github.com/code-reading/golang@v0.0.0-20220303082512-ba5bc0e589a3/go/src/math/big/nat.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements unsigned multi-precision integers (natural 6 // numbers). They are the building blocks for the implementation 7 // of signed integers, rationals, and floating-point numbers. 8 // 9 // Caution: This implementation relies on the function "alias" 10 // which assumes that (nat) slice capacities are never 11 // changed (no 3-operand slice expressions). If that 12 // changes, alias needs to be updated for correctness. 13 14 package big 15 16 import ( 17 "encoding/binary" 18 "math/bits" 19 "math/rand" 20 "sync" 21 ) 22 23 // An unsigned integer x of the form 24 // 25 // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0] 26 // 27 // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n, 28 // with the digits x[i] as the slice elements. 29 // 30 // A number is normalized if the slice contains no leading 0 digits. 31 // During arithmetic operations, denormalized values may occur but are 32 // always normalized before returning the final result. The normalized 33 // representation of 0 is the empty or nil slice (length = 0). 34 // 35 type nat []Word 36 37 var ( 38 natOne = nat{1} 39 natTwo = nat{2} 40 natFive = nat{5} 41 natTen = nat{10} 42 ) 43 44 func (z nat) clear() { 45 for i := range z { 46 z[i] = 0 47 } 48 } 49 50 func (z nat) norm() nat { 51 i := len(z) 52 for i > 0 && z[i-1] == 0 { 53 i-- 54 } 55 return z[0:i] 56 } 57 58 func (z nat) make(n int) nat { 59 if n <= cap(z) { 60 return z[:n] // reuse z 61 } 62 if n == 1 { 63 // Most nats start small and stay that way; don't over-allocate. 64 return make(nat, 1) 65 } 66 // Choosing a good value for e has significant performance impact 67 // because it increases the chance that a value can be reused. 68 const e = 4 // extra capacity 69 return make(nat, n, n+e) 70 } 71 72 func (z nat) setWord(x Word) nat { 73 if x == 0 { 74 return z[:0] 75 } 76 z = z.make(1) 77 z[0] = x 78 return z 79 } 80 81 func (z nat) setUint64(x uint64) nat { 82 // single-word value 83 if w := Word(x); uint64(w) == x { 84 return z.setWord(w) 85 } 86 // 2-word value 87 z = z.make(2) 88 z[1] = Word(x >> 32) 89 z[0] = Word(x) 90 return z 91 } 92 93 func (z nat) set(x nat) nat { 94 z = z.make(len(x)) 95 copy(z, x) 96 return z 97 } 98 99 func (z nat) add(x, y nat) nat { 100 m := len(x) 101 n := len(y) 102 103 switch { 104 case m < n: 105 return z.add(y, x) 106 case m == 0: 107 // n == 0 because m >= n; result is 0 108 return z[:0] 109 case n == 0: 110 // result is x 111 return z.set(x) 112 } 113 // m > 0 114 115 z = z.make(m + 1) 116 c := addVV(z[0:n], x, y) 117 if m > n { 118 c = addVW(z[n:m], x[n:], c) 119 } 120 z[m] = c 121 122 return z.norm() 123 } 124 125 func (z nat) sub(x, y nat) nat { 126 m := len(x) 127 n := len(y) 128 129 switch { 130 case m < n: 131 panic("underflow") 132 case m == 0: 133 // n == 0 because m >= n; result is 0 134 return z[:0] 135 case n == 0: 136 // result is x 137 return z.set(x) 138 } 139 // m > 0 140 141 z = z.make(m) 142 c := subVV(z[0:n], x, y) 143 if m > n { 144 c = subVW(z[n:], x[n:], c) 145 } 146 if c != 0 { 147 panic("underflow") 148 } 149 150 return z.norm() 151 } 152 153 func (x nat) cmp(y nat) (r int) { 154 m := len(x) 155 n := len(y) 156 if m != n || m == 0 { 157 switch { 158 case m < n: 159 r = -1 160 case m > n: 161 r = 1 162 } 163 return 164 } 165 166 i := m - 1 167 for i > 0 && x[i] == y[i] { 168 i-- 169 } 170 171 switch { 172 case x[i] < y[i]: 173 r = -1 174 case x[i] > y[i]: 175 r = 1 176 } 177 return 178 } 179 180 func (z nat) mulAddWW(x nat, y, r Word) nat { 181 m := len(x) 182 if m == 0 || y == 0 { 183 return z.setWord(r) // result is r 184 } 185 // m > 0 186 187 z = z.make(m + 1) 188 z[m] = mulAddVWW(z[0:m], x, y, r) 189 190 return z.norm() 191 } 192 193 // basicMul multiplies x and y and leaves the result in z. 194 // The (non-normalized) result is placed in z[0 : len(x) + len(y)]. 