github.com/cockroachdb/tools@v0.0.0-20230222021103-a6d27438930d/go/ssa/func.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 // This file implements the Function type. 8 9 import ( 10 "bytes" 11 "fmt" 12 "go/ast" 13 "go/token" 14 "go/types" 15 "io" 16 "os" 17 "strings" 18 19 "golang.org/x/tools/internal/typeparams" 20 ) 21 22 // Like ObjectOf, but panics instead of returning nil. 23 // Only valid during f's create and build phases. 24 func (f *Function) objectOf(id *ast.Ident) types.Object { 25 if o := f.info.ObjectOf(id); o != nil { 26 return o 27 } 28 panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s", 29 id.Name, f.Prog.Fset.Position(id.Pos()))) 30 } 31 32 // Like TypeOf, but panics instead of returning nil. 33 // Only valid during f's create and build phases. 34 func (f *Function) typeOf(e ast.Expr) types.Type { 35 if T := f.info.TypeOf(e); T != nil { 36 return f.typ(T) 37 } 38 panic(fmt.Sprintf("no type for %T @ %s", e, f.Prog.Fset.Position(e.Pos()))) 39 } 40 41 // typ is the locally instantiated type of T. T==typ(T) if f is not an instantiation. 42 func (f *Function) typ(T types.Type) types.Type { 43 return f.subst.typ(T) 44 } 45 46 // If id is an Instance, returns info.Instances[id].Type. 47 // Otherwise returns f.typeOf(id). 48 func (f *Function) instanceType(id *ast.Ident) types.Type { 49 if t, ok := typeparams.GetInstances(f.info)[id]; ok { 50 return t.Type 51 } 52 return f.typeOf(id) 53 } 54 55 // selection returns a *selection corresponding to f.info.Selections[selector] 56 // with potential updates for type substitution. 57 func (f *Function) selection(selector *ast.SelectorExpr) *selection { 58 sel := f.info.Selections[selector] 59 if sel == nil { 60 return nil 61 } 62 63 switch sel.Kind() { 64 case types.MethodExpr, types.MethodVal: 65 if recv := f.typ(sel.Recv()); recv != sel.Recv() { 66 // recv changed during type substitution. 67 pkg := f.declaredPackage().Pkg 68 obj, index, indirect := types.LookupFieldOrMethod(recv, true, pkg, sel.Obj().Name()) 69 70 // sig replaces sel.Type(). See (types.Selection).Typ() for details. 71 sig := obj.Type().(*types.Signature) 72 sig = changeRecv(sig, newVar(sig.Recv().Name(), recv)) 73 if sel.Kind() == types.MethodExpr { 74 sig = recvAsFirstArg(sig) 75 } 76 return &selection{ 77 kind: sel.Kind(), 78 recv: recv, 79 typ: sig, 80 obj: obj, 81 index: index, 82 indirect: indirect, 83 } 84 } 85 } 86 return toSelection(sel) 87 } 88 89 // Destinations associated with unlabelled for/switch/select stmts. 90 // We push/pop one of these as we enter/leave each construct and for 91 // each BranchStmt we scan for the innermost target of the right type. 92 type targets struct { 93 tail *targets // rest of stack 94 _break *BasicBlock 95 _continue *BasicBlock 96 _fallthrough *BasicBlock 97 } 98 99 // Destinations associated with a labelled block. 100 // We populate these as labels are encountered in forward gotos or 101 // labelled statements. 102 type lblock struct { 103 _goto *BasicBlock 104 _break *BasicBlock 105 _continue *BasicBlock 106 } 107 108 // labelledBlock returns the branch target associated with the 109 // specified label, creating it if needed. 110 func (f *Function) labelledBlock(label *ast.Ident) *lblock { 111 obj := f.objectOf(label) 112 lb := f.lblocks[obj] 113 if lb == nil { 114 lb = &lblock{_goto: f.newBasicBlock(label.Name)} 115 if f.lblocks == nil { 116 f.lblocks = make(map[types.Object]*lblock) 117 } 118 f.lblocks[obj] = lb 119 } 120 return lb 121 } 122 123 // addParam adds a (non-escaping) parameter to f.Params of the 124 // specified name, type and source position. 