pointKeys()) &&
  2595  		(i.rangeKey != nil || !i.opts.rangeKeys() || i.opts.KeyTypes == IterKeyTypePointsAndRanges) &&
  2596  		i.equal(o.RangeKeyMasking.Suffix, i.opts.RangeKeyMasking.Suffix) &&
  2597  		o.UseL6Filters == i.opts.UseL6Filters {
  2598  		// The options are identical, so we can likely use the fast path. In
  2599  		// addition to all the above constraints, we cannot use the fast path if
  2600  		// configured to perform lazy combined iteration but an indexed batch
  2601  		// used by the iterator now contains range keys. Lazy combined iteration
  2602  		// is not compatible with batch range keys because we always need to
  2603  		// merge the batch's range keys into iteration.
  2604  		if i.rangeKey != nil || !i.opts.rangeKeys() || i.batch == nil || i.batch.countRangeKeys == 0 {
  2605  			// Fast path. This preserves the Seek-using-Next optimizations as
  2606  			// long as the iterator wasn't already invalidated up above.
  2607  			return
  2608  		}
  2609  	}
  2610  	// Slow path.
  2611  
  2612  	// The options changed. Save the new ones to i.opts.
  2613  	if boundsEqual {
  2614  		// Copying the options into i.opts will overwrite LowerBound and
  2615  		// UpperBound fields with the user-provided slices. We need to hold on
  2616  		// to the Pebble-owned slices, so save them and re-set them after the
  2617  		// copy.
  2618  		lower, upper := i.opts.LowerBound, i.opts.UpperBound
  2619  		i.opts = *o
  2620  		i.opts.LowerBound, i.opts.UpperBound = lower, upper
  2621  	} else {
  2622  		i.opts = *o
  2623  		i.processBounds(o.LowerBound, o.UpperBound)
  2624  		// Propagate the changed bounds to the existing point iterator.
  2625  		// NB: We propagate i.opts.{Lower,Upper}Bound, not o.{Lower,Upper}Bound
  2626  		// because i.opts now point to buffers owned by Pebble.
  2627  		if i.pointIter != nil {
  2628  			i.pointIter.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2629  		}
  2630  		if i.rangeKey != nil {
  2631  			i.rangeKey.iterConfig.SetBounds(i.opts.LowerBound, i.opts.UpperBound)
  2632  		}
  2633  	}
  2634  
  2635  	// Even though this is not a positioning operation, the invalidation of the
  2636  	// iterator stack means we cannot optimize Seeks by using Next.
  2637  	i.invalidate()
  2638  
  2639  	// Iterators created through NewExternalIter have a different iterator
  2640  	// initialization process.
  2641  	if i.externalReaders != nil {
  2642  		finishInitializingExternal(i.ctx, i)
  2643  		return
  2644  	}
  2645  	finishInitializingIter(i.ctx, i.alloc)
  2646  }
  2647  
  2648  func (i *Iterator) invalidate() {
  2649  	i.lastPositioningOp = invalidatedLastPositionOp
  2650  	i.hasPrefix = false
  2651  	i.iterKey = nil
  2652  	i.iterValue = LazyValue{}
  2653  	i.err = nil
  2654  	// This switch statement isn't necessary for correctness since callers
  2655  	// should call a repositioning method. We could have arbitrarily set i.pos
  2656  	// to one of the values. But it results in more intuitive behavior in
  2657  	// tests, which do not always reposition.
  2658  	switch i.pos {
  2659  	case iterPosCurForward, iterPosNext, iterPosCurForwardPaused:
  2660  		i.pos = iterPosCurForward
  2661  	case iterPosCurReverse, iterPosPrev, iterPosCurReversePaused:
  2662  		i.pos = iterPosCurReverse
  2663  	}
  2664  	i.iterValidityState = IterExhausted
  2665  	if i.rangeKey != nil {
  2666  		i.rangeKey.iiter.Invalidate()
  2667  		i.rangeKey.prevPosHadRangeKey = false
  2668  	}
  2669  }
  2670  
  2671  // Metrics returns per-iterator metrics.
  2672  func (i *Iterator) Metrics() IteratorMetrics {
  2673  	m := IteratorMetrics{
  2674  		ReadAmp: 1,
  2675  	}
  2676  	if mi, ok := i.iter.(*mergingIter); ok {
  2677  		m.ReadAmp = len(mi.levels)
  2678  	}
  2679  	return m
  2680  }
  2681  
  2682  // ResetStats resets the stats to 0.