195 func basicMul(z, x, y nat) { 196 z[0 : len(x)+len(y)].clear() // initialize z 197 for i, d := range y { 198 if d != 0 { 199 z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d) 200 } 201 } 202 } 203 204 // montgomery computes z mod m = x*y*2**(-n*_W) mod m, 205 // assuming k = -1/m mod 2**_W. 206 // z is used for storing the result which is returned; 207 // z must not alias x, y or m. 208 // See Gueron, "Efficient Software Implementations of Modular Exponentiation". 209 // https://eprint.iacr.org/2011/239.pdf 210 // In the terminology of that paper, this is an "Almost Montgomery Multiplication": 211 // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result 212 // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m. 213 func (z nat) montgomery(x, y, m nat, k Word, n int) nat { 214 // This code assumes x, y, m are all the same length, n. 215 // (required by addMulVVW and the for loop). 216 // It also assumes that x, y are already reduced mod m, 217 // or else the result will not be properly reduced. 218 if len(x) != n || len(y) != n || len(m) != n { 219 panic("math/big: mismatched montgomery number lengths") 220 } 221 z = z.make(n * 2) 222 z.clear() 223 var c Word 224 for i := 0; i < n; i++ { 225 d := y[i] 226 c2 := addMulVVW(z[i:n+i], x, d) 227 t := z[i] * k 228 c3 := addMulVVW(z[i:n+i], m, t) 229 cx := c + c2 230 cy := cx + c3 231 z[n+i] = cy 232 if cx < c2 || cy < c3 { 233 c = 1 234 } else { 235 c = 0 236 } 237 } 238 if c != 0 { 239 subVV(z[:n], z[n:], m) 240 } else { 241 copy(z[:n], z[n:]) 242 } 243 return z[:n] 244 } 245 246 // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks. 247 // Factored out for readability - do not use outside karatsuba. 248 func karatsubaAdd(z, x nat, n int) { 249 if c := addVV(z[0:n], z, x); c != 0 { 250 addVW(z[n:n+n>>1], z[n:], c) 251 } 252 } 253 254 // Like karatsubaAdd, but does subtract. 255 func karatsubaSub(z, x nat, n int) { 256 if c := subVV(z[0:n], z, x); c != 0 { 257 subVW(z[n:n+n>>1], z[n:], c) 258 } 259 } 260 261 // Operands that are shorter than karatsubaThreshold are multiplied using 262 // "grade school" multiplication; for longer operands the Karatsuba algorithm 263 // is used. 264 var karatsubaThreshold = 40 // computed by calibrate_test.go 265 266 // karatsuba multiplies x and y and leaves the result in z. 267 // Both x and y must have the same length n and n must be a 268 // power of 2. The result vector z must have len(z) >= 6*n. 269 // The (non-normalized) result is placed in z[0 : 2*n]. 270 func karatsuba(z, x, y nat) { 271 n := len(y) 272 273 // Switch to basic multiplication if numbers are odd or small. 274 // (n is always even if karatsubaThreshold is even, but be 275 // conservative) 276 if n&1 != 0 || n < karatsubaThreshold || n < 2 { 277 basicMul(z, x, y) 278 return 279 } 280 // n&1 == 0 && n >= karatsubaThreshold && n >= 2 281 282 // Karatsuba multiplication is based on the observation that 283 // for two numbers x and y with: 284 // 285 // x = x1*b + x0 286 // y = y1*b + y0 287 // 288 // the product x*y can be obtained with 3 products z2, z1, z0 289 // instead of 4: 290 // 291 // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0 292 // = z2*b*b + z1*b + z0 293 // 294 // with: 295 // 296 // xd = x1 - x0 297 // yd = y0 - y1 298 // 299 // z1 = xd*yd + z2 + z0 300 // = (x1-x0)*(y0 - y1) + z2 + z0 301 // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0 302 // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0 303 // = x1*y0 + x0*y1 304 305 // split x, y into "digits" 306 n2 := n >> 1 // n2 >= 1 307 x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0 308 