125 func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter { 126 v := &Parameter{ 127 name: name, 128 typ: typ, 129 pos: pos, 130 parent: f, 131 } 132 f.Params = append(f.Params, v) 133 return v 134 } 135 136 func (f *Function) addParamObj(obj types.Object) *Parameter { 137 name := obj.Name() 138 if name == "" { 139 name = fmt.Sprintf("arg%d", len(f.Params)) 140 } 141 param := f.addParam(name, f.typ(obj.Type()), obj.Pos()) 142 param.object = obj 143 return param 144 } 145 146 // addSpilledParam declares a parameter that is pre-spilled to the 147 // stack; the function body will load/store the spilled location. 148 // Subsequent lifting will eliminate spills where possible. 149 func (f *Function) addSpilledParam(obj types.Object) { 150 param := f.addParamObj(obj) 151 spill := &Alloc{Comment: obj.Name()} 152 spill.setType(types.NewPointer(param.Type())) 153 spill.setPos(obj.Pos()) 154 f.objects[obj] = spill 155 f.Locals = append(f.Locals, spill) 156 f.emit(spill) 157 f.emit(&Store{Addr: spill, Val: param}) 158 } 159 160 // startBody initializes the function prior to generating SSA code for its body. 161 // Precondition: f.Type() already set. 162 func (f *Function) startBody() { 163 f.currentBlock = f.newBasicBlock("entry") 164 f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init 165 } 166 167 // createSyntacticParams populates f.Params and generates code (spills 168 // and named result locals) for all the parameters declared in the 169 // syntax. In addition it populates the f.objects mapping. 170 // 171 // Preconditions: 172 // f.startBody() was called. f.info != nil. 173 // Postcondition: 174 // len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0) 175 func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) { 176 // Receiver (at most one inner iteration). 177 if recv != nil { 178 for _, field := range recv.List { 179 for _, n := range field.Names { 180 f.addSpilledParam(f.info.Defs[n]) 181 } 182 // Anonymous receiver? No need to spill. 183 if field.Names == nil { 184 f.addParamObj(f.Signature.Recv()) 185 } 186 } 187 } 188 189 // Parameters. 190 if functype.Params != nil { 191 n := len(f.Params) // 1 if has recv, 0 otherwise 192 for _, field := range functype.Params.List { 193 for _, n := range field.Names { 194 f.addSpilledParam(f.info.Defs[n]) 195 } 196 // Anonymous parameter? No need to spill. 197 if field.Names == nil { 198 f.addParamObj(f.Signature.Params().At(len(f.Params) - n)) 199 } 200 } 201 } 202 203 // Named results. 204 if functype.Results != nil { 205 for _, field := range functype.Results.List { 206 // Implicit "var" decl of locals for named results. 207 for _, n := range field.Names { 208 f.namedResults = append(f.namedResults, f.addLocalForIdent(n)) 209 } 210 } 211 } 212 } 213 214 type setNumable interface { 215 setNum(int) 216 } 217 218 // numberRegisters assigns numbers to all SSA registers 219 // (value-defining Instructions) in f, to aid debugging. 220 // (Non-Instruction Values are named at construction.) 221 func numberRegisters(f *Function) { 222 v := 0 223 for _, b := range f.Blocks { 224 for _, instr := range b.Instrs { 225 switch instr.(type) { 226 case Value: 227 instr.(setNumable).setNum(v) 228 v++ 229 } 230 } 231 } 232 } 233 234 // buildReferrers populates the def/use information in all non-nil 235 // Value.Referrers slice. 236 // Precondition: all such slices are initially empty. 237 func buildReferrers(f *Function) { 238 var rands []*Value 239 for _, b := range f.Blocks { 240 for _, instr := range b.Instrs { 241 rands = instr.Operands(rands[:0]) // recycle storage 242 for _, rand := range rands { 243 if r := *rand; r != nil { 244 if ref := r.Referrers(); ref != nil { 245 *ref = append(*ref, instr) 246 } 247 } 248 } 249 } 250 } 251 } 252 253 // mayNeedRuntimeTypes returns all of the types in the body of fn that might need runtime types. 