  2683  func (i *Iterator) ResetStats() {
  2684  	i.stats = IteratorStats{}
  2685  }
  2686  
  2687  // Stats returns the current stats.
  2688  func (i *Iterator) Stats() IteratorStats {
  2689  	return i.stats
  2690  }
  2691  
  2692  // CloneOptions configures an iterator constructed through Iterator.Clone.
  2693  type CloneOptions struct {
  2694  	// IterOptions, if non-nil, define the iterator options to configure a
  2695  	// cloned iterator. If nil, the clone adopts the same IterOptions as the
  2696  	// iterator being cloned.
  2697  	IterOptions *IterOptions
  2698  	// RefreshBatchView may be set to true when cloning an Iterator over an
  2699  	// indexed batch. When false, the clone adopts the same (possibly stale)
  2700  	// view of the indexed batch as the cloned Iterator. When true, the clone is
  2701  	// constructed with a refreshed view of the batch, observing all of the
  2702  	// batch's mutations at the time of the Clone. If the cloned iterator was
  2703  	// not constructed to read over an indexed batch, RefreshVatchView has no
  2704  	// effect.
  2705  	RefreshBatchView bool
  2706  }
  2707  
  2708  // Clone creates a new Iterator over the same underlying data, i.e., over the
  2709  // same {batch, memtables, sstables}). The resulting iterator is not positioned.
  2710  // It starts with the same IterOptions, unless opts.IterOptions is set.
  2711  //
  2712  // When called on an Iterator over an indexed batch, the clone's visibility of
  2713  // the indexed batch is determined by CloneOptions.RefreshBatchView. If false,
  2714  // the clone inherits the iterator's current (possibly stale) view of the batch,
  2715  // and callers may call SetOptions to subsequently refresh the clone's view to
  2716  // include all batch mutations. If true, the clone is constructed with a
  2717  // complete view of the indexed batch's mutations at the time of the Clone.
  2718  //
  2719  // Callers can use Clone if they need multiple iterators that need to see
  2720  // exactly the same underlying state of the DB. This should not be used to
  2721  // extend the lifetime of the data backing the original Iterator since that
  2722  // will cause an increase in memory and disk usage (use NewSnapshot for that
  2723  // purpose).
  2724  func (i *Iterator) Clone(opts CloneOptions) (*Iterator, error) {
  2725  	return i.CloneWithContext(context.Background(), opts)
  2726  }
  2727  
  2728  // CloneWithContext is like Clone, and additionally accepts a context for
  2729  // tracing.
  2730  func (i *Iterator) CloneWithContext(ctx context.Context, opts CloneOptions) (*Iterator, error) {
  2731  	if opts.IterOptions == nil {
  2732  		opts.IterOptions = &i.opts
  2733  	}
  2734  
  2735  	readState := i.readState
  2736  	vers := i.version
  2737  	if readState == nil && vers == nil {
  2738  		return nil, errors.Errorf("cannot Clone a closed Iterator")
  2739  	}
  2740  	// i is already holding a ref, so there is no race with unref here.
  2741  	//
  2742  	// TODO(bilal): If the underlying iterator was created on a snapshot, we could
  2743  	// grab a reference to the current readState instead of reffing the original
  2744  	// readState. This allows us to release references to some zombie sstables
  2745  	// and memtables.
  2746  	if readState != nil {
  2747  		readState.ref()
  2748  	}
  2749  	if vers != nil {
  2750  		vers.Ref()
  2751  	}
  2752  	// Bundle various structures under a single umbrella in order to allocate
  2753  	// them together.
  2754  	buf := iterAllocPool.Get().(*iterAlloc)
  2755  	dbi := &buf.dbi
  2756  	*dbi = Iterator{
  2757  		ctx:                 ctx,
  2758  		opts:                *opts.IterOptions,
  2759  		alloc:               buf,
  2760  		merge:               i.merge,
  2761  		comparer:            i.comparer,
  2762  		readState:           readState,
  2763  		version:             vers,
  2764  		keyBuf:              buf.keyBuf,
  2765  		prefixOrFullSeekKey: buf.prefixOrFullSeekKey,
  2766  		boundsBuf:           buf.boundsBuf,
  2767  		batch:               i.batch,
  2768  		batchSeqNum:         i.batchSeqNum,
  2769  		newIters:            i.newIters,
  2770  		newIterRangeKey:     i.newIterRangeKey,
  2771  		seqNum:              i.seqNum,
  2772  	}
  2773  	dbi.processBounds(dbi.opts.LowerBound, dbi.opts.UpperBound)
  2774  
  2775  	// If the caller requested the clone have a current view of the indexed
  2776  	// batch, set the clone's batch sequence number appropriately.