y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0 309 310 // z is used for the result and temporary storage: 311 // 312 // 6*n 5*n 4*n 3*n 2*n 1*n 0*n 313 // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ] 314 // 315 // For each recursive call of karatsuba, an unused slice of 316 // z is passed in that has (at least) half the length of the 317 // caller's z. 318 319 // compute z0 and z2 with the result "in place" in z 320 karatsuba(z, x0, y0) // z0 = x0*y0 321 karatsuba(z[n:], x1, y1) // z2 = x1*y1 322 323 // compute xd (or the negative value if underflow occurs) 324 s := 1 // sign of product xd*yd 325 xd := z[2*n : 2*n+n2] 326 if subVV(xd, x1, x0) != 0 { // x1-x0 327 s = -s 328 subVV(xd, x0, x1) // x0-x1 329 } 330 331 // compute yd (or the negative value if underflow occurs) 332 yd := z[2*n+n2 : 3*n] 333 if subVV(yd, y0, y1) != 0 { // y0-y1 334 s = -s 335 subVV(yd, y1, y0) // y1-y0 336 } 337 338 // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0 339 // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0 340 p := z[n*3:] 341 karatsuba(p, xd, yd) 342 343 // save original z2:z0 344 // (ok to use upper half of z since we're done recursing) 345 r := z[n*4:] 346 copy(r, z[:n*2]) 347 348 // add up all partial products 349 // 350 // 2*n n 0 351 // z = [ z2 | z0 ] 352 // + [ z0 ] 353 // + [ z2 ] 354 // + [ p ] 355 // 356 karatsubaAdd(z[n2:], r, n) 357 karatsubaAdd(z[n2:], r[n:], n) 358 if s > 0 { 359 karatsubaAdd(z[n2:], p, n) 360 } else { 361 karatsubaSub(z[n2:], p, n) 362 } 363 } 364 365 // alias reports whether x and y share the same base array. 366 // Note: alias assumes that the capacity of underlying arrays 367 // is never changed for nat values; i.e. that there are 368 // no 3-operand slice expressions in this code (or worse, 369 // reflect-based operations to the same effect). 370 func alias(x, y nat) bool { 371 return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1] 372 } 373 374 // addAt implements z += x<<(_W*i); z must be long enough. 375 // (we don't use nat.add because we need z to stay the same 376 // slice, and we don't need to normalize z after each addition) 377 func addAt(z, x nat, i int) { 378 if n := len(x); n > 0 { 379 if c := addVV(z[i:i+n], z[i:], x); c != 0 { 380 j := i + n 381 if j < len(z) { 382 addVW(z[j:], z[j:], c) 383 } 384 } 385 } 386 } 387 388 func max(x, y int) int { 389 if x > y { 390 return x 391 } 392 return y 393 } 394 395 // karatsubaLen computes an approximation to the maximum k <= n such that 396 // k = p<<i for a number p <= threshold and an i >= 0. Thus, the 397 // result is the largest number that can be divided repeatedly by 2 before 398 // becoming about the value of threshold. 399 func karatsubaLen(n, threshold int) int { 400 i := uint(0) 401 for n > threshold { 402 n >>= 1 403 i++ 404 } 405 return n << i 406 } 407 408 func (z nat) mul(x, y nat) nat { 409 m := len(x) 410 n := len(y) 411 412 switch { 413 case m < n: 414 return z.mul(y, x) 415 case m == 0 || n == 0: 416 return z[:0] 417 case n == 1: 418 return z.mulAddWW(x, y[0], 0) 419 } 420 // m >= n > 1 421 422 // determine if z can be reused 423 if alias(z, x) || alias(z, y) { 424 z = nil // z is an alias for x or y - cannot reuse 425 } 426 427 // use basic multiplication if the numbers are small 428 if n < karatsubaThreshold { 429 z = z.make(m + n) 430 basicMul(z, x, y) 431 return z.norm() 432 } 433 // m >= n && n >= karatsubaThreshold && n >= 2 434 435 // determine Karatsuba length k such that 436 // 437 // x = xh*b + x0 (0 <= x0 < b) 438 // y = yh*b + y0 (0 <= y0 < b) 439 // b = 1<<(_W*k) ("base" of digits xi, yi) 440 // 441 k := karatsubaLen(n, karatsubaThreshold) 442 // k <= n 443 444 // multiply x0 and y0 via Karatsuba 445 x0 := x[0:k] // x0 is not normalized 446 y0 := y[0:k] // y0 is not normalized 447 