254 // 255 // EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu) 256 func mayNeedRuntimeTypes(fn *Function) []types.Type { 257 // Collect all types that may need rtypes, i.e. those that flow into an interface. 258 var ts []types.Type 259 for _, bb := range fn.Blocks { 260 for _, instr := range bb.Instrs { 261 if mi, ok := instr.(*MakeInterface); ok { 262 ts = append(ts, mi.X.Type()) 263 } 264 } 265 } 266 267 // Types that contain a parameterized type are considered to not be runtime types. 268 if fn.typeparams.Len() == 0 { 269 return ts // No potentially parameterized types. 270 } 271 // Filter parameterized types, in place. 272 fn.Prog.methodsMu.Lock() 273 defer fn.Prog.methodsMu.Unlock() 274 filtered := ts[:0] 275 for _, t := range ts { 276 if !fn.Prog.parameterized.isParameterized(t) { 277 filtered = append(filtered, t) 278 } 279 } 280 return filtered 281 } 282 283 // finishBody() finalizes the contents of the function after SSA code generation of its body. 284 // 285 // The function is not done being built until done() is called. 286 func (f *Function) finishBody() { 287 f.objects = nil 288 f.currentBlock = nil 289 f.lblocks = nil 290 291 // Don't pin the AST in memory (except in debug mode). 292 if n := f.syntax; n != nil && !f.debugInfo() { 293 f.syntax = extentNode{n.Pos(), n.End()} 294 } 295 296 // Remove from f.Locals any Allocs that escape to the heap. 297 j := 0 298 for _, l := range f.Locals { 299 if !l.Heap { 300 f.Locals[j] = l 301 j++ 302 } 303 } 304 // Nil out f.Locals[j:] to aid GC. 305 for i := j; i < len(f.Locals); i++ { 306 f.Locals[i] = nil 307 } 308 f.Locals = f.Locals[:j] 309 310 optimizeBlocks(f) 311 312 buildReferrers(f) 313 314 buildDomTree(f) 315 316 if f.Prog.mode&NaiveForm == 0 { 317 // For debugging pre-state of lifting pass: 318 // numberRegisters(f) 319 // f.WriteTo(os.Stderr) 320 lift(f) 321 } 322 323 // clear remaining stateful variables 324 f.namedResults = nil // (used by lifting) 325 f.info = nil 326 f.subst = nil 327 328 numberRegisters(f) // uses f.namedRegisters 329 } 330 331 // After this, function is done with BUILD phase. 332 func (f *Function) done() { 333 assert(f.parent == nil, "done called on an anonymous function") 334 335 var visit func(*Function) 336 visit = func(f *Function) { 337 for _, anon := range f.AnonFuncs { 338 visit(anon) // anon is done building before f. 339 } 340 341 f.built = true // function is done with BUILD phase 342 343 if f.Prog.mode&PrintFunctions != 0 { 344 printMu.Lock() 345 f.WriteTo(os.Stdout) 346 printMu.Unlock() 347 } 348 349 if f.Prog.mode&SanityCheckFunctions != 0 { 350 mustSanityCheck(f, nil) 351 } 352 } 353 visit(f) 354 } 355 356 // removeNilBlocks eliminates nils from f.Blocks and updates each 357 // BasicBlock.Index. Use this after any pass that may delete blocks. 358 func (f *Function) removeNilBlocks() { 359 j := 0 360 for _, b := range f.Blocks { 361 if b != nil { 362 b.Index = j 363 f.Blocks[j] = b 364 j++ 365 } 366 } 367 // Nil out f.Blocks[j:] to aid GC. 368 for i := j; i < len(f.Blocks); i++ { 369 f.Blocks[i] = nil 370 } 371 f.Blocks = f.Blocks[:j] 372 } 373 374 // SetDebugMode sets the debug mode for package pkg. If true, all its 375 // functions will include full debug info. This greatly increases the 376 // size of the instruction stream, and causes Functions to depend upon 377 // the ASTs, potentially keeping them live in memory for longer. 