  2777  	if i.batch != nil && opts.RefreshBatchView {
  2778  		dbi.batchSeqNum = (uint64(len(i.batch.data)) | base.InternalKeySeqNumBatch)
  2779  	}
  2780  
  2781  	return finishInitializingIter(ctx, buf), nil
  2782  }
  2783  
  2784  // Merge adds all of the argument's statistics to the receiver. It may be used
  2785  // to accumulate stats across multiple iterators.
  2786  func (stats *IteratorStats) Merge(o IteratorStats) {
  2787  	for i := InterfaceCall; i < NumStatsKind; i++ {
  2788  		stats.ForwardSeekCount[i] += o.ForwardSeekCount[i]
  2789  		stats.ReverseSeekCount[i] += o.ReverseSeekCount[i]
  2790  		stats.ForwardStepCount[i] += o.ForwardStepCount[i]
  2791  		stats.ReverseStepCount[i] += o.ReverseStepCount[i]
  2792  	}
  2793  	stats.InternalStats.Merge(o.InternalStats)
  2794  	stats.RangeKeyStats.Merge(o.RangeKeyStats)
  2795  }
  2796  
  2797  func (stats *IteratorStats) String() string {
  2798  	return redact.StringWithoutMarkers(stats)
  2799  }
  2800  
  2801  // SafeFormat implements the redact.SafeFormatter interface.
  2802  func (stats *IteratorStats) SafeFormat(s redact.SafePrinter, verb rune) {
  2803  	if stats.ReverseSeekCount[InterfaceCall] == 0 && stats.ReverseSeekCount[InternalIterCall] == 0 {
  2804  		s.Printf("seeked %s times (%s internal)",
  2805  			humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InterfaceCall])),
  2806  			humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InternalIterCall])),
  2807  		)
  2808  	} else {
  2809  		s.Printf("seeked %s times (%s fwd/%s rev, internal: %s fwd/%s rev)",
  2810  			humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InterfaceCall]+stats.ReverseSeekCount[InterfaceCall])),
  2811  			humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InterfaceCall])),
  2812  			humanize.Count.Uint64(uint64(stats.ReverseSeekCount[InterfaceCall])),
  2813  			humanize.Count.Uint64(uint64(stats.ForwardSeekCount[InternalIterCall])),
  2814  			humanize.Count.Uint64(uint64(stats.ReverseSeekCount[InternalIterCall])),
  2815  		)
  2816  	}
  2817  	s.SafeString("; ")
  2818  
  2819  	if stats.ReverseStepCount[InterfaceCall] == 0 && stats.ReverseStepCount[InternalIterCall] == 0 {
  2820  		s.Printf("stepped %s times (%s internal)",
  2821  			humanize.Count.Uint64(uint64(stats.ForwardStepCount[InterfaceCall])),
  2822  			humanize.Count.Uint64(uint64(stats.ForwardStepCount[InternalIterCall])),
  2823  		)
  2824  	} else {
  2825  		s.Printf("stepped %s times (%s fwd/%s rev, internal: %s fwd/%s rev)",
  2826  			humanize.Count.Uint64(uint64(stats.ForwardStepCount[InterfaceCall]+stats.ReverseStepCount[InterfaceCall])),
  2827  			humanize.Count.Uint64(uint64(stats.ForwardStepCount[InterfaceCall])),
  2828  			humanize.Count.Uint64(uint64(stats.ReverseStepCount[InterfaceCall])),
  2829  			humanize.Count.Uint64(uint64(stats.ForwardStepCount[InternalIterCall])),
  2830  			humanize.Count.Uint64(uint64(stats.ReverseStepCount[InternalIterCall])),
  2831  		)
  2832  	}
  2833  
  2834  	if stats.InternalStats != (InternalIteratorStats{}) {
  2835  		s.SafeString("; ")
  2836  		stats.InternalStats.SafeFormat(s, verb)
  2837  	}
  2838  	if stats.RangeKeyStats != (RangeKeyIteratorStats{}) {
  2839  		s.SafeString(", ")
  2840  		stats.RangeKeyStats.SafeFormat(s, verb)
  2841  	}
  2842  }
  2843  
  2844  // CanDeterministicallySingleDelete takes a valid iterator and examines internal
  2845  // state to determine if a SingleDelete deleting Iterator.Key() would
  2846  // deterministically delete the key. CanDeterministicallySingleDelete requires
  2847  // the iterator to be oriented in the forward direction (eg, the last
  2848  // positioning operation must've been a First, a Seek[Prefix]GE, or a
  2849  // Next[Prefix][WithLimit]).