z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y 448 karatsuba(z, x0, y0) 449 z = z[0 : m+n] // z has final length but may be incomplete 450 z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m) 451 452 // If xh != 0 or yh != 0, add the missing terms to z. For 453 // 454 // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b) 455 // yh = y1*b (0 <= y1 < b) 456 // 457 // the missing terms are 458 // 459 // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0 460 // 461 // since all the yi for i > 1 are 0 by choice of k: If any of them 462 // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would 463 // be a larger valid threshold contradicting the assumption about k. 464 // 465 if k < n || m != n { 466 tp := getNat(3 * k) 467 t := *tp 468 469 // add x0*y1*b 470 x0 := x0.norm() 471 y1 := y[k:] // y1 is normalized because y is 472 t = t.mul(x0, y1) // update t so we don't lose t's underlying array 473 addAt(z, t, k) 474 475 // add xi*y0<<i, xi*y1*b<<(i+k) 476 y0 := y0.norm() 477 for i := k; i < len(x); i += k { 478 xi := x[i:] 479 if len(xi) > k { 480 xi = xi[:k] 481 } 482 xi = xi.norm() 483 t = t.mul(xi, y0) 484 addAt(z, t, i) 485 t = t.mul(xi, y1) 486 addAt(z, t, i+k) 487 } 488 489 putNat(tp) 490 } 491 492 return z.norm() 493 } 494 495 // basicSqr sets z = x*x and is asymptotically faster than basicMul 496 // by about a factor of 2, but slower for small arguments due to overhead. 497 // Requirements: len(x) > 0, len(z) == 2*len(x) 498 // The (non-normalized) result is placed in z. 499 func basicSqr(z, x nat) { 500 n := len(x) 501 tp := getNat(2 * n) 502 t := *tp // temporary variable to hold the products 503 t.clear() 504 z[1], z[0] = mulWW(x[0], x[0]) // the initial square 505 for i := 1; i < n; i++ { 506 d := x[i] 507 // z collects the squares x[i] * x[i] 508 z[2*i+1], z[2*i] = mulWW(d, d) 509 // t collects the products x[i] * x[j] where j < i 510 t[2*i] = addMulVVW(t[i:2*i], x[0:i], d) 511 } 512 t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products 513 addVV(z, z, t) // combine the result 514 putNat(tp) 515 } 516 517 // karatsubaSqr squares x and leaves the result in z. 518 // len(x) must be a power of 2 and len(z) >= 6*len(x). 519 // The (non-normalized) result is placed in z[0 : 2*len(x)]. 520 // 521 // The algorithm and the layout of z are the same as for karatsuba. 522 func karatsubaSqr(z, x nat) { 523 n := len(x) 524 525 if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 { 526 basicSqr(z[:2*n], x) 527 return 528 } 529 530 n2 := n >> 1 531 x1, x0 := x[n2:], x[0:n2] 532 533 karatsubaSqr(z, x0) 534 karatsubaSqr(z[n:], x1) 535 536 // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0 537 xd := z[2*n : 2*n+n2] 538 if subVV(xd, x1, x0) != 0 { 539 subVV(xd, x0, x1) 540 } 541 542 p := z[n*3:] 543 karatsubaSqr(p, xd) 544 545 r := z[n*4:] 546 copy(r, z[:n*2]) 547 548 karatsubaAdd(z[n2:], r, n) 549 karatsubaAdd(z[n2:], r[n:], n) 550 karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0 551 } 552 553 // Operands that are shorter than basicSqrThreshold are squared using 554 // "grade school" multiplication; for operands longer than karatsubaSqrThreshold 555 // we use the Karatsuba algorithm optimized for x == y. 556 var basicSqrThreshold = 20 // computed by calibrate_test.go 557 var karatsubaSqrThreshold = 260 // computed by calibrate_test.go 558 559 // z = x*x 560 func (z nat) sqr(x nat) nat { 561 n := len(x) 562 switch { 563 case n == 0: 564 return z[:0] 565 case n == 1: 566 d := x[0] 567 z = z.make(2) 568 z[1], z[0] = mulWW(d, d) 569 return z.norm() 570 } 571 572 if alias(z, x) { 573 z = nil // z is an alias for x - cannot reuse 574 } 575 576 if n < basicSqrThreshold { 577 z = z.make(2 * n) 578 basicMul(z, x, x) 579 return z.norm() 580 } 581 if n < karatsubaSqrThreshold { 582 z = z.make(2 * n) 583 