378 func (pkg *Package) SetDebugMode(debug bool) { 379 // TODO(adonovan): do we want ast.File granularity? 380 pkg.debug = debug 381 } 382 383 // debugInfo reports whether debug info is wanted for this function. 384 func (f *Function) debugInfo() bool { 385 return f.Pkg != nil && f.Pkg.debug 386 } 387 388 // addNamedLocal creates a local variable, adds it to function f and 389 // returns it. Its name and type are taken from obj. Subsequent 390 // calls to f.lookup(obj) will return the same local. 391 func (f *Function) addNamedLocal(obj types.Object) *Alloc { 392 l := f.addLocal(obj.Type(), obj.Pos()) 393 l.Comment = obj.Name() 394 f.objects[obj] = l 395 return l 396 } 397 398 func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc { 399 return f.addNamedLocal(f.info.Defs[id]) 400 } 401 402 // addLocal creates an anonymous local variable of type typ, adds it 403 // to function f and returns it. pos is the optional source location. 404 func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc { 405 typ = f.typ(typ) 406 v := &Alloc{} 407 v.setType(types.NewPointer(typ)) 408 v.setPos(pos) 409 f.Locals = append(f.Locals, v) 410 f.emit(v) 411 return v 412 } 413 414 // lookup returns the address of the named variable identified by obj 415 // that is local to function f or one of its enclosing functions. 416 // If escaping, the reference comes from a potentially escaping pointer 417 // expression and the referent must be heap-allocated. 418 func (f *Function) lookup(obj types.Object, escaping bool) Value { 419 if v, ok := f.objects[obj]; ok { 420 if alloc, ok := v.(*Alloc); ok && escaping { 421 alloc.Heap = true 422 } 423 return v // function-local var (address) 424 } 425 426 // Definition must be in an enclosing function; 427 // plumb it through intervening closures. 428 if f.parent == nil { 429 panic("no ssa.Value for " + obj.String()) 430 } 431 outer := f.parent.lookup(obj, true) // escaping 432 v := &FreeVar{ 433 name: obj.Name(), 434 typ: outer.Type(), 435 pos: outer.Pos(), 436 outer: outer, 437 parent: f, 438 } 439 f.objects[obj] = v 440 f.FreeVars = append(f.FreeVars, v) 441 return v 442 } 443 444 // emit emits the specified instruction to function f. 445 func (f *Function) emit(instr Instruction) Value { 446 return f.currentBlock.emit(instr) 447 } 448 449 // RelString returns the full name of this function, qualified by 450 // package name, receiver type, etc. 451 // 452 // The specific formatting rules are not guaranteed and may change. 453 // 454 // Examples: 455 // 456 // "math.IsNaN" // a package-level function 457 // "(*bytes.Buffer).Bytes" // a declared method or a wrapper 458 // "(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0) 459 // "(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure) 460 // "main.main$1" // an anonymous function in main 461 // "main.init#1" // a declared init function 462 // "main.init" // the synthesized package initializer 463 // 464 // When these functions are referred to from within the same package 465 // (i.e. from == f.Pkg.Object), they are rendered without the package path. 466 // For example: "IsNaN", "(*Buffer).Bytes", etc. 467 // 468 // All non-synthetic functions have distinct package-qualified names. 469 // (But two methods may have the same name "(T).f" if one is a synthetic 470 // wrapper promoting a non-exported method "f" from another package; in 471 // that case, the strings are equal but the identifiers "f" are distinct.) 472 func (f *Function) RelString(from *types.Package) string { 473 // Anonymous? 