  2850  //
  2851  // This function does not change the external position of the iterator, and all
  2852  // positioning methods should behave the same as if it was never called. This
  2853  // function will only return a meaningful result the first time it's invoked at
  2854  // an iterator position. This function invalidates the iterator Value's memory,
  2855  // and the caller must not rely on the memory safety of the previous Iterator
  2856  // position.
  2857  //
  2858  // If CanDeterministicallySingleDelete returns true AND the key at the iterator
  2859  // position is not modified between the creation of the Iterator and the commit
  2860  // of a batch containing a SingleDelete over the key, then the caller can be
  2861  // assured that SingleDelete is equivalent to Delete on the local engine, but it
  2862  // may not be true on another engine that received the same writes and with
  2863  // logically equivalent state since this engine may have collapsed multiple SETs
  2864  // into one.
  2865  func CanDeterministicallySingleDelete(it *Iterator) (bool, error) {
  2866  	// This function may only be called once per external iterator position. We
  2867  	// can validate this by checking the last positioning operation.
  2868  	if it.lastPositioningOp == internalNextOp {
  2869  		return false, errors.New("pebble: CanDeterministicallySingleDelete called twice")
  2870  	}
  2871  	validity, kind := it.internalNext()
  2872  	var shadowedBySingleDelete bool
  2873  	for validity == internalNextValid {
  2874  		switch kind {
  2875  		case InternalKeyKindDelete, InternalKeyKindDeleteSized:
  2876  			// A DEL or DELSIZED tombstone is okay. An internal key
  2877  			// sequence like SINGLEDEL; SET; DEL; SET can be handled
  2878  			// deterministically. If there are SETs further down, we
  2879  			// don't care about them.
  2880  			return true, nil
  2881  		case InternalKeyKindSingleDelete:
  2882  			// A SingleDelete is okay as long as when that SingleDelete was
  2883  			// written, it was written deterministically (eg, with its own
  2884  			// CanDeterministicallySingleDelete check). Validate that it was
  2885  			// written deterministically. We'll allow one set to appear after
  2886  			// the SingleDelete.
  2887  			shadowedBySingleDelete = true
  2888  			validity, kind = it.internalNext()
  2889  			continue
  2890  		case InternalKeyKindSet, InternalKeyKindSetWithDelete, InternalKeyKindMerge:
  2891  			// If we observed a single delete, it's allowed to delete 1 key.
  2892  			// We'll keep looping to validate that the internal keys beneath the
  2893  			// already-written single delete are copacetic.
  2894  			if shadowedBySingleDelete {
  2895  				shadowedBySingleDelete = false
  2896  				validity, kind = it.internalNext()
  2897  				continue
  2898  			}
  2899  			// We encountered a shadowed SET, SETWITHDEL, MERGE. A SINGLEDEL
  2900  			// that deleted the KV at the original iterator position could
  2901  			// result in this key becoming visible.
  2902  			return false, nil
  2903  		case InternalKeyKindRangeDelete:
  2904  			// RangeDeletes are handled by the merging iterator and should never
  2905  			// be observed by the top-level Iterator.
  2906  			panic(errors.AssertionFailedf("pebble: unexpected range delete"))
  2907  		case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
  2908  			// Range keys are interleaved at the maximal sequence number and
  2909  			// should never be observed within a user key.
  2910  			panic(errors.AssertionFailedf("pebble: unexpected range key"))
  2911  		default:
  2912  			panic(errors.AssertionFailedf("pebble: unexpected key kind: %s", errors.Safe(kind)))
  2913  		}
  2914  	}
  2915  	if validity == internalNextError {
  2916  		return false, it.Error()
  2917  	}
  2918  	return true, nil
  2919  }
  2920  
  2921  // internalNextValidity enumerates the potential outcomes of a call to
  2922  // internalNext.
  2923  type internalNextValidity int8
  2924  
  2925  const (
  2926  	// internalNextError is returned by internalNext when an error occurred and
  2927  	// the caller is responsible for checking iter.Error().
  2928  	internalNextError internalNextValidity = iota
  2929  	// internalNextExhausted is returned by internalNext when the next internal
  2930  	// key is an internal key with a different user key than Iterator.Key().