basicSqr(z, x) 584 return z.norm() 585 } 586 587 // Use Karatsuba multiplication optimized for x == y. 588 // The algorithm and layout of z are the same as for mul. 589 590 // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2 591 592 k := karatsubaLen(n, karatsubaSqrThreshold) 593 594 x0 := x[0:k] 595 z = z.make(max(6*k, 2*n)) 596 karatsubaSqr(z, x0) // z = x0^2 597 z = z[0 : 2*n] 598 z[2*k:].clear() 599 600 if k < n { 601 tp := getNat(2 * k) 602 t := *tp 603 x0 := x0.norm() 604 x1 := x[k:] 605 t = t.mul(x0, x1) 606 addAt(z, t, k) 607 addAt(z, t, k) // z = 2*x1*x0*b + x0^2 608 t = t.sqr(x1) 609 addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2 610 putNat(tp) 611 } 612 613 return z.norm() 614 } 615 616 // mulRange computes the product of all the unsigned integers in the 617 // range [a, b] inclusively. If a > b (empty range), the result is 1. 618 func (z nat) mulRange(a, b uint64) nat { 619 switch { 620 case a == 0: 621 // cut long ranges short (optimization) 622 return z.setUint64(0) 623 case a > b: 624 return z.setUint64(1) 625 case a == b: 626 return z.setUint64(a) 627 case a+1 == b: 628 return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b)) 629 } 630 m := (a + b) / 2 631 return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b)) 632 } 633 634 // getNat returns a *nat of len n. The contents may not be zero. 635 // The pool holds *nat to avoid allocation when converting to interface{}. 636 func getNat(n int) *nat { 637 var z *nat 638 if v := natPool.Get(); v != nil { 639 z = v.(*nat) 640 } 641 if z == nil { 642 z = new(nat) 643 } 644 *z = z.make(n) 645 return z 646 } 647 648 func putNat(x *nat) { 649 natPool.Put(x) 650 } 651 652 var natPool sync.Pool 653 654 // Length of x in bits. x must be normalized. 655 func (x nat) bitLen() int { 656 if i := len(x) - 1; i >= 0 { 657 return i*_W + bits.Len(uint(x[i])) 658 } 659 return 0 660 } 661 662 // trailingZeroBits returns the number of consecutive least significant zero 663 // bits of x. 664 func (x nat) trailingZeroBits() uint { 665 if len(x) == 0 { 666 return 0 667 } 668 var i uint 669 for x[i] == 0 { 670 i++ 671 } 672 // x[i] != 0 673 return i*_W + uint(bits.TrailingZeros(uint(x[i]))) 674 } 675 676 func same(x, y nat) bool { 677 return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0] 678 } 679 680 // z = x << s 681 func (z nat) shl(x nat, s uint) nat { 682 if s == 0 { 683 if same(z, x) { 684 return z 685 } 686 if !alias(z, x) { 687 return z.set(x) 688 } 689 } 690 691 m := len(x) 692 if m == 0 { 693 return z[:0] 694 } 695 // m > 0 696 697 n := m + int(s/_W) 698 z = z.make(n + 1) 699 z[n] = shlVU(z[n-m:n], x, s%_W) 700 z[0 : n-m].clear() 701 702 return z.norm() 703 } 704 705 // z = x >> s 706 func (z nat) shr(x nat, s uint) nat { 707 if s == 0 { 708 if same(z, x) { 709 return z 710 } 711 if !alias(z, x) { 712 return z.set(x) 713 } 714 } 715 716 m := len(x) 717 n := m - int(s/_W) 718 if n <= 0 { 719 return z[:0] 720 } 721 // n > 0 722 723 z = z.make(n) 724 shrVU(z, x[m-n:], s%_W) 725 726 return z.norm() 727 } 728 729 func (z nat) setBit(x nat, i uint, b uint) nat { 730 j := int(i / _W) 731 m := Word(1) << (i % _W) 732 n := len(x) 733 switch b { 734 case 0: 735 z = z.make(n) 736 copy(z, x) 737 if j >= n { 738 // no need to grow 739 return z 740 } 741 z[j] &^= m 742 return z.norm() 743 case 1: 744 if j >= n { 745 z = z.make(j + 1) 746 z[n:].clear() 747 } else { 748 z = z.make(n) 749 } 750 copy(z, x) 751 z[j] |= m 752 // no need to normalize 753 return z 754 } 755 panic("set bit is not 0 or 1") 756 } 757 758 // bit returns the value of the i'th bit, with lsb == bit 0. 759 func (x nat) bit(i uint) uint { 760 j := i / _W 761 if j >= uint(len(x)) { 762 return 0 763 } 764 // 0 <= j < len(x) 765 return uint(x[j] >> (i % _W) & 1) 766 } 767 768 // sticky returns 1 if there's a 1 bit within the 769 // i least significant bits, otherwise it returns 0. 