474 if f.parent != nil { 475 // An anonymous function's Name() looks like "parentName$1", 476 // but its String() should include the type/package/etc. 477 parent := f.parent.RelString(from) 478 for i, anon := range f.parent.AnonFuncs { 479 if anon == f { 480 return fmt.Sprintf("%s$%d", parent, 1+i) 481 } 482 } 483 484 return f.name // should never happen 485 } 486 487 // Method (declared or wrapper)? 488 if recv := f.Signature.Recv(); recv != nil { 489 return f.relMethod(from, recv.Type()) 490 } 491 492 // Thunk? 493 if f.method != nil { 494 return f.relMethod(from, f.method.recv) 495 } 496 497 // Bound? 498 if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") { 499 return f.relMethod(from, f.FreeVars[0].Type()) 500 } 501 502 // Package-level function? 503 // Prefix with package name for cross-package references only. 504 if p := f.relPkg(); p != nil && p != from { 505 return fmt.Sprintf("%s.%s", p.Path(), f.name) 506 } 507 508 // Unknown. 509 return f.name 510 } 511 512 func (f *Function) relMethod(from *types.Package, recv types.Type) string { 513 return fmt.Sprintf("(%s).%s", relType(recv, from), f.name) 514 } 515 516 // writeSignature writes to buf the signature sig in declaration syntax. 517 func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) { 518 buf.WriteString("func ") 519 if recv := sig.Recv(); recv != nil { 520 buf.WriteString("(") 521 if n := params[0].Name(); n != "" { 522 buf.WriteString(n) 523 buf.WriteString(" ") 524 } 525 types.WriteType(buf, params[0].Type(), types.RelativeTo(from)) 526 buf.WriteString(") ") 527 } 528 buf.WriteString(name) 529 types.WriteSignature(buf, sig, types.RelativeTo(from)) 530 } 531 532 // declaredPackage returns the package fn is declared in or nil if the 533 // function is not declared in a package. 534 func (fn *Function) declaredPackage() *Package { 535 switch { 536 case fn.Pkg != nil: 537 return fn.Pkg // non-generic function 538 case fn.topLevelOrigin != nil: 539 return fn.topLevelOrigin.Pkg // instance of a named generic function 540 case fn.parent != nil: 541 return fn.parent.declaredPackage() // instance of an anonymous [generic] function 542 default: 543 return nil // function is not declared in a package, e.g. a wrapper. 544 } 545 } 546 547 // relPkg returns types.Package fn is printed in relationship to. 548 func (fn *Function) relPkg() *types.Package { 549 if p := fn.declaredPackage(); p != nil { 550 return p.Pkg 551 } 552 return nil 553 } 554 555 var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer 556 557 func (f *Function) WriteTo(w io.Writer) (int64, error) { 558 var buf bytes.Buffer 559 WriteFunction(&buf, f) 560 n, err := w.Write(buf.Bytes()) 561 return int64(n), err 562 } 563 564 // WriteFunction writes to buf a human-readable "disassembly" of f. 565 func WriteFunction(buf *bytes.Buffer, f *Function) { 566 fmt.Fprintf(buf, "# Name: %s\n", f.String()) 567 if f.Pkg != nil { 568 fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path()) 569 } 570 if syn := f.Synthetic; syn != "" { 571 fmt.Fprintln(buf, "# Synthetic:", syn) 572 } 573 if pos := f.Pos(); pos.IsValid() { 574 fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos)) 575 } 576 577 if f.parent != nil { 578 fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name()) 579 } 580 581 if f.Recover != nil { 582 fmt.Fprintf(buf, "# Recover: %s\n", f.Recover) 583 } 584 585 from := f.relPkg() 586 587 if f.FreeVars != nil { 588 buf.WriteString("# Free variables:\n") 589 for i, fv := range f.FreeVars { 590 fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from)) 591 } 592 } 593 594 if len(f.Locals) > 0 { 595 buf.WriteString("# Locals:\n") 596 for i, l := range f.Locals { 597 fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from)) 