  2931  	internalNextExhausted
  2932  	// internalNextValid is returned by internalNext when the internal next
  2933  	// found a shadowed internal key with a user key equal to Iterator.Key().
  2934  	internalNextValid
  2935  )
  2936  
  2937  // internalNext advances internal Iterator state forward to expose the
  2938  // InternalKeyKind of the next internal key with a user key equal to Key().
  2939  //
  2940  // internalNext is a highly specialized operation and is unlikely to be
  2941  // generally useful. See Iterator.Next for how to reposition the iterator to the
  2942  // next key. internalNext requires the Iterator to be at a valid position in the
  2943  // forward direction (the last positioning operation must've been a First, a
  2944  // Seek[Prefix]GE, or a Next[Prefix][WithLimit] and Valid() must return true).
  2945  //
  2946  // internalNext, unlike all other Iterator methods, exposes internal LSM state.
  2947  // internalNext advances the Iterator's internal iterator to the next shadowed
  2948  // key with a user key equal to Key(). When a key is overwritten or deleted, its
  2949  // removal from the LSM occurs lazily as a part of compactions. internalNext
  2950  // allows the caller to see whether an obsolete internal key exists with the
  2951  // current Key(), and what it's key kind is. Note that the existence of an
  2952  // internal key is nondeterministic and dependent on internal LSM state. These
  2953  // semantics are unlikely to be applicable to almost all use cases.
  2954  //
  2955  // If internalNext finds a key that shares the same user key as Key(), it
  2956  // returns internalNextValid and the internal key's kind. If internalNext
  2957  // encounters an error, it returns internalNextError and the caller is expected
  2958  // to call Iterator.Error() to retrieve it. In all other circumstances,
  2959  // internalNext returns internalNextExhausted, indicating that there are no more
  2960  // additional internal keys with the user key Key().
  2961  //
  2962  // internalNext does not change the external position of the iterator, and a
  2963  // Next operation should behave the same as if internalNext was never called.
  2964  // internalNext does invalidate the iterator Value's memory, and the caller must
  2965  // not rely on the memory safety of the previous Iterator position.
  2966  func (i *Iterator) internalNext() (internalNextValidity, base.InternalKeyKind) {
  2967  	i.stats.ForwardStepCount[InterfaceCall]++
  2968  	if i.err != nil {
  2969  		return internalNextError, base.InternalKeyKindInvalid
  2970  	} else if i.iterValidityState != IterValid {
  2971  		return internalNextExhausted, base.InternalKeyKindInvalid
  2972  	}
  2973  	i.lastPositioningOp = internalNextOp
  2974  
  2975  	switch i.pos {
  2976  	case iterPosCurForward:
  2977  		i.iterKey, i.iterValue = i.iter.Next()
  2978  		if i.iterKey == nil {
  2979  			// We check i.iter.Error() here and return an internalNextError enum
  2980  			// variant so that the caller does not need to check i.iter.Error()
  2981  			// in the common case that the next internal key has a new user key.
  2982  			if i.err = i.iter.Error(); i.err != nil {
  2983  				return internalNextError, base.InternalKeyKindInvalid
  2984  			}
  2985  			i.pos = iterPosNext
  2986  			return internalNextExhausted, base.InternalKeyKindInvalid
  2987  		} else if i.comparer.Equal(i.iterKey.UserKey, i.key) {
  2988  			return internalNextValid, i.iterKey.Kind()
  2989  		}
  2990  		i.pos = iterPosNext
  2991  		return internalNextExhausted, base.InternalKeyKindInvalid
  2992  	case iterPosCurReverse, iterPosCurReversePaused, iterPosPrev:
  2993  		i.err = errors.New("switching from reverse to forward via internalNext is prohibited")
  2994  		i.iterValidityState = IterExhausted
  2995  		return internalNextError, base.InternalKeyKindInvalid
  2996  	case iterPosNext, iterPosCurForwardPaused:
  2997  		// The previous method already moved onto the next user key. This is
  2998  		// only possible if
  2999  		//   - the last positioning method was a call to internalNext, and we
  3000  		//     advanced to a new user key.
  3001  		//   - the previous non-internalNext iterator operation encountered a
  3002  		//     range key or merge, forcing an internal Next that found a new
  3003  		//     user key that's not equal to i.Iterator.Key().
  3004  		return internalNextExhausted, base.InternalKeyKindInvalid
  3005  	default:
  3006  		panic("unreachable")
  3007  	}
  3008  }