770 func (x nat) sticky(i uint) uint { 771 j := i / _W 772 if j >= uint(len(x)) { 773 if len(x) == 0 { 774 return 0 775 } 776 return 1 777 } 778 // 0 <= j < len(x) 779 for _, x := range x[:j] { 780 if x != 0 { 781 return 1 782 } 783 } 784 if x[j]<<(_W-i%_W) != 0 { 785 return 1 786 } 787 return 0 788 } 789 790 func (z nat) and(x, y nat) nat { 791 m := len(x) 792 n := len(y) 793 if m > n { 794 m = n 795 } 796 // m <= n 797 798 z = z.make(m) 799 for i := 0; i < m; i++ { 800 z[i] = x[i] & y[i] 801 } 802 803 return z.norm() 804 } 805 806 func (z nat) andNot(x, y nat) nat { 807 m := len(x) 808 n := len(y) 809 if n > m { 810 n = m 811 } 812 // m >= n 813 814 z = z.make(m) 815 for i := 0; i < n; i++ { 816 z[i] = x[i] &^ y[i] 817 } 818 copy(z[n:m], x[n:m]) 819 820 return z.norm() 821 } 822 823 func (z nat) or(x, y nat) nat { 824 m := len(x) 825 n := len(y) 826 s := x 827 if m < n { 828 n, m = m, n 829 s = y 830 } 831 // m >= n 832 833 z = z.make(m) 834 for i := 0; i < n; i++ { 835 z[i] = x[i] | y[i] 836 } 837 copy(z[n:m], s[n:m]) 838 839 return z.norm() 840 } 841 842 func (z nat) xor(x, y nat) nat { 843 m := len(x) 844 n := len(y) 845 s := x 846 if m < n { 847 n, m = m, n 848 s = y 849 } 850 // m >= n 851 852 z = z.make(m) 853 for i := 0; i < n; i++ { 854 z[i] = x[i] ^ y[i] 855 } 856 copy(z[n:m], s[n:m]) 857 858 return z.norm() 859 } 860 861 // random creates a random integer in [0..limit), using the space in z if 862 // possible. n is the bit length of limit. 863 func (z nat) random(rand *rand.Rand, limit nat, n int) nat { 864 if alias(z, limit) { 865 z = nil // z is an alias for limit - cannot reuse 866 } 867 z = z.make(len(limit)) 868 869 bitLengthOfMSW := uint(n % _W) 870 if bitLengthOfMSW == 0 { 871 bitLengthOfMSW = _W 872 } 873 mask := Word((1 << bitLengthOfMSW) - 1) 874 875 for { 876 switch _W { 877 case 32: 878 for i := range z { 879 z[i] = Word(rand.Uint32()) 880 } 881 case 64: 882 for i := range z { 883 z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32 884 } 885 default: 886 panic("unknown word size") 887 } 888 z[len(limit)-1] &= mask 889 if z.cmp(limit) < 0 { 890 break 891 } 892 } 893 894 return z.norm() 895 } 896 897 // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m; 898 // otherwise it sets z to x**y. The result is the value of z. 899 func (z nat) expNN(x, y, m nat) nat { 900 if alias(z, x) || alias(z, y) { 901 // We cannot allow in-place modification of x or y. 902 z = nil 903 } 904 905 // x**y mod 1 == 0 906 if len(m) == 1 && m[0] == 1 { 907 return z.setWord(0) 908 } 909 // m == 0 || m > 1 910 911 // x**0 == 1 912 if len(y) == 0 { 913 return z.setWord(1) 914 } 915 // y > 0 916 917 // x**1 mod m == x mod m 918 if len(y) == 1 && y[0] == 1 && len(m) != 0 { 919 _, z = nat(nil).div(z, x, m) 920 return z 921 } 922 // y > 1 923 924 if len(m) != 0 { 925 // We likely end up being as long as the modulus. 926 z = z.make(len(m)) 927 } 928 z = z.set(x) 929 930 // If the base is non-trivial and the exponent is large, we use 931 // 4-bit, windowed exponentiation. This involves precomputing 14 values 932 // (x^2...x^15) but then reduces the number of multiply-reduces by a 933 // third. Even for a 32-bit exponent, this reduces the number of 934 // operations. Uses Montgomery method for odd moduli. 935 if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 { 936 if m[0]&1 == 1 { 937 return z.expNNMontgomery(x, y, m) 938 } 939 return z.expNNWindowed(x, y, m) 940 } 941 942 v := y[len(y)-1] // v > 0 because y is normalized and y > 0 943 shift := nlz(v) + 1 944 v <<= shift 945 var q nat 946 947 const mask = 1 << (_W - 1) 948 949 // We walk through the bits of the exponent one by one. Each time we 950 // see a bit, we square, thus doubling the power. If the bit is a one, 951 // we also multiply by x, thus adding one to the power. 