598 } 599 } 600 writeSignature(buf, from, f.Name(), f.Signature, f.Params) 601 buf.WriteString(":\n") 602 603 if f.Blocks == nil { 604 buf.WriteString("\t(external)\n") 605 } 606 607 // NB. column calculations are confused by non-ASCII 608 // characters and assume 8-space tabs. 609 const punchcard = 80 // for old time's sake. 610 const tabwidth = 8 611 for _, b := range f.Blocks { 612 if b == nil { 613 // Corrupt CFG. 614 fmt.Fprintf(buf, ".nil:\n") 615 continue 616 } 617 n, _ := fmt.Fprintf(buf, "%d:", b.Index) 618 bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs)) 619 fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg) 620 621 if false { // CFG debugging 622 fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs) 623 } 624 for _, instr := range b.Instrs { 625 buf.WriteString("\t") 626 switch v := instr.(type) { 627 case Value: 628 l := punchcard - tabwidth 629 // Left-align the instruction. 630 if name := v.Name(); name != "" { 631 n, _ := fmt.Fprintf(buf, "%s = ", name) 632 l -= n 633 } 634 n, _ := buf.WriteString(instr.String()) 635 l -= n 636 // Right-align the type if there's space. 637 if t := v.Type(); t != nil { 638 buf.WriteByte(' ') 639 ts := relType(t, from) 640 l -= len(ts) + len(" ") // (spaces before and after type) 641 if l > 0 { 642 fmt.Fprintf(buf, "%*s", l, "") 643 } 644 buf.WriteString(ts) 645 } 646 case nil: 647 // Be robust against bad transforms. 648 buf.WriteString("<deleted>") 649 default: 650 buf.WriteString(instr.String()) 651 } 652 buf.WriteString("\n") 653 } 654 } 655 fmt.Fprintf(buf, "\n") 656 } 657 658 // newBasicBlock adds to f a new basic block and returns it. It does 659 // not automatically become the current block for subsequent calls to emit. 660 // comment is an optional string for more readable debugging output. 661 func (f *Function) newBasicBlock(comment string) *BasicBlock { 662 b := &BasicBlock{ 663 Index: len(f.Blocks), 664 Comment: comment, 665 parent: f, 666 } 667 b.Succs = b.succs2[:0] 668 f.Blocks = append(f.Blocks, b) 669 return b 670 } 671 672 // NewFunction returns a new synthetic Function instance belonging to 673 // prog, with its name and signature fields set as specified. 674 // 675 // The caller is responsible for initializing the remaining fields of 676 // the function object, e.g. Pkg, Params, Blocks. 677 // 678 // It is practically impossible for clients to construct well-formed 679 // SSA functions/packages/programs directly, so we assume this is the 680 // job of the Builder alone. NewFunction exists to provide clients a 681 // little flexibility. For example, analysis tools may wish to 682 // construct fake Functions for the root of the callgraph, a fake 683 // "reflect" package, etc. 684 // 685 // TODO(adonovan): think harder about the API here. 686 func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function { 687 return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance} 688 } 689 690 type extentNode [2]token.Pos 691 692 func (n extentNode) Pos() token.Pos { return n[0] } 693 func (n extentNode) End() token.Pos { return n[1] } 694 695 // Syntax returns an ast.Node whose Pos/End methods provide the 696 // lexical extent of the function if it was defined by Go source code 697 // (f.Synthetic==""), or nil otherwise. 698 // 699 // If f was built with debug information (see Package.SetDebugRef), 700 // the result is the *ast.FuncDecl or *ast.FuncLit that declared the 701 // function. Otherwise, it is an opaque Node providing only position 702 // information; this avoids pinning the AST in memory. 703 func (f *Function) Syntax() ast.Node { return f.syntax }