952 953 w := _W - int(shift) 954 // zz and r are used to avoid allocating in mul and div as 955 // otherwise the arguments would alias. 956 var zz, r nat 957 for j := 0; j < w; j++ { 958 zz = zz.sqr(z) 959 zz, z = z, zz 960 961 if v&mask != 0 { 962 zz = zz.mul(z, x) 963 zz, z = z, zz 964 } 965 966 if len(m) != 0 { 967 zz, r = zz.div(r, z, m) 968 zz, r, q, z = q, z, zz, r 969 } 970 971 v <<= 1 972 } 973 974 for i := len(y) - 2; i >= 0; i-- { 975 v = y[i] 976 977 for j := 0; j < _W; j++ { 978 zz = zz.sqr(z) 979 zz, z = z, zz 980 981 if v&mask != 0 { 982 zz = zz.mul(z, x) 983 zz, z = z, zz 984 } 985 986 if len(m) != 0 { 987 zz, r = zz.div(r, z, m) 988 zz, r, q, z = q, z, zz, r 989 } 990 991 v <<= 1 992 } 993 } 994 995 return z.norm() 996 } 997 998 // expNNWindowed calculates x**y mod m using a fixed, 4-bit window. 999 func (z nat) expNNWindowed(x, y, m nat) nat { 1000 // zz and r are used to avoid allocating in mul and div as otherwise 1001 // the arguments would alias. 1002 var zz, r nat 1003 1004 const n = 4 1005 // powers[i] contains x^i. 1006 var powers [1 << n]nat 1007 powers[0] = natOne 1008 powers[1] = x 1009 for i := 2; i < 1<<n; i += 2 { 1010 p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1] 1011 *p = p.sqr(*p2) 1012 zz, r = zz.div(r, *p, m) 1013 *p, r = r, *p 1014 *p1 = p1.mul(*p, x) 1015 zz, r = zz.div(r, *p1, m) 1016 *p1, r = r, *p1 1017 } 1018 1019 z = z.setWord(1) 1020 1021 for i := len(y) - 1; i >= 0; i-- { 1022 yi := y[i] 1023 for j := 0; j < _W; j += n { 1024 if i != len(y)-1 || j != 0 { 1025 // Unrolled loop for significant performance 1026 // gain. Use go test -bench=".*" in crypto/rsa 1027 // to check performance before making changes. 1028 zz = zz.sqr(z) 1029 zz, z = z, zz 1030 zz, r = zz.div(r, z, m) 1031 z, r = r, z 1032 1033 zz = zz.sqr(z) 1034 zz, z = z, zz 1035 zz, r = zz.div(r, z, m) 1036 z, r = r, z 1037 1038 zz = zz.sqr(z) 1039 zz, z = z, zz 1040 zz, r = zz.div(r, z, m) 1041 z, r = r, z 1042 1043 zz = zz.sqr(z) 1044 zz, z = z, zz 1045 zz, r = zz.div(r, z, m) 1046 z, r = r, z 1047 } 1048 1049 zz = zz.mul(z, powers[yi>>(_W-n)]) 1050 zz, z = z, zz 1051 zz, r = zz.div(r, z, m) 1052 z, r = r, z 1053 1054 yi <<= n 1055 } 1056 } 1057 1058 return z.norm() 1059 } 1060 1061 // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window. 1062 // Uses Montgomery representation. 1063 func (z nat) expNNMontgomery(x, y, m nat) nat { 1064 numWords := len(m) 1065 1066 // We want the lengths of x and m to be equal. 1067 // It is OK if x >= m as long as len(x) == len(m). 1068 if len(x) > numWords { 1069 _, x = nat(nil).div(nil, x, m) 1070 // Note: now len(x) <= numWords, not guaranteed ==. 1071 } 1072 if len(x) < numWords { 1073 rr := make(nat, numWords) 1074 copy(rr, x) 1075 x = rr 1076 } 1077 1078 // Ideally the precomputations would be performed outside, and reused 1079 // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson 1080 // Iteration for Multiplicative Inverses Modulo Prime Powers". 1081 k0 := 2 - m[0] 1082 t := m[0] - 1 1083 for i := 1; i < _W; i <<= 1 { 1084 t *= t 1085 k0 *= (t + 1) 1086 } 1087 k0 = -k0 1088 1089 // RR = 2**(2*_W*len(m)) mod m 1090 RR := nat(nil).setWord(1) 1091 zz := nat(nil).shl(RR, uint(2*numWords*_W)) 1092 _, RR = nat(nil).div(RR, zz, m) 1093 if len(RR) < numWords { 1094 zz = zz.make(numWords) 1095 copy(zz, RR) 1096 RR = zz 1097 } 1098 // one = 1, with equal length to that of m 1099 one := make(nat, numWords) 1100 one[0] = 1 1101 1102 const n = 4 1103 // powers[i] contains x^i 1104 var powers [1 << n]nat 1105 powers[0] = powers[0].montgomery(one, RR, m, k0, numWords) 1106 powers[1] = powers[1].montgomery(x, RR, m, k0, numWords) 1107 for i := 2; i < 1<<n; i++ { 1108 powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords) 1109 } 1110 1111 // initialize z = 1 (Montgomery 1) 1112 z = z.make(numWords) 1113 copy(z, powers[0]) 1114 1115 zz = zz.make(numWords) 1116 1117 // same windowed exponent, but with Montgomery multiplications 1118 for i := len(y) - 1; i >= 0; i-- { 1119 yi := y[i] 1120 for j := 0; j < _W; j += n { 1121 if i != len(y)-1 || j != 0 { 1122 zz = zz.montgomery(z, z, m, k0, numWords) 1123 z = z.montgomery(zz, zz, m, k0, numWords) 1124 zz = zz.montgomery(z, z, m, k0, numWords) 1125 z = z.montgomery(zz, zz, m, k0, numWords) 1126 } 1127 zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords) 1128 z, zz = zz, z 1129 yi <<= n 1130 } 1131 } 1132 // convert to regular number 1133 zz = zz.montgomery(z, one, m, k0, numWords) 1134 1135 // One last reduction, just in case. 1136 // See golang.org/issue/13907. 1137 if zz.cmp(m) >= 0 { 1138 // Common case is m has high bit set; in that case, 1139 // since zz is the same length as m, there can be just 1140 // one multiple of m to remove. Just subtract. 1141 // We think that the subtract should be sufficient in general, 1142 // so do that unconditionally, but double-check, 1143 // in case our beliefs are wrong. 1144 // The div is not expected to be reached. 1145 zz = zz.sub(zz, m) 1146 if zz.cmp(m) >= 0 { 1147 _, zz = nat(nil).div(nil, zz, m) 1148 } 1149 } 1150 1151 return zz.norm() 1152 } 1153 1154 // bytes writes the value of z into buf using big-endian encoding. 1155 // The value of z is encoded in the slice buf[i:]. If the value of z 1156 // cannot be represented in buf, bytes panics. The number i of unused 1157 // bytes at the beginning of buf is returned as result. 1158 func (z nat) bytes(buf []byte) (i int) { 1159 i = len(buf) 1160 for _, d := range z { 1161 for j := 0; j < _S; j++ { 1162 i-- 1163 if i >= 0 { 1164 buf[i] = byte(d) 1165 } else if byte(d) != 0 { 1166 panic("math/big: buffer too small to fit value") 1167 } 1168 d >>= 8 1169 } 1170 } 1171 1172 if i < 0 { 1173 i = 0 1174 } 1175 for i < len(buf) && buf[i] == 0 { 1176 i++ 1177 } 1178 1179 return 1180 } 1181 1182 // bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value. 1183 func bigEndianWord(buf []byte) Word { 1184 if _W == 64 { 1185 return Word(binary.BigEndian.Uint64(buf)) 1186 } 1187 return Word(binary.BigEndian.Uint32(buf)) 1188 } 1189 1190 // setBytes interprets buf as the bytes of a big-endian unsigned 1191 // integer, sets z to that value, and returns z. 1192 func (z nat) setBytes(buf []byte) nat { 1193 z = z.make((len(buf) + _S - 1) / _S) 1194 1195 i := len(buf) 1196 for k := 0; i >= _S; k++ { 1197 z[k] = bigEndianWord(buf[i-_S : i]) 1198 i -= _S 1199 } 1200 if i > 0 { 1201 var d Word 1202 for s := uint(0); i > 0; s += 8 { 1203 d |= Word(buf[i-1]) << s 1204 i-- 1205 } 1206 z[len(z)-1] = d 1207 } 1208 1209 return z.norm() 1210 } 1211 1212 // sqrt sets z = ⌊√x⌋ 1213 func (z nat) sqrt(x nat) nat { 1214 if x.cmp(natOne) <= 0 { 1215 return z.set(x) 1216 } 1217 if alias(z, x) { 1218 z = nil 1219 } 1220 1221 // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. 1222 // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). 1223 // https://members.loria.fr/PZimmermann/mca/pub226.html 1224 // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; 1225 // otherwise it converges to the correct z and stays there. 1226 var z1, z2 nat 1227 z1 = z 1228 z1 = z1.setUint64(1) 1229 z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x 1230 for n := 0; ; n++ { 1231 z2, _ = z2.div(nil, x, z1) 1232 z2 = z2.add(z2, z1) 1233 z2 = z2.shr(z2, 1) 1234 if z2.cmp(z1) >= 0 { 1235 // z1 is answer. 1236 // Figure out whether z1 or z2 is currently aliased to z by looking at loop count. 1237 if n&1 == 0 { 1238 return z1 1239 } 1240 return z.set(z1) 1241 } 1242 z1, z2 = z2, z1 1243 } 1244 }